
Multi-Resource List Scheduling of Moldable Parallel Jobs under

Precedence Constraints

Lucas Perotin§, Hongyang Sun†, Padma Raghavan†

§Laboratoire LIP, ENS Lyon, Lyon, France
†Vanderbilt University, Nashville, TN, USA

lucas.perotin@ens-lyon.fr; {hongyang.sun, padma.raghavan}@vanderbilt.edu

Abstract: The scheduling literature has traditionally focused on a single type of resource (e.g., computing
nodes). However, scientific applications in modern High-Performance Computing (HPC) systems process large
amounts of data, hence have diverse requirements on different types of resources (e.g., cores, cache, memory,
I/O). All of these resources could potentially be exploited by the runtime scheduler to improve the application
performance. In this paper, we study multi-resource scheduling to minimize the makespan of computational
workflows comprised of parallel jobs subject to precedence constraints. The jobs are assumed to be moldable,
allowing the scheduler to flexibly select a variable set of resources before execution. We propose a multi-
resource, list-based scheduling algorithm, and prove that, on a system with d types of schedulable resources,
our algorithm achieves an approximation ratio of 1.619d+ 2.545

√
d+ 1 for any d, and a ratio of d+O(

3
√
d2) for

large d. We also present improved results for independent jobs and for jobs with special precedence constraints
(e.g., series-parallel graphs and trees). Finally, we prove a lower bound of d on the approximation ratio of
any list scheduling scheme with local priority considerations. To the best of our knowledge, these are the first
approximation results for moldable workflows with multiple resource requirements.

Keywords: List scheduling, multiple resources, moldable jobs, precedence constraint, makespan, approxi-
mation ratio.

1 Introduction

Many complex scientific workflows that are running in today’s High-Performance Computing (HPC) systems can
be modeled as Directed Acyclic Graphs (DAGs), where the nodes represent the constituent jobs of the workflows
and the edges represent the precedence constraints or dependencies among the jobs. While HPC systems often
rely on dynamic runtime schedulers, such as KAAPI [17], StarPU [1] or PaRSEC [5], to ensure the efficient
execution of these workflows, most existing schedulers focus only on the management of the computational
resources (i.e., computing nodes or cores). However, many of today’s scientific applications need to process
large amounts of data, and thus require not only the computational resources but also strong data management
supports. Indeed, modern HPC systems are equipped with more levels of memory/storage (e.g., NVRAMs,
SSDs, burst buffers [27]), as well as more advanced architecture and software features (e.g., high-bandwidth
memory [35], cache partitioning [39], bandwidth reservation [6]) to facilitate efficient data transfer. All of these
different types of resources could potentially be partitioned among the concurrently running jobs and thus
exploited by the runtime schedulers to improve the overall application performance and system utilization.

In this paper, we study multi-resource scheduling for a computational workflow that is comprised of a set of
parallel jobs with DAG-based precedence constraints. The goal is to simultaneously explore the availability of
multiple types of resources by designing effective scheduling solutions that minimize the overall completion time,
or makespan, of the workflow. We focus on parallel jobs that are moldable [14], which allows the scheduler to
select a variable set of resources for a job, but once the job starts execution, the resource allocations cannot be
changed. In contrast to rigid jobs, whose resource allocations are all static and hence fixed, moldable jobs can
easily adapt to the different amounts of available resources, while in contrast to malleable jobs, whose resource
allocations can be dynamically varied during runtime, moldable jobs are much easier to design and implement.
Given these advantages, moldable jobs have been offered by many computational kernels in scientific libraries.
Moreover, the moldable job model is also amenable to the resource allocation patterns currently supported by
many different resource types (e.g., computing cores, memory blocks, cache lines).

As the considered multi-resource scheduling problem contains the single-resource problem as a special case,

1

ar
X

iv
:2

10
6.

07
05

9v
1

 [
cs

.D
C

]
 1

3
Ju

n
20

21

it is known to be strongly NP-complete [12]. Thus, we focus on designing good approximation algorithms. In
contrast to the single-resource problem, however, the multi-resource problem needs to consider the combined
effect of multiple types of resources on the execution time of the jobs, which poses additional challenges to the
scheduling problem. By adopting a two-phase approach [37] widely used for scheduling moldable jobs, we design
a multi-resource, list-based scheduling algorithm. In particular, our algorithm first computes an approximate
resource allocation for all jobs on different resource types, and then applies an extended list scheduling scheme
to schedule the jobs. As list scheduling is easy to implement, the proposed algorithm can be readily applied to
practical systems.

We prove the following main results for a system consisting of d types of schedulable resources, under
reasonable assumptions on the job execution times and speedups:

• An approximation ratio of 1.619d+ 2.545
√
d+ 1 for any d, and a ratio of d+O(

3
√
d2) for large d;

• Improved approximations for some special graphs (e.g., series-parallel graphs, trees and independent jobs)
with ratios of 1.619d+ 1 for any d and d+O(

√
d) for large d.

• A lower bound of d on the approximation ratio of any list scheduling scheme with local priority consider-
ations.

To the best of our knowledge, these are the first approximation results for moldable workflows with multiple
resource requirements. They also improve upon the 2d-approximation previously shown in [36] for indepen-
dent moldable jobs. The results demonstrate that our algorithm essentially achieves the optimal asymptotic
approximation up to the dominating factor (i.e., d) among the generic class of local list scheduling schemes,
thus matching the same asymptotic performance for rigid [16] and malleable [21] jobs. Altogether, these results
lay the theoretical foundation for multi-resource scheduling of parallel workflows.

The rest of this paper is organized as follows. Section 2 reviews some related work on moldable and multi-
resource scheduling. Section 3 formally introduces the scheduling model and derives a lower bound on the
optimal makespan. Section 4 presents our multi-resource scheduling algorithm and analyzes its approximation
ratios for general job graphs. Section 5 proves improved results for some special graphs, including series-parallel
graphs, trees and independent jobs. Section 6 shows a lower bound on the performance of local list scheduling
schemes, and finally, Section 7 concludes the paper and briefly discusses open questions.

2 Related Work

This section reviews some related work on scheduling moldable parallel jobs, as well as on multi-resource
scheduling under different job models and objectives.

2.1 Moldable Job Scheduling

Scheduling moldable parallel jobs to minimize the makespan is strongly NP-hard on P ≥ 5 processors [12], and
the problem has been extensively studied in the literature from the perspective of approximation algorithms.
Most prior work, however, has focused on a single type of resource while assuming different speedup models for
the jobs.

For scheduling independent moldable jobs with arbitrary speedups, Turek et al. [37] presented a 2-approximation
list-based algorithm and a 3-approximation algorithm based on building shelves. Ludwig and Tiwari [28] later
improved the 2-approximation result with lower computational complexity. For monotonic jobs, whose execution
time t(p) is non-decreasing in the number p of allocated processors and whose work function w(p) = p · t(p) is
non-decreasing in p, Mounié et al. [29] presented a (1.5+ ε)-approximation algorithm using dual approximation.
Jansen and Land [22] showed a lower complexity algorithm that achieves the same (1.5 + ε)-approximation as
well as a PTAS, when the execution time functions of the jobs admit compact encodings.

For scheduling moldable jobs with precedence constraints, Lepère et al. [26] presented a 5.236-approximation
algorithm for monotonic jobs. Jansen and Zhang [24] improved the approximation ratio to around 4.73 for the
same model, and recently, Chen [7] further improved it to around 3.42 using an iterative approximation method.
Additionally, better approximation results have been obtained for jobs with special dependency graphs (e.g.,
series-parallel graphs and trees [26, 25]) or special speedup models (e.g., concave speedup [23, 8] and roofline
speedup [38, 15]).

2.2 Multi-Resource Scheduling

Some approximation algorithms have been proposed on multi-resource scheduling to minimize makespan under
different parallel job models.

Garey and Graham [16] considered scheduling n sequential jobs on m identical machines with d additional
types of resources. Further, each job has a fixed resource requirement from each resource type, making it

2

essentially a rigid job scheduling model. They presented a list-scheduling algorithm and proved three results:
(1) an m-approximation for jobs with precedence constraints and when there is only one type of resource, i.e.,
d = 1; (2) a (d+ 1)-approximation for independent jobs and when the number of machines is not a constraining
factor, i.e., m ≥ n; (3) a (d + 2 − 2d+1

m)-approximation for independent jobs with any m ≥ 2. For the case of
d = 1, Demirci et al. [11] presented an improved O(log n)-approximation for jobs with precedence constraints,
and Niemeier and Wiese [30] presented an improved (2 + ε)-approximation for independent jobs.

He et al. [21, 20] considered parallel jobs that are represented as direct acyclic graphs (DAGs) consisting
of unit-size tasks, each of which requests a single type of resource from a total of d resource types. Further,
the amount of resources allocated to a job can be dynamically changed during runtime, making it essentially a
malleable job scheduling model. They showed that list scheduling achieves (d+1)-approximation for this model.
Shmoys et al. [33] considered a similar model while further restricting the tasks of each job to be processed
sequentially. They called it the DAG-shop scheduling model, and presented a polylog approximation result in
number of machines and job length.

Sun et al. [36] considered scheduling independent moldable jobs on d types of resources. They presented a
2d-approximation list-based algorithm and a (2d + 1)-approximation shelf-based algorithm, thus generalizing
the single-resource results in [37]. They also presented a technique to transform any c-approximation algorithm
for a single resource type to a cd-approximation algorithm for d types of resources. This work is the closest
to ours, while we consider moldable jobs with precedence constraints. When jobs are independent, our main
approximation result also improves the one in [36] for a large number of resource types.

Beaumont et al. [3] and Eyraud-Dubois and Kumar [13] considered scheduling sequential jobs on two alter-
native types of resources (CPU and GPU) to minimize the makespan. In their model, each job can be chosen
to execute on either resource type with different processing rates. They analyzed an approximation algorithm,
called HeteroPrio, for both independent jobs and jobs with precedence constraints. The approximation ratios
depend on the relative amount of resources in the two resource types. A recent survey on this alternative-resource
scheduling model can also be found in [2].

Additionally, some prior works have studied heuristic algorithms under various multi-resource scheduling
models or objectives. Ghodsi et al. [18] focused on the objective of resource allocation fairness in a multi-
user setting. They proposed the Dominant Resource Fairness (DRF) algorithm that aims at maximizing the
minimum dominant share across all users. Grandl et al. [19] considered scheduling malleable jobs under four
specific resource types (CPU, memory, disk and network). They designed a heuristic algorithm, called Tetris,
that schedules jobs by considering the correlation between the job’s peak resource demands and the machine’s
resource availabilities, with the goal of minimizing resource fragmentation. NoroozOliaee et al. [31] studied
a similar problem but with two resources only (CPU and memory). They showed that a simple scheduling
heuristic that uses Best Fit and Shortest Job First delivers good performance in terms of resource utilization
and job queueing delays.

3 Models

This section presents the multi-resource scheduling model, gives a formal statement of the problem, and derives
a lower bound on the optimal schedule.

3.1 Scheduling Model

We consider the problem of scheduling a set of n moldable jobs on d distinct types of resources (e.g., processor,
memory, cache). Each resource type i has a total amount P (i) of available resource. The jobs are moldable,
i.e., they can be executed using different amounts of resources from each resource type, but the resource usage
cannot be changed once a job has started executing. For each job j, its execution time tj(pj) depends on the

resource allocation pj = (p
(1)
j , p

(2)
j , · · · , p(d)j), which specifies the amount of resource p

(i)
j ≥ 0 allocated to the job

for each resource type i = 1, 2, . . . , d. We make the following reasonable assumptions on the resource allocation
and execution time of the jobs.

Assumption 1 (Integral Resources). All resource allocations p
(i)
j ’s for the jobs and the total amount of resources

P (i)’s for all resource types are integers.

This is a natural assumption for discrete resources, such as processors. Other resource types, such as memory
or cache, are typically allocated in discrete chunks as well (e.g., memory blocks, cache lines) in practical systems.

Assumption 2 (Known Execution Times). For each job j, its execution time function tj(pj) is known for
every possible resource allocation pj.

3

In practice, the execution time function of an application could be obtained through one or more of the
following approaches: application modeling or profiling, performance prediction or interpolation from historic
data. Here, we are not concerned about how such a function is obtained.

Assumption 3 (Monotonic Jobs). Given two resource allocations pj and qj for a job j, we say that pj is at

most qj, denoted by pj � qj, if p
(i)
j ≤ q

(i)
j for all 1 ≤ i ≤ d. The execution times of the job under these two

allocations satisfy:

tj(qj) ≤ tj(pj) ≤
(

max
i=1...d

q
(i)
j /p

(i)
j

)
· tj(qj) .

This generalizes the monotonic job assumption under a single resource type [26, 29], which has been observed
for many real-world applications. In particular, the first inequality specifies that the execution time of a job is
non-increasing in the amount of resource allocated to the job1, and the second inequality restricts the job to
have non-superlinear speedup with respect to any resource type2. Note that we do not make any assumptions
on a job j’s relative execution times under two resource allocations pj and qj that are non-comparable, i.e.,
pj � qj and qj � pj .

Additionally, a set of precedence constraints is specified for the jobs, which form a directed acyclic graph
(DAG), G = (V,E). Each node j ∈ V in the graph represents a job and a directed edge (j1 → j2) ∈ E
requires that job j2 cannot start executing until the completion of job j1. In this case, j1 is called an immediate
predecessor of j2, and j2 is called an immediate successor of j1.

3.2 Problem Statement

The objective is to find a schedule for the jobs to minimize the maximum completion time, or the makespan.
Specifically, a schedule is defined by the following two decisions:

• Resource allocation decision: p = (p1, p2, . . . , pn);

• Starting time decision: s = (s1, s2, . . . , sn).

Given a pair of scheduling decisions p and s, the completion time of a job j is defined as cj = sj+tj(pj), and
the makespan of the jobs is given by T = maxj cj . A schedule is valid if it respects the following constraints:

• For each resource type i, the amount of resource utilized by all running jobs at any time does not exceed
the total amount P (i) of available resource;

• If two jobs j1 and j2 have a precedence constraint, i.e., j1 → j2, then the starting time of j2 is no earlier
than the completion time of j1, i.e., sj2 ≥ cj1 .

The above multi-resource scheduling problem is clearly NP-complete, as it contains the single-resource
scheduling problem [24, 26] as a special case. Thus, we aim at designing approximation algorithms with bounded
performance guarantees. An algorithm is said to be r-approximation if its makespan satisfies T

Topt
≤ r for any

set of jobs, where Topt denotes the optimal makespan.

3.3 Lower Bound on Optimal Makespan

We now derive a lower bound on the optimal makespan. To that end, we define the following concepts given a
resource allocation decision p = (p1, p1, . . . , pn) for the jobs.

Definition 1. For each job j:

• w
(i)
j (pj)=p

(i)
j · tj(pj): work on resource type i;

• a
(i)
j (pj)=

w
(i)
j (pj)

P (i) : area (or normalized work) on resource type i;

• aj(pj)= 1
d

∑d
i=1 a

(i)
j (pj): average area over all resource types.

Definition 2. For the set of jobs:

1This assumption, however, is not restrictive, as we can discard any allocation that uses more resource than another allocation
but results in a higher job execution time.

2Some parallel applications can achieve superlinear speedups with a combined effect of increased allocations in two or more
resource types (e.g., the cache effect [32] when increasing both processor and cache allocations). We do not consider such superlinear
speedup model in this paper.

4

• W (i)(p)=
∑n
j=1 w

(i)
j (pj): total work on resource type i;

• A(i)(p)= W (i)(p)
P (i) =

∑n
j=1 a

(i)
j (pj): total area on resource type i;

• A(p)= 1
d

∑d
i=1A

(i)(p)=
∑n
j=1 aj(pj): average total area over all resource types;

• C(p, f)=
∑
j∈f tj(pj): total execution time of all the jobs along a particular path f in the graph3;

• C(p) = maxf C(p, f): critical path length, i.e., total execution time of the jobs along a critical (longest)
path in the graph;

• L(p) = max(A(p), C(p)): maximum of average total area A(p) and critical path length C(p).

We further define Lmin = minp L(p) to be the minimum value of L(p) among all possible resource allocations,
and let p∗ denote a resource allocation such that L(p∗) = Lmin. The following lemma shows that Lmin serves
as a lower bound on the optimal makespan.

Lemma 1. Topt ≥ Lmin.

Proof. We first show that, given any resource allocation p, the makespan produced by any schedule must satisfy
T ≥ max(A(p), C(p)). The bound T ≥ C(p) is trivial, since the jobs along the critical path must be executed
sequentially, so the makespan is at least C(p). To derive the bound T ≥ A(p), we observe that the average
total area A(p) in any valid schedule with makespan T must satisfy:

A(p) =
1

d

d∑
i=1

n∑
j=1

w
(i)
j (pj)

P (i)

=
1

d

d∑
i=1

1

P (i)

n∑
j=1

w
(i)
j (pj)

≤ 1

d

d∑
i=1

1

P (i)
· (P (i) · T) = T .

The inequality
∑n
j=1 w

(i)
j (pj) ≤ P (i) ·T is because P (i) ·T is the maximum amount of work that can be allocated

to the jobs within time T on any resource type i with total amount of resource P (i).
Suppose the optimal schedule uses a resource allocation popt. Then, its makespan must satisfy:

Topt ≥ max
(
A(popt), C(popt)

)
= L(popt) ≥ L(p∗) = Lmin.

The last inequality is because L(p∗) is the minimum L(p) among all possible resource allocations, including
popt.

4 A Multi-Resource Scheduling Algorithm and Approximation Re-
sults

In this section, we present a multi-resource scheduling algorithm and analyze its approximation ratio for general
DAGs. The algorithm adopts the two-phase approach that has been widely used for scheduling moldable jobs
on a single type of resource [37, 26, 24].

4.1 Phase 1: Resource Allocation

4.1.1 Discrete Time-Cost Tradeoff (DTCT) Problem

To allocate resources for the jobs, we consider a relevant discrete time-cost tradeoff problem [10], which has
been studied in the literature of operations research and project management.

3A path is a sequence of jobs with linear precedence, i.e., f = (jπ(1) → jπ(2) → · · · → jπ(v)), where the first job jπ(1) does not
have any predecessor in the graph and the last job jπ(v) does not have any successor.

5

Definition 3 (Discrete Time-Cost Tradeoff (DTCT)). Suppose a project consists of n precedence-constrained
tasks. Each task j can be executed using several different alternatives and each alternative i takes time tj,i and
has cost cj,i. Further, for any two alternatives i1 and i2, if i1 is faster than i2, then i1 is more costly than i2,
i.e.,

tj,i1 ≤ tj,i2 ⇒ cj,i1 ≥ cj,i2 . (1)

Given a project realization σ that specifies which alternative is chosen for each task, the total project duration
D(σ) is defined as the sum of times of the tasks along the critical path, and the total cost B(σ) is defined as
the sum of costs of all tasks. The objective is to find a realization σ∗ that minimizes the total project duration
D(σ∗) and the total cost B(σ∗).

The above DTCT problem is obviously bicriteria, and a tradeoff exists between the total project duration and
the total cost. Two problem variants have been commonly studied, both of which are shown to be NP-complete
[9]:

• Budget Problem: Given a total cost budget B, minimize the project duration D(σ) subject to B(σ) ≤ B;

• Deadline Problem: Given a project deadline D, minimize the total cost B(σ) subject to D(σ) ≤ D.

For both problems, Skutella [34] presented a polynomial-time algorithm, which, given any feasible budget-
deadline pair (B,D), finds a realization σ for the project that satisfies: D(σ) ≤ D

ρ and B(σ) ≤ B
1−ρ , for any

ρ ∈ (0, 1).4

4.1.2 Allocating Resources to Jobs

We transform our resource allocation problem to the DTCT problem and solve it using the approximation result
in [34]. To that end, a task j is created for each job j in the graph, with the set of alternatives for the task
corresponding to the set of resource allocations for the job. The execution time tj,i of task j with alternative i
is then defined as the execution time tj(pj) of job j with the corresponding resource allocation pj , and the cost
cj,i is defined as the average area aj(pj).

Let S denote the set of all Q =
∏d
i=1 P

(i) possible resource allocations for a job. To ensure that Condition
(1) in Definition 3 is satisfied, we discard, for each job j, the subset Dj ⊂ S of dominated allocations, which is
defined as:

Dj={pj | ∃qj , tj(qj) < tj(pj) and aj(qj) < aj(pj)} , (2)

and only use the remaining set of non-dominated allocations, denoted by Nj = S\Dj , to create the alternatives
of the task. Thus, a realization σ for the project corresponds to a resource allocation decision p for the jobs.
The total project duration D(σ) then corresponds to the total execution time C(p) of the jobs, and the total
cost B(σ) corresponds to the average total area A(p).

A resource allocation decision p = (p1, p2, . . . , pn) is said to be non-dominated if the allocation for every job
is non-dominated, i.e., pj ∈ Nj for all j = 1, . . . , n. The following lemma shows that the minimum makespan
lower bound Lmin can be achieved by a non-dominated resource allocation.

Lemma 2. There exists a non-dominated resource allocation p∗ = (p∗1, p
∗
2, . . . , p

∗
n) that achieves L(p∗) = Lmin.

Proof. Consider any resource allocation q∗ = (q∗1 , q
∗
2 , . . . , q

∗
n) that achieves L(q∗) = Lmin, and suppose it

contains a dominated allocation q∗j ∈ Dj for a job j. Then, by replacing q∗j with a non-dominated allocation
q′∗j ∈ Nj that dominates q∗j , i.e., tj(q

′∗
j) < tj(q

∗
j) and aj(q

′∗
j) < aj(q

∗
j), we get a new resource allocation

q′
∗

= (q∗1 , . . . , q
∗
j−1, q

′∗
j , q

∗
j+1, . . . , q

∗
n), which satisfies A(q′

∗
) < A(q∗) and C(q′

∗
) ≤ C(q∗). This implies L(q′

∗
) ≤

L(q∗) = Lmin. Repeating the process above for every job with a dominated allocation results in an overall non-
dominated allocation p∗ and proves the lemma.

We can now find a resource allocation p′ for the jobs (or equivalently a realization σ′ in the corresponding
DTCT problem), with the following property.

4In essence, this bicriteria approximation algorithm first transforms each task of the project into a set of virtual tasks, and then
constructs a relaxed linear program (LP) for the transformed problem. The relaxed LP either minimizes D(σ) subject B(σ) ≤ B
or minimizes B(σ) subject D(σ) ≤ D. In either case, the result can be obtained by rounding the optimal fractional solution to the
relaxed LP based on the parameter ρ.

6

Lemma 3. For any ρ ∈ (0, 1), a resource allocation p′ = (p′1, p
′
2, . . . , p

′
n) can be found in polynomial time that

satisfies:

C(p′) ≤ Topt
ρ

, (3)

A(p′) ≤ Topt
1− ρ

. (4)

Proof Sketch. The result can be obtained by adapting the algorithm in [34], which minimizes the project duration
(or total cost) subject to a known budget B (or deadline D) for the DTCT problem. Without knowing the
value of this constraint a priori, we can still achieve the same approximations by adopting the technique used
in [24] for the problem with a single resource type. Specifically, the relaxed LP originally formulated in [34]
can be modified and applied to our problem as follows: minimize the lower bound L(p) instead, subject to two
additional constraints C(p) ≤ L(p) and A(p) ≤ L(p). Then, by rounding the optimal fractional solution p̄∗ to

this modified LP, we can get a resource allocation p′ that satisfies: C(p′) ≤ C(p̄∗)
ρ ≤ L(p̄∗)

ρ and A(p′) ≤ A(p̄∗)
1−ρ ≤

L(p̄∗)
1−ρ . Since the optimal fractional solution p̄∗ must result in an objective not greater than the one achieved by

any (non-dominated) integral solution p∗, and based on Lemma 2, we have L(p̄∗) ≤ L(p∗) = Lmin. The result
then directly follows by applying the makespan lower bound in Lemma 1.

4.1.3 Adjusting Resource Allocation

Lastly, we adjust the resource allocation p′ (obtained above with a value of ρ to be determined later) to get
the final resource allocation p for the jobs. The aim is to limit the maximum resource utilization of any job
under any resource type, thus facilitating more efficient list scheduling (see Section 4.2). As with the case for a
single type of resource [26, 24], we choose a parameter µ ∈ (0, 0.5), whose value will also be determined later,
and define the resource allocation for each job j on each resource type i as follows:

p
(i)
j =

{
dµP (i)e, if p′

(i)
j > dµP (i)e

p′
(i)
j , otherwise

(5)

where p′
(i)
j is the corresponding resource allocation in p′. The p

(i)
j ’s will then form the final resource allocation

p.
A job j is said to be adjusted if its final resource allocation pj is reduced from the initial allocation p′j in

any resource type; otherwise, the job is said to be unadjusted. The following lemma shows the properties of any
adjusted job.

Lemma 4. For any adjusted job j, its execution time satisfies:

tj(pj) ≤
tj(p

′
j)

µ
, (6)

and its area on any resource type i is bounded by:

a
(i)
j (pj) ≤ d · aj(p′j) , (7)

if the total amount of resource type i satisfies P (i) ≥ 1
µ2 .

Proof. For any adjusted job j, let x
(i)
j =

p
′(i)
j

p
(i)
j

denotes its resource reduction factor on any resource type i, and

let k = arg mini=1...d x
(i)
j denote the resource type with the largest reduction factor for j.

Since the job’s final resource allocation pj is at most its initial allocation p′j , i.e., pj � p′j , and according to

the adjustment procedure in Equation (5), we have x
(k)
j ≤ P (k)

dµP (k)e ≤
1
µ . Thus, based on Assumption 3, we can

get tj(pj) ≤
(

maxi=1...d x
(i)
j

)
· tj(p′j) = x

(k)
j · tj(p′j) ≤

tj(p
′
j)

µ .
To prove the area bound, we distinguish three cases.

Case (1): For resource type k with the largest reduction factor, we have w
(k)
j (pj) = p

(k)
j · tj(pj) ≤

p
′(k)
j

x
(k)
j

· (x(k)j ·

tj(p
′
j)) = p

′(k)
j · tj(p′j) = w

(k)
j (p′j). Thus, the area of the job on resource type k satisfies a

(k)
j (pj) =

w
(k)
j (pj)

P (k) ≤
w

(k)
j (p′j)

P (k) ≤
∑d
`=1

w
(`)
j (p′j)

P (`) = d · aj(p′j).

7

Algorithm 1: Resource Allocation (Phase 1)

Input: For each job j, the execution time tj(pj) and the average normalized work aj(pj) under all possible
resource allocations, given values for the parameters ρ and µ.

Output: Resource allocation decision p=(p1, p2, . . . , pn) for all jobs.
begin

(Step 1): For each job j, discard the subset Dj ⊂ S of dominated resource allocations as defined in
Equation (2);

(Step 2): Transform the resource allocation problem to the DTCT problem and adapt the algorithm in [34]
to obtain an initial allocation decision p′ that satisfies Equations (3) and (4);

(Step 3): For each job j and each resource type i, adjust the initial allocation in p′ based on Equation (5)
to obtain a final resource allocation decision p that satisfies Equations (6) and (7).

end

Case (2): For any resource type i 6= k with p
(i)
j ≤ bµP (i)c ≤ µP (i), and since p

(k)
j = dµP (k)e ≥ µP (k), we

have a
(i)
j (pj) =

w
(i)
j (pj)

P (i) =
p
(i)
j ·tj(pj)
P (i) ≤ µP (i)·tj(pj)

P (i) ≤ µ · x(k)j · tj(p′j) = µ · p
′(k)
j ·tj(p′j)
p
(k)
j

≤ µ · w
(k)
j (p′j)

µP (k) =
w

(k)
j (p′j)

P (k) ≤∑d
`=1

w
(`)
j (p′j)

P (`) = d · aj(p′j).
Case (3): For any resource type i 6= k with p

(i)
j = dµP (i)e ≤ µP (i) + 1, by following the derivation steps

in Case (2), we can get a
(i)
j (pj) ≤

(
1 + 1

µP (i)

)
w

(k)
j (p′j)

P (k) ≤
∑d
`=1

w
(`)
j (p′j)

P (`) +
w

(k)
j (p′j)

µP (i)P (k) −
w

(i)
j (p′j)

P (i) =
∑d
`=1

w
(`)
j (p′j)

P (`) +

tj(p
′
j)

P (i)

(
p
′(k)
j

µP (k) − p
′(i)
j

)
. Since p

′(k)
j ≤ P (k) and p

′(i)
j ≥ dµP (i)e ≥ µP (i), we have

p
′(k)
j

µP (k) − p
′(i)
j ≤ 1

µ − µP
(i), which

is at most 0 when P (i) ≥ 1
µ2 . In this case, we get a

(i)
j (pj) ≤

∑d
`=1

w
(`)
j (p′j)

P (`) = d · aj(p′j).

Algorithm 1 summarizes all three steps involved in this first phase of the multi-resource scheduling algorithm.

4.2 Phase 2: List Scheduling

4.2.1 Algorithm Description

The second phase schedules the jobs by making a starting time decision s, given the resource allocation decision p
determined by the first phase. This is done through a modified list scheduling strategy, as shown in Algorithm 2,
that extends to multiple types of resources.

A job is said to be ready if all of its immediate predecessors in the precedence graph have been completed or
if the job has no immediate predecessor. The algorithm starts by inserting all ready jobs into a queue Q. Then,
at time 0 or whenever a running job k completes and hence releases resources, the algorithm inserts, into the
queue Q, any new job k′ that becomes ready due to the completion of job k. It then goes through the list of all
ready jobs in Q and schedules each job j that can be executed at the current time if its resource allocation pj
can be met by the amount of available resources in all resource types.

We point out that the ready jobs can be inserted into the queue in any order without affecting the approx-
imation ratio of the algorithm. In practice, giving priority to certain jobs (e.g., with longer execution time or
on the critical path) may yield better performance.

4.2.2 Properties of List Scheduling

We now derive some properties of the list scheduling algorithm, which will be used later in the analysis of the
overall multi-resource scheduling algorithm.

We first define some notations. Let T denote the makespan of a list schedule. We note that the algorithm
only allocates and de-allocates resources upon job completions. Hence, the entire schedule’s duration [0, T] can
be partitioned into a set I = {I1, I2, . . . } of non-overlapping intervals, where jobs only start (or complete) at
the beginning (or end) of an interval, and the amount of utilized resource for any resource type does not change

during an interval. For any resource type i, let P
(i)
util(I) denote the total amount of utilized resources from all

jobs that are running during interval I ∈ I. We further classify the set of intervals into the following three
categories.

• I1: set of intervals during which the amount of utilized resources is at most dµP (i)e − 1 for all resource

type i, i.e., I1 = {I | ∀i, P (i)
util(I) ≤ dµP (i)e − 1}.

• I2: set of intervals during which there exists a resource type k that utilizes at least dµP (k)e amount of
resources, but the amount of utilized resources is at most d(1 − µ)P (i)e − 1 for all resource type i, i.e.,

8

Algorithm 2: List Scheduling (Phase 2)

Input: Resource allocation decision p=(p1, p2, . . . , pn) for all jobs, and their precedence constraints.
Output: A list schedule for the jobs with starting time decision s=(s1, s2, . . . , sn).
begin

insert all ready jobs into a queue Q;

P
(i)
avail ← P (i), ∀i;

when at time 0 or a job k completes execution do
curr time← getCurrentT ime();

P
(i)
avail ← P

(i)
avail + p

(i)
k , ∀i;

for each job k′ that becomes ready do
insert job k′ into queue Q;

end
for each job j ∈ Q do

if P
(i)
avail ≥ p

(i)
j , ∀i then

sj ← curr time and execute job j now;

P
(i)
avail ← P

(i)
avail − p

(i)
j , ∀i;

remove job j from queue Q;

end

end

end

end

I2 = {I | ∃k, P (k)
util(I) ≥ dµP (k)e and ∀i,

P
(i)
util(I) ≤ d(1− µ)P (i)e − 1}.

• I3: set of intervals during which there exists a resource type k that utilizes at least d(1− µ)P (k)e amount

of resources, i.e., I3 = {I | ∃k, P (k)
util(I) ≥ d(1− µ)P (k)e}.

Let |I| denote the duration of an interval I, and let T1 =
∑
I∈I1 |I|, T2 =

∑
I∈I2 |I| and T3 =

∑
I∈I3 |I| be

the total durations of the three categories of intervals, respectively. Since I1, I2 and I3 are obviously disjoint
and partition I, we have:

T = T1 + T2 + T3 . (8)

Furthermore, for each job j and each interval I, we define βj,I to be the fraction of the job executed during
that interval. For instance, if one third of job j is executed in interval I and two thirds of the job is executed in
interval I ′, we have βj,I = 1/3 and βj,I′ = 2/3. Note that the fraction is defined in terms of either the execution
time or the area (work) of the job, which are equivalent here since the resource allocation of the job has been
fixed. Thus, for each job j, we have

∑
I∈I βj,I = 1.

The following lemma bounds the durations of the first two categories of intervals in terms of the execution
time along the critical path of the initial resource allocation p′.

Lemma 5 (Critical-Path Bound). For any choice of µ ∈ (0, 0.5), we have T1 + µT2 ≤ C(p′).

Proof. For any interval I ∈ I1 ∪ I2, the amount of utilized resource for any resource type i is at most d(1 −
µ)P (i)e − 1, so the amount of available resource is at least P (i) + 1 − d(1 − µ)P (i)e ≥ dµP (i)e. According to
the resource allocation algorithm, any job is allocated at most dµP (i)e amount of resource for resource type i.
Thus, there is sufficient resource available to execute any additional job (if one is ready) during any interval
I ∈ I1∪I2. This implies that there is no ready job in the queue Q, since otherwise the list scheduling algorithm
would have scheduled the job.

In list scheduling, it is known that there exists a path f in the graph such that whenever there is no ready
job in the queue, some job along that path is running [15, 26, 24]. Thus, during any interval I ∈ I1 ∪ I2, some
job along path f is running, and we let j(I) ∈ f denote such a job.

Now, consider the initial resource allocation p′. During any interval I ∈ I1, the amount of utilized resource
for any resource type i is at most dµP (i)e − 1, so job j(I) must be unadjusted. Thus, we have tj(I)(pj(I)) =
tj(I)(p

′
j(I)). However, during any interval I ∈ I2, job j(I) could be adjusted, and thus, according to Lemma 4

(Inequality (6)), we have µ · tj(I)(pj(I)) ≤ tj(I)(p′j(I)). We can then derive:

9

T1 + µT2 =
∑
I∈I1

tj(I)(pj(I)) · βj(I),I + µ
∑
I∈I2

tj(I)(pj(I)) · βj(I),I

≤
∑
I∈I1

tj(I)(p
′
j(I)) · βj(I),I +

∑
I∈I2

tj(I)(p
′
j(I)) · βj(I),I

≤
∑
j∈f

(
tj(p

′
j) ·

∑
I∈I1∪I2

βj,I

)
≤
∑
j∈f

tj(p
′
j) = C(p′, f) ≤ C(p′) .

The following lemma bounds the durations of the last two categories of intervals in terms of the average
total area of the initial resource allocation p′.

Lemma 6 (Area Bound). For any choice of µ ∈ (0, 0.5), if Pmin = mini P
(i) ≥ 1

µ2 , we have µT2 + (1− µ)T3 ≤
d ·A(p′).

Proof. For any interval I ∈ I2, there exists a resource type i such that the amount of utilized resource is at least
dµP (i)e based on the definition of I2. Therefore, the total work done on resource type i from all jobs during this

interval satisfies:
∑n
j=1 βj,I · w

(i)
j (pj) ≥ |I| · dµP (i)e ≥ |I| · µP (i). Thus, we have: µ · |I| ≤

∑n
j=1 βj,I ·

w
(i)
j (pj)

P (i) =∑n
j=1 βj,I · a

(i)
j (pj) ≤ d

∑n
j=1 βj,I · aj(p′j). The last inequality is due to Lemma 4 (Inequality (7)), if P (i) ≥ 1

µ2 .

Note that Inequality (7) was proven for any adjusted job but it obviously holds for unadjusted jobs as well.
Thus, if Pmin = mini=1...d P

(i) ≥ 1
µ2 , we can derive:

µT2 = µ
∑
I∈I2

|I|

≤ d
∑
I∈I2

n∑
j=1

βj,I · aj(p′j)

= d

n∑
j=1

(
aj(p

′
j) ·

∑
I∈I2

βj,I

)
. (9)

For any interval I ∈ I3, there exists a resource type i such that the amount of utilized resource is at least
d(1− µ)P (i)e. Using the same argument, we can derive:

(1− µ)T3 ≤ d
n∑
j=1

(
aj(p

′
j) ·

∑
I∈I3

βj,I

)
. (10)

Thus, combining Inequalities (9) and (10), we can get:

µT2 + (1− µ)T3 ≤ d
n∑
j=1

(
aj(p

′
j) ·

∑
I∈I2∪I3

βj,I

)
≤ d

n∑
j=1

aj(p
′
j) = d ·A(p′) .

4.3 Approximation Results

We now derive the main approximation results of the multi-resource scheduling algorithm, which combines the
resource allocation phase (Algorithm 1) and the list scheduling phase (Algorithm 2). The following theorem
shows its approximation ratio for any number d of resource types.

Theorem 1. For any d ≥ 1 and if Pmin ≥ 7, the performance of the multi-resource scheduling algorithm
satisfies:

T

Topt
≤ φd+ 2

√
φd+ 1 ≤ 1.619d+ 2.545

√
d+ 1 ,

where φ = 1+
√
5

2 is the golden ratio. The result is achieved at µ∗ = 1− 1
φ ≈ 0.382 and ρ∗ = 1√

φd+1
≈ 1

1.272
√
d+1

.

10

We point out that Pmin ≥ 7 represents a reasonable condition on the total amount of most discrete resource
types (e.g., processors, memory blocks, cache lines).

Proof. Based on the analysis of the list scheduling algorithm, by substituting T1 from Lemma (5) and T3 from
Lemma (6) into T = T1 + T2 + T3, and if Pmin ≥ 1

µ2 , we get:

T ≤ C(p′) +
d

1− µ
A(p′) +

(
1− µ− µ

1− µ

)
T2 .

Then, applying the bounds for C(p′) and A(p′) in Lemma 3 from the resource allocation algorithm, and when

(1− µ)2 ≤ µ, i.e., µ ≥ 3−
√
5

2 = 1− 1
φ , which makes the last term above at most zero, we can derive:

T ≤
(

1

ρ
+

d

(1− µ)(1− ρ)

)
Topt , fd(µ, ρ) · Topt .

Clearly, fd(µ, ρ) is an increasing function of µ for all d. Thus, to minimize the function, we can set µ∗ = 1− 1
φ .

In this case, we require Pmin ≥ 1
(µ∗)2 ≈ 6.854 and we define fd(ρ) , fd(µ

∗, ρ) = 1
ρ + φd

1−ρ . Now, by setting

f ′d(ρ) = − 1
ρ2 + φd

(1−ρ)2 = 0 and by checking that f ′′d (ρ) > 0 for all ρ, we get ρ∗ = 1√
φd+1

that minimizes fd(ρ).

Thus, the approximation ratio is given by fd(µ
∗, ρ∗) = φd+ 2

√
φd+ 1.

We point out that, when there is only one type of resource (i.e., d = 1), Theorem 1 gives an approximation
ratio of 5.164, which improves upon the ratio of 5.236 by Lepère et al. [26]. Jansen and Zhang [24] showed that
the algorithm actually achieves an even better ratio of 4.73 by proving a tighter critical-path bound than the
one shown in Lemma 5. Unfortunately, their analysis cannot be generalized to the case with more than one
type of resources.

While Theorem 1 proves the approximation ratio of the multi-resource scheduling algorithm for any d, the
following theorem shows an improved result for large d.

Theorem 2. For d ≥ 22 and if Pmin ≥ d2/3, the performance of the multi-resource scheduling algorithm
satisfies:

T

Topt
≤ d+ 3

3
√
d2 +O(

3
√
d) .

The result is achieved at µ∗ ≈ 1
3√
d

and ρ∗ =
√
1−2µ∗√

1−2µ∗+
√
dµ∗

.

Proof. Following the proof of Theorem 1 but by substituting T2 and T3 into Equation (8), and if Pmin ≥ 1
µ2 ,

we get:

T ≤ 1− 2µ

µ(1− µ)
C(p′) +

d

1− µ
A(p′) +

(
1− 1− 2µ

µ(1− µ)

)
T1 .

Applying the bounds for C(p′) and A(p′) in Lemma 3, and when 1− 1−2µ
µ(1−µ) ≤ 0, i.e., µ ≤ 3−

√
5

2 = 1− 1
φ , which

makes the last term above at most zero, we can derive:

T ≤
(

1− 2µ

µ(1− µ)ρ
+

d

(1− µ)(1− ρ)

)
Topt , gd(µ, ρ) · Topt .

Let Xµ = 1−2µ
µ(1−µ) = 1

µ −
1

1−µ and Yµ = 1
1−µ . We can then write: gd(µ, ρ) =

Xµ
ρ +

dYµ
1−ρ . By deriving gd(µ, ρ)

with respect to ρ and setting the derivative to zero, we can get the best choice for ρ to be ρ∗(µ) =

√
Xµ√

Xµ+
√
dYµ

.

As Xµ, Yµ > 0, clearly ρ∗(µ) ∈ (0, 1), thus is a valid choice. By substituting ρ∗(µ) back into gd(µ, ρ) and
simplifying, we can get:

gd(µ, ρ
∗(µ)) =

(√
Xµ +

√
dYµ

)2
, gd(µ)2 .

We will now minimize gd(µ) =
√

1
µ −

1
1−µ +

√
d

1−µ . By deriving gd(µ) with respect to µ and factoring, we

can get:

g′d(µ) = − (2d+ 4)µ4 − (d+ 8)µ3 + 8µ2 − 4µ+ 1

2µ(1− µ)
√
µ(1− µ)(1− 2µ)

(
µ
√
dµ(1− 2µ) + (2µ2 − 2µ+ 1)

) .
11

As 2µ2− 2µ+ 1 = µ2 + (1−µ)2 > 0 for any µ ∈ (0, 0.5), the denominator of g′d(µ) is always positive. Thus, the
sign of g′d(µ) is the opposite of the sign of its numerator, which we define as:

hd(µ) , (2d+ 4)µ4 − (d+ 8)µ3 + 8µ2 − 4µ+ 1 .

In the following, we will show that, if d ≤ 21, hd(µ) is always positive for any µ ∈ (0, 3−
√
5

2], and thus the

optimal choice is µ∗ = 3−
√
5

2 , which gives the same result as in Theorem 1. Otherwise, if d ≥ 22, there is a

unique optimal choice µ∗ ∈ (0, 3−
√
5

2), which satisfies hd(µ
∗) = 0. For convenience, we define µA = 3−

√
5

2 and
µB = 3

8 < µA.
First, we can compute, for any µ ∈ (0, µB], that:

h′d(µ) = 4(2d+ 4)µ3 − 3(d+ 8)µ2 + 16µ− 4

= dµ2(8µ− 3) + 4(2µ− 1)
(
µ2 + (1− µ)2

)
< 0 .

We can also compute, for any µ ∈ [µB , µA], that:

h′′d(µ) = 12(2d+ 4)µ2 − 6(d+ 8)µ+ 16

≥ 12(2d+ 4) ·
(3

8

)2
− 6(d+ 8) ·

(3−
√

5

2

)
+ 16

≈ 1.083d+ 4.416 > 0

Thus, we can conclude the following:

• In (0, µB], hd(µ) is a strictly decreasing function of µ;

• In [µB , µA], hd(µ) is a strictly convex function of µ, and h′d(µ) is a strictly increasing function of µ.

We now distinguish two cases depending on the value of d.
Case (1): d ≤ 21. Since h′d(µ) is an increasing function of µ in [µB , µA], the largest value of h′d(µ) is achieved

at µA. Also, h′d(µ) is clearly an increasing function of d for any µ > µB . Thus, for any µ ∈ (µB , µA], we have:

h′d(µ) ≤ h′d(µA) ≤ h′21(µA) ≈ −0.328 < 0 .

Thus, hd(µ) is a strictly decreasing function of µ in (0, µA], and for any µ ∈ (0, µA], if d ≤ 21, we have:

hd(µ) ≥ hd(µA) ≈ −0.013d+ 0.2786 ≥ 0.0035 > 0 .

Since g′d(µ) and hd(µ) have opposite signs, this means g′d(µ) < 0, which implies that gd(µ) is a decreasing

function of µ in (0, µA]. Therefore, the optimal µ to minimize gd(µ) is µ∗ = µA = 3−
√
5

2 . It can be verified that
this choice yields the same approximation result as in Theorem 1.

Case (2): d ≥ 22. For any fixed µ in (0, µA], we can easily show that hd(µ) is a decreasing function of
d (by deriving hd(µ) with respect to d). Thus, we have hd(µ

B) ≤ h22(µB) ≈ −0.008 < 0. Further, we have
hd(0) = 1 > 0. Since hd(µ) is a strictly decreasing function of µ in (0, µB], we know that hd(µ) = 0 admits
a unique solution µ∗ in this interval. Moreover, since hd(µ) is a convex function in [µB , µA], we have, for any
µ ∈ [µB , µA], that:

hd(µ) ≤ h22(µ) ≤ max
(
h22(µB), h22(µA)

)
≈ max(−0.008,−0.01) < 0 .

This shows that hd(µ) > 0 in (0, µ∗) and hd(µ) < 0 in (µ∗, µA]. Since hd(µ) and g′d(µ) have opposite signs,
we get that gd(µ) is a strictly decreasing function of µ in (0, µ∗) and a strictly increasing function in (µ∗, µA].
Thus, the optimal µ to minimize gd(µ) is given by µ∗.

As µ∗ is the solution to a fourth-degree equation (i.e., hd(u) = 0), its closed form, although exists, is too
complicated to express. However, observing that when d increases and if µ is small enough, the dominating
negative term of hd(µ) is dµ3 and the dominating positive term is 1. We can then get an estimate of µ∗ ≈ 1

3√
d
,

which gives an estimated approximation ratio: gd(µ
∗)2 ≈

d
3√
d+2d

√
1− 2

3√
d
+

3√
d2−2 3√

d

3√
d−1

= d+ 3
3
√
d2 +O(3

√
d).

Figure 1 plots the estimated ratio of Theorem 2 in comparison with the actual ratio that results from the
true value of µ∗ (obtained numerically) for 22 ≤ d ≤ 50. We can see that the estimation is indeed very close to
the actual value, and the result clearly improves upon the ratio of Theorem 1.

Although Theorem 2 holds for a large number of resource types (i.e., d ≥ 22) and is unlikely to be practical
in today’s resource management systems, the result does have significant theoretical importance. In particular,
it gives the first approximation for general list-based algorithm that is asymptotically tight up to the dominating
factor d in the context of multi-resource moldable job scheduling (see Theorem 6).

12

Figure 1: Comparison of the estimated ratio and the actual ratio of Theorem 2 along with the ratio of Theorem
1 for 22 ≤ d ≤ 50.

5 Improved Approximation Results for Some Special Graphs

In the preceding section, we have derived the approximation ratios of the multi-resource scheduling algorithm for
general graphs. In this section, we will show improved approximation results for some special graphs, namely,
series-parallel graphs or trees, and independent jobs without any precedence constraints.

5.1 Results for SP Graphs or Trees

We first consider jobs whose precedence constraints form a series-parallel graph or a tree. A directed acyclic
graph (DAG) is a series-parallel (SP) graph [4] if it has only two nodes (i.e., a source and a sink) connected
by an edge, or can be constructed (recursively) by a series composition or a parallel composition of two SP
graphs.5 Trees are simply special cases of general SP graphs.

In this case, we rely on an FPTAS (Fully Polynomial-Time Approximation Scheme) proposed in [26] to find
a near-optimal resource allocation. The algorithm was proposed in the context of a single resource type, but
can be readily adapted to work for multiple types of resources (by first discarding the subset of dominated
resource allocations as shown in Step 1 of Algorithm 1). In essence, the FPTAS first decomposes an SP graph
into atomic parts, then uses dynamic programming to decide if an allocation p′ that satisfies L(p′) ≤ X can
be found for a positive integer X, and finally performs a binary search on X. The following lemma shows the
result. More details about the algorithm can be found in [26].

Lemma 7. For a set of jobs whose precedence constraints form a series-parallel graph or a tree, and for any
ε ≥ 0, an FPTAS (i.e., polynomial in 1/ε) exists, which can compute a resource allocation p′ = (p′1, p

′
2, . . . , p

′
n)

that satisfies:

L(p′) = max(A(p′), C(p′)) ≤ (1 + ε)·Lmin ≤ (1 + ε)·Topt .

We can now use the above FPTAS to replace Step 2 in resource allocation (Algorithm 1) and combine it
with list scheduling (Algorithm 2). The following theorem shows the approximation ratio for any number d of
resource types.

Theorem 3. For any d ≥ 1 and if Pmin ≥ 7, the performance of the multi-resource scheduling algorithm for
SP graphs or trees satisfies the following:

T

Topt
≤ (1 + ε) · (φd+ 1) ≤ (1 + ε) · (1.619d+ 1) ,

where φ = 1+
√
5

2 is the golden ratio. The result is achieved at µ∗ = 1− 1
φ ≈ 0.382.

Proof. Following the proof of Theorem 1 by substituting T1 from Lemma (5) and T3 from Lemma (6) into
T = T1 + T2 + T3, and if Pmin ≥ 1

µ2 , we get:

T ≤ C(p′) +
d

1− µ
A(p′) +

(
1− µ− µ

1− µ

)
T2 .

5Given two SP graphs G1 and G2, the parallel composition is the union of the two graphs while merging their sources to create
the new source and merging their sinks to create the new sink, and the series composition merges the sink of G1 with the source
of G2 and uses the source of G1 as the new source and the sink of G2 as the new sink.

13

Then, by applying the bounds in Lemma 7, and when (1− µ)2 ≤ µ, i.e., µ ≥ 3−
√
5

2 = 1− 1
φ , we can derive:

T ≤ (1 + ε) ·
(

1 +
d

(1− µ)

)
Topt , fd(µ) · Topt .

Clearly, fd(µ) is an increasing function of µ for all d. Thus, the minimum value is obtained by setting
µ∗ = 1 − 1

φ . In this case, the approximation ratio is given by fd(µ
∗) = (1 + ε) · (φd+ 1), with the condition

Pmin ≥ 1
(µ∗)2 ≈ 6.854.

The approximation ratio can be improved with d ≥ 4 resource types, as shown in the following theorem.

Theorem 4. For any d ≥ 4 and if Pmin ≥ d + 2
√
d− 1, the performance of the multi-resource scheduling

algorithm for SP graphs or trees satisfies the following:

T

Topt
≤ (1 + ε) ·

(
d+ 2

√
d− 1

)
.

The result is achieved at µ∗ = 1√
d−1+1

.

Proof. Following the proof of Theorem 1 but by substituting T2 and T3 into T = T1 +T2 +T3, and if Pmin ≥ 1
µ2 ,

we get:

T ≤ 1− 2µ

µ(1− µ)
C(p′) +

d

1− µ
A(p′) +

(
1− 1− 2µ

µ(1− µ)

)
T1 .

Applying the bounds in Lemma 7, and when 1− 1−2µ
µ(1−µ) ≤ 0, i.e., µ ≤ 3−

√
5

2 , we can derive:

T ≤ (1 + ε) ·
(

1− 2µ

µ(1− µ)
+

d

1− µ

)
Topt

= (1 + ε) ·
(

1

µ
+
d− 1

1− µ

)
, gd(µ) · Topt .

By setting g′d(µ) = − 1
µ2 + d−1

(1−µ)2 = 0 and by checking that g′′d (µ) > 0, we get µ∗ = 1√
d−1+1

, which is at most

3−
√
5

2 for d ≥ 4. Thus, with the condition Pmin ≥ 1
(µ∗)2 = d + 2

√
d− 1 and d ≥ 4, we get the approximation

ratio:

gd(µ
∗) = (1 + ε) ·

(
√
d− 1 + 1 +

d− 1

1− 1√
d−1+1

)
= (1 + ε) ·

(
d+ 2

√
d− 1

)
.

5.2 Results for Independent Jobs

We finally consider independent jobs without any precedence constraints. For this case, Sun et al. [36] presented
a 2d-approximation algorithm for any d ≥ 1, while we show improved results for d ≥ 3. Here, we rely on
an optimal multi-resource allocation algorithm proposed in [36] as Step 2 of our Algorithm 1. The algorithm
computes the resource allocation in polynomial time as shown in the lemma below. More details of the algorithm
can be found in [36].

Lemma 8. For a set of independent jobs, a resource allocation p′ = (p′1, p
′
2, . . . , p

′
n) can be found in polynomial

time, such that:

L(p′) = max(A(p′), C(p′)) = Lmin ≤ Topt ,

where C(p′) = maxj=1...n tj(p
′
j) denotes the maximum execution time of any job under allocation p′, which

becomes the critical path when there is no precedence constraint.

For independent jobs, while the area bound (Lemma 6) remains unchanged, we show a modified critical-path
bound.

Lemma 9 (Modified Critical-Path Bound). For any choice of µ ∈ (0, 0.5), we have:

14

• If I1 = ∅, µT2 ≤ C(p′);

• If I1 6= ∅, T1 + T2 ≤ C(p′).

Proof. Recall that there are three categories of intervals I1, I2 and I3. Based on the proof of Lemma 5, during
any interval I ∈ I1 ∪ I2, there is no ready job in the queue. Since all jobs are independent, it means that all
jobs have been scheduled. This implies that all intervals in I2 happen before all intervals in I1, since there is
no new job arrival and jobs only complete. Further, all intervals in I3 happen before all intervals in I2 using
the same argument. Now, consider a job j that completes the last in the schedule. We know that j must have
started during I3 or at the beginning of I2. We consider two cases.

Case (1): I1 = ∅. In this case, job j is executed during all intervals in I2 and it could be adjusted. Thus,
according to Lemma 4 (Inequality (6)), we have µT2 ≤ µ · tj(pj) ≤ tj(p′j) ≤ maxj=1...n tj(p

′
j) = C(p′).

Case (2): I1 6= ∅. In this case, job j is executed during all intervals in I2 as well as all intervals in I1.
Thus, job j must be unadjusted (since it is executed during I1). Thus, we have T1 + T2 ≤ tj(pj) = tj(p

′
j) ≤

maxj=1...n tj(p
′
j) = C(p′).

Theorem 5. The performance of multi-resource scheduling for independent jobs satisfies T/Topt ≤ r, where:

r =

2d, if d = 1, 2, and Pmin ≥ 1

1.619d+ 1, if d = 3, and Pmin ≥ 7

d+ 2
√
d− 1, if d ≥ 4, and Pmin ≥ d+ 2

√
d− 1

Proof. When d = 1, 2, we can just apply the multi-resource scheduling algorithm in [36] to get 2d-approximation.
Otherwise, we consider both cases as stated in Lemma 9.

Case (1): I1 = ∅. In this case, the makespan is given by T = T2 + T3. Substituting µT2 ≤ C(p′) from
Lemma 9 and µT2 + (1− µ)T3 ≤ d ·A(p′) from Lemma 6 into T , we get:

T ≤ 1− 2µ

µ(1− µ)
C(p′) +

d

1− µ
A(p′)

≤
(1− 2µ

µ(1− µ)
+

d

1− µ

)
· Topt (by Lemma 8)

, gd(µ) · Topt .

Case (2): I1 6= ∅. In this case, the makespan is given by T = T1 + T2 + T3. Substituting T1 + T2 ≤ C(p′)
from Lemma 9 and µT2 + (1− µ)T3 ≤ d ·A(p′) from Lemma 6 into T , we get:

T ≤ C(p′) +
d

1− µ
A(p′)− µ

1− µ
T2

≤
(

1 +
d

1− µ

)
· Topt (by Lemma 8)

, fd(µ) · Topt .

The overall approximation ratio is given by max(fd(µ), gd(µ)), with the condition Pmin ≥ 1
µ2 . Thus, when

d = 3, by following the proof of Theorem 3 and setting µ∗ ≈ 0.382, the ratio is fd(µ
∗) ≤ 1.619d+1. When d ≥ 4,

we can follow the proof of Theorem 4 by setting µ∗ = 1√
d−1+1

. In this case, the ratio is gd(µ
∗) = d+2

√
d− 1.

6 Lower Bound for List Scheduling

Lastly, we prove a lower bound of d on the approximation ratio of any deterministic algorithm that, for the
second phase, uses list scheduling with only local priority considerations (i.e., without taking into account the
precedence graphs when assigning priorities to the jobs). This lower bound holds regardless of the resource
allocation scheme for the first phase. The result shows that our multi-resource scheduling algorithms essentially
achieve tight approximation ratios up to the dominating factor for large d among the generic class of local list
scheduling schemes.

Theorem 6. Any deterministic list scheduling algorithm with local job priority considerations is no better than
d-approximation for the multi-resource scheduling problem.

15

Figure 2: Lower bound instance with an approximation ratio of d for any deterministic list scheduling algorithm
with local job priority considerations.

Proof. The lower bound is constructed by using a set of jobs whose precedence constraints form a tree. Each
job takes unit-time to complete, and only requires a unit resource allocation from a single resource type. For
each resource type i, there is a total amount P (i) = 2 of available resource. Figure 2 illustrates our lower
bound instance with n = 2Md jobs, where M is an integer multiple of 3. The nodes represent the jobs, the
arrows represent the precedence constraints, and the color of a node represents the single resource type the
corresponding job requires.

The optimal schedule can be obtained by prioritizing the job dependencies going downward, resulting in a
makespan of Topt = M+d−1. Any deterministic list scheduling algorithm with only local priority considerations
cannot distinguish jobs that require the same resource type. Hence, in the worst-case, it could only utilize one
type of resource at any time, resulting in a makespan of T = M(d−1)+ 4M

3 = Md+M
3 . Choosing M > 3(d2−d),

the worst-case approximation ratio is:

T

Topt
=

Md+ M
3

M + d− 1
=

d+ 1
3

1 + d−1
M

>
d+ 1

3

1 + 1
3d

= d .

This completes the proof of the theorem.

7 Conclusion

In this paper, we have studied the problem of scheduling parallel jobs with precedence constraints under multiple
types of schedulable resources. We focused on moldable jobs, which allow the scheduler to flexibly select a
variable set of resources before the execution of the jobs, and the goal is to minimize the overall completion
time, or the makespan. We have proposed a multi-resource scheduling algorithm that adopts the two-phase
approach by combining an approximate resource allocation and an extended list scheduling scheme. We have
proven approximation ratios of the algorithm for the general precedence graph, as well as for some special graphs
including SP-DAGs or trees and independent jobs. The results are summarized in Table 1. We have also proven
a lower bound on the approximation ratio of any local list scheduling scheme, which shows that our algorithm
achieves the optimal asymptotic performance up to the dominating factor.

We point out that the lower bound proven in Theorem 6 does not rule out the possibility of a global list
scheduling algorithm that considers the structure of the precedence graph when determining the priorities for
the jobs (e.g., giving priority to the jobs on the critical path). It remains an open question to find such an
algorithm by showing a better approximation ratio than d, or to prove a matching lower bound for any list-based
scheduling scheme.

16

Table 1: Summary of approximation results.
Precedence Approximation Ratio

General
Graphs

• 1.619d+ 2.545
√
d+ 1 for d ≥ 1

• d+ 3
3
√
d2 +O(3

√
d) for d ≥ 22

SP Graphs
or Trees

• (1 + ε) (1.619d+ 1) for d ≥ 1

• (1 + ε)
(
d+ 2

√
d− 1

)
for d ≥ 4

Independent
Jobs

• 2d for d ≥ 1 [36]
• 1.619d+ 1 for d = 3

• d+ 2
√
d− 1 for d ≥ 4

References

[1] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: A unified platform for task scheduling
on heterogeneous multicore architectures. Concurr. Comput. : Pract. Exper., 23(2):187–198, 2011.

[2] O. Beaumont, L.-C. Canon, L. Eyraud-Dubois, G. Lucarelli, L. Marchal, C. Mommessin, B. Simon, and
D. Trystram. Scheduling on two types of resources: A survey. ACM Comput. Surv., 53(3), 2020.

[3] O. Beaumont, L. Eyraud-Dubois, and S. Kumar. Fast approximation algorithms for task-based runtime
systems. Concurrency and Computation: Practice and Experience, 30(17):e4502, 2018.

[4] H. L. Bodlaender and B. de Fluiter. Parallel algorithms for series parallel graphs. In ESA, pages 277–289,
1996.

[5] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. J. Dongarra. PaRSEC: Exploiting
heterogeneity to enhance scalability. Computing in Science and Engg., 15(6):36–45, 2013.

[6] M. Caccamo, R. Pellizzoni, L. Sha, G. Yao, and H. Yun. Memguard: Memory bandwidth reservation
system for efficient performance isolation in multi-core platforms. In RTAS, page 55–64, 2013.

[7] C. Chen. An improved approximation for scheduling malleable tasks with precedence constraints via
iterative method. IEEE Transactions on Parallel and Distributed Systems, 29(9):1937–1946, 2018.

[8] C.-Y. Chen and C.-P. Chu. A 3.42-approximation algorithm for scheduling malleable tasks under precedence
constraints. IEEE Trans. Parallel Distrib. Syst., 24(8):1479–1488, 2013.

[9] P. De, E. J. Dunne, J. B. Ghosh, and C. E. Wells. Complexity of the discrete time-cost tradeoff problem
for project networks. Operations Research, 45(2):302–306, 1997.

[10] P. De, E. James Dunne, J. B. Ghosh, and C. E. Wells. The discrete time-cost tradeoff problem revisited.
European Journal of Operational Research, 81(2):225–238, 1995.

[11] G. Demirci, H. Hoffmann, and D. H. K. Kim. Approximation algorithms for scheduling with resource and
precedence constraints. In STACS, 2018.

[12] J. Du and J. Y.-T. Leung. Complexity of scheduling parallel task systems. SIAM J. Discret. Math.,
2(4):473–487, 1989.

[13] L. Eyraud-Dubois and S. Kumar. Analysis of a list scheduling algorithm for task graphs on two types of
resources. In IPDPS, 2020.

[14] D. G. Feitelson. Job scheduling in multiprogrammed parallel systems (extended version). IBM Research
Report RC19790(87657), 1997.

[15] A. Feldmann, M.-Y. Kao, J. Sgall, and S.-H. Teng. Optimal on-line scheduling of parallel jobs with
dependencies. Journal of Combinatorial Optimization, 1(4):393–411, 1998.

[16] M. R. Garey and R. L. Graham. Bounds for multiprocessor scheduling with resource constraints. SIAM
J. Comput., 4(2):187–200, 1975.

[17] T. Gautier, X. Besseron, and L. Pigeon. KAAPI: A thread scheduling runtime system for data flow
computations on cluster of multi-processors. In PASCO, page 15–23, 2007.

17

[18] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica. Dominant resource fairness:
Fair allocation of multiple resource types. In Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation, pages 323–336, 2011.

[19] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella. Multi-resource packing for cluster
schedulers. SIGCOMM Comput. Commun. Rev., 44(4):455–466, Aug. 2014.

[20] Y. He, J. Liu, and H. Sun. Scheduling functionally heterogeneous systems with utilization balancing. In
IPDPS, pages 1187–1198, 2011.

[21] Y. He, H. Sun, and W.-J. Hsu. Adaptive scheduling of parallel jobs on functionally heterogeneous resources.
In ICPP, page 43, 2007.

[22] K. Jansen and F. Land. Scheduling monotone moldable jobs in linear time. In IPDPS, pages 172–181,
2018.

[23] K. Jansen and H. Zhang. Scheduling malleable tasks with precedence constraints. In SPAA, page 86–95,
2005.

[24] K. Jansen and H. Zhang. An approximation algorithm for scheduling malleable tasks under general prece-
dence constraints. ACM Trans. Algorithms, 2(3):416–434, 2006.

[25] R. Lepère, G. Mounié, and D. Trystram. An approximation algorithm for scheduling trees of malleable
tasks. European Journal of Operational Research, 142(2):242–249, 2002.

[26] R. Lepère, D. Trystram, and G. J. Woeginger. Approximation algorithms for scheduling malleable tasks
under precedence constraints. Int. J. Found. Comput. Sci., 13(4):613–627, 2002.

[27] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, and C. Maltzahn. On the role of
burst buffers in leadership-class storage systems. In MSST, pages 1–11, 2012.

[28] W. Ludwig and P. Tiwari. Scheduling malleable and nonmalleable parallel tasks. In SODA, pages 167–176,
1994.

[29] G. Mounié, C. Rapine, and D. Trystram. A 3/2-approximation algorithm for scheduling independent
monotonic malleable tasks. SIAM J. Comput., 37(2):401–412, 2007.

[30] M. Niemeier and A. Wiese. Scheduling with an orthogonal resource constraint. In WAOA, pages 242–256,
2012.

[31] M. NoroozOliaee, B. Hamdaoui, M. Guizani, and M. B. Ghorbel. Online multi-resource scheduling for
minimum task completion time in cloud servers. In INFOCOM Workshops, 2014.

[32] S. Ristov, R. Prodan, M. Gusev, and K. Skala. Superlinear speedup in HPC systems: Why and when? In
Federated Conference on Computer Science and Information Systems (FedCSIS), pages 889–898, 2016.

[33] D. B. Shmoys, C. Stein, and J. Wein. Improved approximation algorithms for shop scheduling problems.
23(3):617–632, 1994.

[34] M. Skutella. Approximation algorithms for the discrete time-cost tradeoff problem. Math. Oper. Res.,
23(4):909–929, 1998.

[35] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani, S. Hutsell, R. Agarwal, and
Y.-C. Liu. Knights Landing: Second-generation Intel Xeon Phi product. IEEE Micro, 36(2):34–46, 2016.

[36] H. Sun, R. Elghazi, A. Gainaru, G. Aupy, and P. Raghavan. Scheduling parallel tasks under multiple
resources: List scheduling vs. pack scheduling. In IPDPS, pages 194–203, 2018.

[37] J. Turek, J. L. Wolf, and P. S. Yu. Approximate algorithms scheduling parallelizable tasks. In SPAA, 1992.

[38] Q. Wang and K. H. Cheng. A heuristic of scheduling parallel tasks and its analysis. SIAM J. Comput.,
21(2):281–294, 1992.

[39] M. Xu, L. T. X. Phan, X. Phan, H. Choi, and I. Lee. vCAT: Dynamic cache management using CAT
virtualization. In RTAS, 2017.

18

	1 Introduction
	2 Related Work
	2.1 Moldable Job Scheduling
	2.2 Multi-Resource Scheduling

	3 Models
	3.1 Scheduling Model
	3.2 Problem Statement
	3.3 Lower Bound on Optimal Makespan

	4 A Multi-Resource Scheduling Algorithm and Approximation Results
	4.1 Phase 1: Resource Allocation
	4.1.1 Discrete Time-Cost Tradeoff (DTCT) Problem
	4.1.2 Allocating Resources to Jobs
	4.1.3 Adjusting Resource Allocation

	4.2 Phase 2: List Scheduling
	4.2.1 Algorithm Description
	4.2.2 Properties of List Scheduling

	4.3 Approximation Results

	5 Improved Approximation Results for Some Special Graphs
	5.1 Results for SP Graphs or Trees
	5.2 Results for Independent Jobs

	6 Lower Bound for List Scheduling
	7 Conclusion

