
Optimizing Work Stealing Communication with Structured
Atomic Operations

Hannah Cartier
Rhodes College

Memphis, TN, USA
carhr-21@rhodes.edu

James Dinan
NVIDIA Corporation
Westford, MA, USA
jdinan@nvidia.com

D. Brian Larkins
Rhodes College

Memphis, TN, USA
larkinsb@rhodes.edu

ABSTRACT
Applications that rely on sparse or irregular data are often challeng-
ing to scale on modern distributed-memory systems. As a result,
these systems typically require continuous load balancing in order
to maintain efficiency. Work stealing is a common technique to
remedy imbalance. In this work we present a strategy for work
stealing that reduces the amount of communication required for
a steal operation by half. We show that in exchange for a small
amount of additional complexity to manage the local queue state
we can combine both discovering and claiming work into a single
step. Conventionally, work stealing uses a two step process of dis-
covering work and then claiming it. Our system, SWS, provides
a mechanism where both processes are performed in a singular
communication without the need for multiple synchronization mes-
sages. This reduction in communication is possible with the novel
application of atomic operations that manipulate a compact repre-
sentation of task queue metadata. We demonstrate the effectiveness
of this strategy using known benchmarks for testing dynamic load
balancing systems and for performing unbalanced tree searches.
Our results show the reduction in communication reduces task
acquisition time and steal time, which in turn improves overall
performance on sparse computations.

CCS CONCEPTS
• Computing methodologies→ Parallel computing method-
ologies.

KEYWORDS
Work stealing, PGAS, dynamic load balancing, atomic communica-
tions

ACM Reference Format:
Hannah Cartier, James Dinan, and D. Brian Larkins. 2021. Optimizing
Work Stealing Communication with Structured Atomic Operations. In
50th International Conference on Parallel Processing (ICPP ’21), August 9–
12, 2021, Lemont, IL, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3472456.3472522

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP ’21, August 9–12, 2021, Lemont, IL, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9068-2/21/08. . . $15.00
https://doi.org/10.1145/3472456.3472522

1 INTRODUCTION
A large number of parallel problems produce irregular computa-
tions that can be challenging to execute without resulting in load
imbalance. The sources of this imbalance can be due to non-uniform
data structures, inherent irregularity in the algorithm, or variation
in the degree of available parallelism throughout a computation.
Traditional static task decomposition and scheduling approaches do
not map well to these classes of problems. Many irregular problems
are often most naturally expressed dynamically, such as with recur-
sive spatial decompositions or similar methods to handle inherent
sparsity. Dynamic load balancing systems can provide abstractions
that work well with irregular problems in both task decomposition
and mapping variable workloads onto available compute resources
– yielding both good performance and scalability.

Distributed dynamic load balancing systems can be used to rem-
edy many of the deficiencies of static load balancers. The Cilk [14]
programming language provided a load balancing system that re-
quires idle processes to steal tasks from target processes chosen at
random. Previous work has shown that this method is optimal for
many classes of problems and has efficient space bounds [5, 18]

The one-sided read, write, and atomic operations supported by
remote direct memory access (RDMA) systems are handled by
specialized hardware in the high-speed network fabrics of high
performance computing (HPC) systems. This low-level support en-
ables the efficient realization of a Partitioned Global Address Space
(PGAS) in systems such as the MPI Remote Memory Access (RMA)
interface [24], Unified Parallel C [34], and more recently in systems
such as OpenSHMEM [28]. PGAS models provide both a global
view of memory and a set of one-sided communication operations
for accessing non-local data. Implementing work stealing dynamic
load balancing with PGAS allows systems to take advantage of
both a global view of memory as well as one-sided access opera-
tions. Hardware supported RDMA permits a work stealing system
to both search for and acquire work without interrupting active
computations at the target.

Scioto (Shared Collection of Task Objects) [10, 11] is a PGAS-
based task parallel programmingmodel whosework stealing system
utilizes RDMA capabilities via the Aggregate Remote Memory Copy
Interface (ARMCI) [25]. In this work, we review the design of this
dynamic load-balancing system and consider improvements made
possible by recent work in high performance networking.

Conventional work-stealing systems must perform a sequence
of one-sided RDMA communications in order to identify available
work, claim it, transfer stolen tasks to the local work queue, and
record steal completion in the work queue state on the target pro-
cess. This approach has been shown to have good scalability and
happens without requiring the active participation of the target

https://doi.org/10.1145/3472456.3472522
https://doi.org/10.1145/3472456.3472522
https://doi.org/10.1145/3472456.3472522
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3472456.3472522&domain=pdf&date_stamp=2021-10-05

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Hannah Cartier, James Dinan, and D. Brian Larkins

process. However, this multi-step communication sequence causes
high steal latencies. This work considers the novel use of atomic op-
erations to greatly reduce the number of communication messages
needed for a steal operation. In particular, we consider the Open-
SHMEM programming model, a modern framework that provides
both a partitioned global address space and a set of communications
that operate on it. OpenSHMEM is built on lower-level communi-
cations frameworks such as Unified Communication-X (UCX) [33]
or libfabric [27] that provide optimized communication primitives
which take advantage of available hardware acceleration.

In contrast with conventional approaches, our Structured-atomic
Work Stealing system, (SWS), adapts the work stealing communi-
cation process with atomic operations, yielding improved perfor-
mance and reduced overhead. Prior work reduced communication
in a work stealing framework and relied on features within the Por-
tals 4 network programming interface [2] — a system to prototype
next-generation interconnect design. Leveraging Portals messaging
abstractions reduced communications for steal transactions to a
single network round-trip [21]. The design of this system inspired
the development of new techniques for reducing steal communica-
tion latency using programming frameworks that were supported
by existing interconnect hardware, rather than next-generation
Portals hardware. A principal contribution of this work is that it
combines the work discovery step and the work claiming step into
a single operation, which results in reducing the communication
needed for a steal operation by half.

This work is based on the following insights: (1) implementing
distributed task queues using OpenSHMEM allows us access to
hardware accelerated network communication operations, (2) the
information needed for a stealing process to identify and claim
work can be represented compactly, (3) a compact representation
of key task queue metadata can be operated on with atomic com-
munication operations, and (4) the additional complexity of this
representation adds minimal processing to queue metadata upkeep
and maintenance.

This work makes the following contributions: We describe the
implementation of the SWS dynamic load-balancing system that is
constructed using a novel representation for queue metadata that
is amenable to atomic communication operations. We also provide
an experimental validation of this approach using two representa-
tive applications, a bouncing producer/consumer benchmark and
the unbalanced tree search (UTS) benchmark. We show that our
approach results in half the communications needed to steal tasks,
a corresponding reduction in steal time, and a reduction in the time
needed to disseminate tasks to worker processes.

2 BACKGROUND
The advent of hardware supported Remote Direct Memory Access
(RDMA) operations has enabled higher performance in traditional
two-sided message passing programming models. Modern network-
ing hardware with RDMA support also allows for the efficient
realization of one-sided PGAS programming models. Recent in-
terconnect hardware has added to the offload capabilities of the
NIC with support for sophisticated atomic access operations and
receiver-side offloads such as message matching. These features are
important in the context of a distributed dynamic load-balancing

system since they provide a way of accessing remote memory with-
out involving the CPU on the target process. Disrupting the CPU
from processing tasks in order to handle steal requests and update
system state would reduce performance and degrade efficiency.

Work stealing systems rely on a task queue that is both used by a
local process to enqueue and dequeue tasks and also globally visible
so that remote processes may inspect the queue and asynchronously
steal tasks. Prior research in this domain has demonstrated that
these operations fit well within programming models that use one-
sided communication [11]. This work focuses on extending this
model in order to reduce the communications needed to safely
support asynchronous task stealing.

The problem of load-balancing an application with an irregular
workload is complex and at times seemingly contradictory. Consider
task granularity as an example: An application with short-lived,
fine grained tasks (∼10µs) will be easier to balance, but will be more
sensitive to overheads in the load balancing system, such as steal
latency. Similarly, applications with coarse-grained task sizes (∼100
ms) will be more tolerant of larger steal latencies, but may lead to
larger imbalance at scale due to longer task duration.

In traditional work-first load-balancing systems, local workers
process the newest tasks first in their own queues prior to searching
elsewhere for work. Once local work is exhausted, the primary
problem faced by the process is to identify the location of tasks
and determine how much work is available once found. Available
work is discovered by selecting a target at random and checking
to see if there are tasks that may be stolen. Work stealing systems
have been shown to perform best by stealing half of the available
work on a target process, striking a tradeoff between reducing steal
attempts, while leaving work for other idle processes to discover,
giving a balanced workload [17].

2.1 Task Execution Model
The SWS system adheres to the task pool model originally used
by the Scioto load balancing system [10]. This model allows the
programmer to express a parallel computation by decomposing
the problem into a set of tasks. Tasks are the fundamental units of
work and are executed by processes participating in the parallel
computation. Each process maintains its own task queue, taken
together to form the global task pool. The pool is initially seeded
with a set of tasks and then processed until there are no more tasks
remaining to be executed.

A portable task descriptor is used to uniquely identify a task.
Task descriptors maintain which program function is to be exe-
cuted by the task, as well as the parameters or other state needed
by the task. The SWS system is built using OpenSHMEM, which
provides a global address space based on a symmetric heap. The
state necessary for the task function inputs and outputs may be
global addresses in the partitioned global address space or any other
portable representation that can be used by any process partaking
in the parallel execution of the task pool.

Tasks may create new subtasks and add them to the task pool.
This enables the recursive expression of parallelism and allows for
tasks to be ordered with respect to parent-child data dependencies.
Tasks are processed in a LIFO order, which yields a depth-first

Optimizing Work Stealing Communication with Structured Atomic Operations ICPP ’21, August 9–12, 2021, Lemont, IL, USA

traversal of the task tree and also bounds the space requirements
of the task pool at O(Tdepth), for a task tree, T .

Under the Scioto execution model, all enqueued tasks in the
task pool are required to be independent. Parent-child dependen-
cies may be expressed with dynamic task creation, however, any
enqueued task in the pool must be able to complete without block-
ing. Tasks are allowed to communicate and use data stored in the
global address space, but they may not wait for results produced by
any concurrently executing tasks. These constraints allow SWS to
rely on a relaxed fairness model and avoid handling the migration
of incomplete tasks while still being suitable for a wide range of
applications.

Processes will remove and execute tasks from their local queue
until it is exhausted, then move from processing tasks to searching
for available work within the system. This mode of operation re-
quires distributed termination detection to determine when all work
has been consumed from the task pool and no work is available
anywhere in the system.

2.2 Related Work
The techniques presented in this paper build on work optimizing
the Unbalanced Tree Search Benchmark (UTS) [12] and the Scioto
work stealing infrastructure [10] using PGAS communication prim-
itives. Other work in this area has considered techniques to reduce
communication in work stealing through hardware offload opera-
tions [21]. With respect to innovations in atomic-based network
operations, some vendors have included both hardware and soft-
ware support for using atomics on structured data [26].

Dynamic load balancing has been extensively studied in the
literature. Early work focused on optimized scheduling for task
graphs [20] or using graph partitioning to schedule tasks with con-
sideration of data locality [7, 32]. These techniques assume knowl-
edge of total task volume and graph contents prior to balancing
and executing tasks.

Cilk [14] popularized work stealing as a means to dynamically
load balance fully strict computations. Several other projects have
looked at adaptations and implementations of shared memory or
distributed shared memory load balancing including NESL and
others [4, 23].

Several modern parallel programming frameworks provide sup-
port for load-balancing, although typically only within a shared
memory domain. Language-level support for dynamic scheduling
exists within OpenMP and has been studied within Chapel [13] and
X10 [8]. Some parallel programming frameworks, such as Legion [3],
also support work stealing within a shared memory environment.

Within the context of distributed memory systems, dynamic load
balancing has been widely studied in various contexts [18, 30]. Cilk
NOW [6] extended the Cilk model to networks of computers with
additional features to deal with adaptive parallelism and fault toler-
ance. More recent language-level load balancing has been studied
within the context of X10 [9, 31].

Optimizations to the work stealing algorithm have included
the help-first approach to perform locality-aware distributed load-
balancing in systems such as SLAW [15, 16] and HotSLAW [35].
Work done with the Habenero environment has focused on adding
hierarchy to ensure that target selection during a steal attempt

always succeeds in finding work and reduces overall communi-
cation traffic [19]. Lifelines [29] have been proposed to improve
quiescence detection and eliminate unproductive stealing traffic.
The Open Community Runtime (OCR) provides an implementation
of the "asynchronous many task" model that is suitable for exascale
systems [22]. Work with CHARM++ has also demonstrated that
hierarchical load balancing is effective at scaling dynamic load-
balancing systems [36]. Private locally accessible task queues have
also been studied in conjunction within two-sided communication
used for stealing tasks [1].

Our work focuses on accelerating the communication involved
in remotely accessing the task queues used by work stealing im-
plementations. Thus, the techniques we present can be used in
conjunction with enhancements to the work stealing algorithm or
to accelerate existing implementations of work stealing on networks
that support the OpenSHMEM parallel programming framework.

3 BASELINE SDC IMPLEMENTATION
We use the Scioto work stealing engine as a baseline and compare
this with the SWS approach. In the Scioto framework, each process
maintains a double-ended queue (deque), implemented using a cir-
cular buffer. This buffer is allocated in a globally-accessible memory
region in the PGAS. The task queue is carefully organized such that
it provides efficient local queue operations with low overhead as
well as allow remote processes to steal available tasks.

The best performing implementation approach in Scioto has
been shown to be the "Split Queues, with Deferred Copies, and
Aborting Steals" (SDC). The SDC implementation permits steal at-
tempts to abort early in the case that another process has already
stolen all tasks, as well as a passive, non-blocking steal completion
acknowledgement (deferred copy) [11]. We implemented a ver-
sion of Scioto using OpenSHMEM for all communication, directly
substituting ARMCI calls with the corresponding OpenSHMEM
operations. All comparisons to the Scioto baseline implementation
use this configuration.

q headtail split
shared localmeta

Figure 1: Scioto Task Queue Structure

As shown in Figure 1, Scioto divides the queue into two portions.
A local portion which may only be accessed by the owning process,
and a shared portion which contains the work available to be stolen
by other processes. We interchangeably use the terms owner and
target to reflect the process on which the task queue resides, and
is the target of steal operations. A stealing processes may also be
referred to as the initiator of a steal.

Local queue operations are lightweight and do not require the
use of a lock. Remote processes are permitted to steal any tasks
located between the tail and the split point, beginning with those
closest to the tail. Upon spawning new tasks, they are typically

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Hannah Cartier, James Dinan, and D. Brian Larkins

atomic swap

get

put

atomic swap

get

lock queue

fetch
metadata

update
metadata

unlock queue

fetch stolen
tasks

ack steal
completion

stealing
process

target
process

operation Scioto SDC SWS

stealing
process

target
process

get

atomic fetch-add

atomic fetch-addatomic fetch-add

Figure 2: SDC and SWS Native Steal Communications

enqueued locally, however a process may spawn tasks onto remote
queues, although with more overhead due to communication.

A local process will move the split point in order to either expose
more tasks or reacquire them when it runs out of work. Moving
the split point between the local and shared portion of the queue
can happen when the process owning the queue performs a release
or acquire operation. The release operation moves the split point
closer to the head of the queue, thereby exposing more tasks to the
shared portion. The complementary acquire operation does the op-
posite, pushing the split point into the shared portion, hiding tasks
from remote processes and making more work available locally.
These operations are called periodically when the runtime system
discovers that one of the shared or local portions of the queue is
empty but the other contains tasks.

3.1 Implementation
The task queue maintains the indices for the tail and split point,
a count of the number of local tasks, as well as a lock used when
remote processes access the shared portion. These metadata struc-
tures are stored in the globally exposed memory region so that they
may be queried and modified by other processes.

The following descriptions consider the implementation of the
principal operations for the baseline SDC load-balancing system.
Each of these operations is described in more detail in [10, 11, 21].

Enqueueing Tasks. New tasks are enqueued at the head of the
local portion. The system ensures that there is sufficient space in
the queue and then copies the tasks into the local part of the queue,
possibly wrapping around the circular buffer. This entire operation
is local and may be performed without locking.

Dequeueing Local Tasks. Removing tasks from the head of
the queue is a local-only memory copy operation and may be per-
formed without the need for locking.

Release Operation. A release operation occurs when there is
work remaining in the local portion of the queue, but the shared

portion is empty. Scioto was originally implemented to allow re-
lease operations to occur without synchronization. Since a release
happens when the shared queue is empty, a steal attempt executing
prior to the release will see the empty queue and abort the steal
attempt. To change the amount of work visible in the queue, the
release operation only needs to update the split point, which can be
done atomically, thereby avoiding the need for the owning process
to lock the queue.

Acquire Operation. The acquire operation occurs when the lo-
cal portion of a task queue is empty. If there is available work in the
shared portion, the split point is updated to effectively move half
of the available work into the local portion of the queue. Since the
index of the split point is used by remote processes when stealing
work, this operation requires the queue to be locked during the
update.

Stealing Tasks. Using the Scioto-derived SDC model, stealing
tasks requires synchronization in order to safely check and modify
the task queue on a remote process. In total, a steal operation
requires six communication operations to complete. Five of these
are blocking operations that must complete in order to preserve
safety. The final communication (deferred copy) is passive and may
be issued without waiting for completion.

To steal work from a remote target, SDC performs the commu-
nications operations shown in Figure 2, which correspond to the
following steps in a steal operation:

(1) Acquire a lock on the remote queue (atomic)
(2) Fetch the tail and split points of the remote queue to deter-

mine the amount of shared work available. (get)
(3) Update tail index on remote queue (put)
(4) Release lock on remote queue (atomic)
(5) Copy stolen tasks from remote queue (get)
(6) Update steal completion status (non-blocking atomic)

The SDC baseline implements all locks with spinlocks. These
queue locks are typically uncontended, however when work is
sparse in the system (dispersing work initially, or aggressive search-
ing late in the computation), multiple processes may attempt steals
simultaneously. The use of application-level spinlocks permit the
initiating process to steal work without committing to acquiring
the lock and allows periodic polling of the target queue metadata to
check if there is any work remaining. This allows stealing processes
to early abort a steal attempt if there is no work to be found.

Periodically, the runtime must update the local queue to account
for the asynchronous completion status messages. This progress
operation updates the local tail of the queue past all stolen tasks that
have signaled completion in order to reclaim space in the queue.
This operation does not require locking the queue.

4 SWS IMPLEMENTATION
Stealing processes using the baseline SDC implementation are re-
quired to first search for work by examining the queue metadata
of a potential target and then modifying it in order to claim the
work. As can be seen in Figure 2, this requires locking, read, and
write operations to perform these steps. If sufficient information to
both discover and claim work can be represented in a form that is

Optimizing Work Stealing Communication with Structured Atomic Operations ICPP ’21, August 9–12, 2021, Lemont, IL, USA

suitable for atomic communication operations, then the four com-
munications necessary in SDC to discover and claim work can be
reduced to a single step.

Atomic operations in OpenSHMEM can work on values up to
64-bits. The design of SWS relies on using a single 64-bit value
(stealval) to represent multiple pieces of information, as shown in
Figure 3. This design breaks a 64-bit value into four components,
of which only the high 24-bits are modified by stealing (initiator)
processes and the low 40-bits of data which are only modified by
the task queue owner. The owner data is broken into a 1-bit valid
flag, a 19-bit unsigned field that represents the initial allotment of
tasks in the shared portion of the queue and a 20-bit unsigned value
that represents the location of the queue tail:

Tail Index: The tail index field represents the index of the tail
entry on the symmetric heap of the target process.

Initial Tasks: The initial tasks field represents the total number
of tasks placed into the shared portion of the queue. This is used to
calculate the specific block of tasks to copy during a steal operation.

Valid: This flag is used to signal to stealing processes that the
target process has disabled steal attempts or is updating the split
point.

StealsAttempted:This field represents the number of attempted
steal operations (asteals) using the steal-half mechanism and is
used to determine the volume of the next steal. If the number of
attempted steals is greater than the number of steals possible given
the initial tasks, this indicates there is no more work available for
stealing in that queue.

Task State Description
Available (A) shared tasks — unclaimed and available for

stealing
Claimed (C) claimed tasks — steal operation is still in-

progress
Finished (F) stolen tasks — steal completion notification has

been sent by the stealing process to target
Invalid (I) invalid tasks

Table 1: Shared Task States

Tasks in the shared portion of the queue may be in one of the
four states listed in Table 1. Initially tasks shared by a release oper-
ation are marked as available. Tasks reserved by a stealing process
remain in the claimed state until the initiator actively signals steal

64

24

 Attempted
Steals

Tail
Index

19

Initial
Tasks

valid

1 20

2 150 500

Figure 3: SWS Steal Structure (stealval)

completion, when they become marked as finished. Any portion of
the queue that contains neither local tasks or shared tasks (available,
claimed, or finished) is invalid.

Example: The queue represented by the 64-bit metadata value in
the Figure 3 has the following meaning:

(1) The tail starts at index 500. Any steal operations must ac-
count for wrapping when determining the block of tasks to
be copied. Since task queues are of symmetric size, wrapping
steals can be determined locally, without communication.

(2) The target process initially placed 150 tasks into the shared
portion of the queue, which are all labeled as available. Since
we always steal half of the remaining available work, this
corresponds to this sequence of 9 steals: {75,37,19,9,5,2,1,1,1}.

(3) The current number of steals attempted is two, which means
that the next steal would consist of 19 tasks and that the
preceding two blocks of tasks have already been claimed (of
75 and 37 tasks, respectively). With the atomic increment,
these 19 tasks become claimed. This block of tasks begins
at the index at tail + completed (or 500 + 75 + 37 = 612)
assuming that the queue size is larger than 631 (612 + 19)
tasks, otherwise we perform a wrapped steal.

(4) After the steal is completed, the initiator atomically updates
a shared array on the target, a completion array, with the
number of tasks stolen (19), which denotes that the steal
isfinished. The stolen tasks are enqueued locally and able to
be processed by the initiating process.

4.1 Implementation
Our implementation1 of SWS also relies on a split circular buffer
for tasks, with both a shared and local portion. In addition, SWS
maintains two primary pieces ofmetadata, the 64-bit atomic stealval,
and a shared array for tracking the asynchronous completion of
steal operations.

Similar to description of the baseline SDC operations, we discuss
the implementation of queue operations below:

Enqueueing and dequeing local tasks. This is unchanged
from the SDC implementation. Both operations are lightweight,
occur without locking and require no interaction with the shared
portion of the task queue.

Release Operation. The release operation is invoked when the
shared portion of the queue is empty and there are available tasks
in the local portion. During a release, the queue split is updated to
move half of the available tasks to the shared portion. The stealval
is atomically reset to reflect the new number of stealable tasks and
current tail value of the queue.

Acquire Operation. The acquire operation moves tasks from
the shared part of the queue into the local portion. In addition to
updating the split point, the stealval is updated to reflect the new
number of available tasks. Since the queue is not locked in SWS,
it is possible for a remote process to begin a steal operation after
we have read our queue value, leading to an inaccurate view of the
queue state. To prevent this, upon starting an acquire operation,

1http://github.com/brianlarkins/saws

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Hannah Cartier, James Dinan, and D. Brian Larkins

64

24

 Attempted
Steals

Epoch
Tail

19

Initial
Tasks

Epoch #

2 19

Figure 4: Updated SWS Steal Structure

stealing is temporarily disabled by marking the valid bit in the
stealval as invalid.

An acquire operation may occur after shared tasks have been
claimed, but while tasks are still in the process of being transferred.
In our initial implementation, the owning process must wait until
all in-progress claimed steals become finished before updating the
stealval. Otherwise we lose the means to safely reclaiming queue
space. We consider optimizations to this below.

The amount of claimed work is directly known by the number
of steals attempted at the time of the acquire and is inspected with
a local atomic operation. The total number of stolen tasks is main-
tained by examining the count of finished entries in the completion
array. If these two counts do not match, there are in-progress steals.

Stealing Tasks. In contrast to the multiple communications
required in the SDC version, a steal operation can now be com-
pleted with a total of three one-sided communications, as shown
in Fig. 2. Of these three steps, only the first two communications
block progress — the steal completion notification does not need to
complete in order to return to task processing. A stealing process
first uses an atomic fetch/add operation to increment the number
of attempted steals (asteals) part of the stealval on the remote target.
Once asteals has been incremented on the target process no other
process may claim the same block of tasks.

Knowing the initial number of tasks available and the number
of previously attempted steals allows the stealing process to de-
termine the amount of work that it should steal. If the number of
steal attempts is greater than loд2 of the initial tasks, then no work
remains, otherwise the amount of work to steal is obtained by divid-
ing the amount of initial work by two for each prior attempt. The
displacement from the tail index can now be calculated, skipping
previously claimed work.

The stealing process then initiates a blocking one-sided get com-
munication, accounting for the possibility that tasks may wrap
around the circular queue. Once the tasks have been copied, the
stealing process sends a non-blocking atomic put onto the com-
pletion array, to signal to the target that the steal has completed.
Similar to the SDC implementation, this last communication is pas-
sive and may be issued without waiting for completion.

4.2 Completion Epochs
When work is sparse in the system, the frequency of split-point
update operations increases. To avoid the need for waiting for in-
flight steals to complete during acquire operations, we amend the
stealval structure to correspond to the structure shown in Figure 4.

split

split

tail

tail

local

local

A A A A A I I I I I

F F C I I A A A A A

epoch 1 epoch 2

epoch 1 epoch 2

pre-acquire

post-acquire

Figure 5: Acquire Behavior with Completion Epochs

Under this scheme, claiming steals happens atomically, but steal-
completion may be asynchronous and indeed may overlap with lo-
cal queue manipulation mechanisms. This is enabled by versioning
steal phases into epochs, each of whichmaintains a separate comple-
tion state. An epoch index of anything greater than MAX_EPOCHS
signifies that the queue is locked by the target process and cannot
be stolen from.

This requires updates to acquire, as well as a change to steal
completion. When calling acquire, the queue is disabled and the
completion array states for the new epoch must be initialized before
re-enabling steals.

When stealing tasks, completion is updated to use the epoch
number in the stealval when writing to a completion array on the
target once the stealing process has completed copying the stolen
tasks.

The acquire operation tends to happen relatively infrequently,
so it is responsible for maintaining queue state given the possibility
of incomplete steals across multiple epochs. For example, the tail
must be advanced past completed tasks to ensure that there is free
space in the circular queue to allow additional tasks to be enqueued.
Since steals may be incomplete over several different epochs, all
completion arrays are traversed to account for the longest sequence
of fully completed steals.

Every acquire starts a new completion epoch. If there are out-
standing steals in all completion arrays, then acquire must poll until
at least one epoch has fully completed. In our experience, the use
of two completion epochs was sufficient to avoid polling.

As with the SDC implementation, the runtime must periodically
update the local queue outside of acquire/release operations to
account for passive steal completion updates (progress). In SWS,
reclaiming space in the task queue requires also looping over all out-
standing completion epochs and determining the largest sequence
of completed steals starting at the oldest epoch’s tail. The owner
tracks the current tail (last available or claimed task) distinct from
the tail value advertised in asteals.

Optimizing Work Stealing Communication with Structured Atomic Operations ICPP ’21, August 9–12, 2021, Lemont, IL, USA

We can visualize this behavior in Figure 5. In this figure, we
consider the state of the system immediately prior to an acquire call
with outstanding steal completions above the dotted line. Several
task blocks are in the shared portion of the queue with their steal
completion status marked as A or available.

The lower half of the diagram shows the state after an acquire
operation. We can see that the completion array for the first epoch
has two steals marked as finalized (F), indicating completion. One
block is marked to signify that it has been claimed (C). The acquire
operation is not permitted to reclaim that block of queue space
until that the tasks have been marked as finalized, at which point
unclaimed task blocks become invalid (I). The acquire has updated
the stealval to reflect the new tail, available task blocks, and has set
the completion array to epoch 2.

4.3 Steal Damping
A constraint with using a more compact representation for queue
metadata is that it is possible to overflow the asteals value in the
stealval after 16.7 million (224) steal attempts. To address this pos-
sibility, SWS can perform steal damping, where a stealing process
falls back to a less-aggressive steal mode after discovering that a
specific process has no work.

Initially, all targets are said to be in full-mode, where steal at-
tempts follow the three-step algorithm described above. Upon de-
termining that a target has run out of work and the asteals value
exceeds a threshold value, it is marked as being in empty-mode.

When stealing from a target in empty-mode, we first check for
tasks using a read-only atomic fetch. If the target still has no work,
the steal attempt is aborted and a new target is selected. If an empty-
mode target has acquired more work, we return it to full-mode
status and retry the steal attempt with an atomic fetch/add.

In practice, we found that the size of the asteals value never
approached the overflow limit. The maximum number of initial
tasks is capped at 224 − P to ensure that overflows may not corrupt
other fields in stealval. Enabling steal dampening did not incur
any significant performance penalty over non-damped runs for our
experimental analysis without overflow conditions.

5 EXPERIMENTAL EVALUATION
Performance was evaluated by comparing SWS against the tradi-
tional baseline SDC algorithm in the Scioto framework.

All experiments were performed on the Lotus compute cluster at
Rhodes College. The cluster has a total of 2,112 cores on 44 compute
nodes of 48 cores each. Each node is configured with two AMD
EPYC 7352 24 core CPUs operating at 2.3GHz and 256 gigabytes of
memory. Nodes are connected with a Mellanox EDR 100Gb/s Infini-
Band fabric, using ConnectX-6 InfiniBand host channel adapters
(running at EDR rate).

The software configuration consists of CentOS 7 Linux as the
host OS. Both the SDC and SWS implementations use the San-
dia OpenSHMEM (SOS) runtime library for PGAS and communi-
cation. The SOS implementation is based on the main git devel-
opment branch2. SOS was configured to run using the Unified
Communication-X (UCX) runtime, release version 1.10 with multi-
threading enabled.
2SOS commit 0e5fd82aef1683a045c85e0a50939aed80cc21c2

50 10
0

25
0

50
0

10
00

25
00

50
00

10
00

0

20
00

0

Steal Volume (tasks)

10

20

40

80

160

320
400

St
ea

l T
im

e
(m

s)

SDC 24 byte
SWS 24 byte
SDC 192 byte
SWS 192 byte

Figure 6: Steal operation times for SDC and SWS.

5.1 Performance Baseline
In Figure 6, we establish a performance baseline by comparing
the relative performance of steal operations between the baseline
SDC implementation and our SWS implementation with both small
tasks (24 bytes) and larger tasks (192 bytes). When the volume of
stolen tasks is small, we see that SWS steal times are approximately
half of SDC. As the volume increases, the steal operation becomes
dominated by the communication of the tasks themselves and the
latency from additional communications in the baseline version
contribute less to the overall steal time.

5.2 Benchmark Applications
To further evaluate the effectiveness of the SWS runtime system, we
have chosen to run experiments using two benchmark applications:
a "bouncing producer-consumer" benchmark and an unbalanced
tree search benchmark. The differences in workloads between the
applications is shown in Table 2.

5.2.1 Bouncing Producer-Consumer (BPC). The Bouncing Producer
Consumer (BPC) benchmark [11] is designed to challenge a load
balancing system’s ability to locate and disperse work. BPC pro-
duces two types of tasks, producer tasks and consumer tasks, with
1 producer task spawned for n consumer tasks. Each producer task
creates an additional producer task along with n more consumer
tasks, until a set depth is reached. In the "bouncing" mode, the
producer task is always located at the tail of the queue, so it is first
to be stolen. The result of this is that any producer task may bounce
between processes several times before finally being executed on
another processor.

Each queue was configured such that each producer task pro-
duced 8,192 consumer tasks, and has a depth of 500. Consumer
tasks take 5ms to complete and producer tasks take 1ms.

5.2.2 Unbalanced Tree Search (UTS). The Unbalanced Tree Search
benchmark (UTS) [12] is representative of an exhaustive state space
exploration or combinatorial search problem. The benchmark mea-
sures the performance of a parallel search over a deterministic but
highly unbalanced tree. The tree is constructed using a random

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Hannah Cartier, James Dinan, and D. Brian Larkins
ICPP ’21, August 9–12, 2021, Lemont, IL, USA Hannah Cartier, James Dinan, and D. Brian Larkins

48 19
2

38
4

57
6

76
8

96
0

11
52

13
44

15
36

17
28

19
20

21
12

Number of Processes

0
50

100
150
200
250
300
350
400

Pe
rfo

rm
an

ce
 (T

ho
us

an
d

ta
sk

s/
se

c)

SDC
SWS

(a) Performance of BPC.

48 19
2

38
4

57
6

76
8

96
0

11
52

13
44

15
36

17
28

19
20

21
12

Number of Processes

95.0

97.5

100.0

102.5

105.0

107.5

110.0

112.5

115.0

Pe
fo

rm
an

ce
 a

s %
 o

f b
as

el
in

e SDC
SWS

(b) Relative BPC run-time performance
improvement with SWS over SDC.

48 19
2

38
4

57
6

76
8

96
0

11
52

13
44

15
36

17
28

19
20

21
12

Number of Processes

50

60

70

80

90

100

Ef
fic

ie
nc

y

SDC
SWS

(c) Parallel efficiency of BPC relative to ideal
execution.

48 19
2

38
4

57
6

76
8

96
0

11
52

13
44

15
36

17
28

19
20

21
12

Number of Processes

0.0

0.2

0.4

0.6

0.8

1.0

%
 R

el
at

iv
e

St
an

da
rd

 D
ev

ia
tio

n SDC-SD
SWS-SD
SDC-Range
SWS-Range

0.0

0.2

0.4

0.6

0.8

1.0

%
 R

el
at

iv
e

Ra
ng

e

(d) Variation in BPC runs.

48 19
2

38
4

57
6

76
8

96
0

11
52

13
44

15
36

17
28

19
20

21
12

Number of Processes

100

150

200

250

300
st

ea
l t

im
e

(m
s)

SDC
SWS

(e) Steal operation times for BPC.

48 19
2

38
4

57
6

76
8

96
0

11
52

13
44

15
36

17
28

19
20

21
12

Number of Procesors

100

200

300

400

500

se
ar

ch
 ti

m
e

(m
s)

SDC
SWS

(f) Search times for BPC.

Figure 7: Performance of the Bouncing Producer-Consumer Benchmark with both SDC and SWS steal-half task queues.

stream generated using the SHA-1 secure hash algorithm. Nodes in
the tree are represented using a 20-byte hash digest – children are
located by composing the digest of the parent node and the identi-
fier of the child. This approach leads to a high degree of variability
in terms of subtree size for a given node. Each tree node corre-
sponds to a task, with a wide range of potential work (searching)
for a given node. The UTS benchmark was configured to perform an
exhaustive search on an unbalanced tree containing 270,751,679,750
nodes (T1WL), with a depth of 18.

5.3 Performance Evaluation
The design of SWS leads us to expect performance gains in several
areas: reduced latency for steal operations, lower overhead from
the load-balancer due to less time spent searching for work, and
improved responsiveness (throughput) at the target. All results are
with steal damping and completion epochs. Timing was done with
TSC-based timers that were calibrated every run. Whole program
timers start after initialization and stop after global termination
is detected. Since processes continue to search for work until it is
globally exhausted, these times represent the maximum runtime of

Benchmark Total Tasks Avg. Task Time Task Size
BPC 2,457,901 5 ms 32 bytes
UTS 270,751,679,750 0.00011 ms 48 bytes

Table 2: Benchmarking workload characteristics.

any process. All times are averaged over 10 runs at each process
count.

5.3.1 Bouncing Producer Consumer (BPC). In Figure 7 we can see
the performance of the bouncing producer consumer benchmark
with the SDC and SWS implementations. In terms of overall perfor-
mance, measured by runtime, we see only modest improvement.

Looking at both Fig. 7a and Fig. 7b, we can see that both SDC
and SWS perform similarly at small process counts, with SWS im-
proving as the workload scales out. Since BPC tasks are relatively
coarse-grained, computation dominates execution time, giving sim-
ilar performance. Discovering work at scale requires more steal
attempts, resulting in the benchmark being more sensitive to com-
munication overhead. In Fig. 7c, we see that both systems perform
well at scale, with SWS maintaining a slight edge in efficiency.

When considering small performance gains, we must consider
the variability between independent runs. In Fig. 7d, we look at the
relative standard deviation and range (max time - min time) as a
percentage of the averaged total run time. We see that the relative
standard deviation is flat and consistently under 0.1% for all runs.
Similarly, the relative range shows that the difference between the
fastest and slowest runs is also very small, mostly under 0.2%.

Both Figures 7e and 7f consider load-balancing efficiency. SDC
and SWS have different models of discovering and stealing work
– we treat steal time as time spent performing successful steal op-
erations and search time as time spent looking for work. Failed
steal attempts are treated as searches and successful attempts as
steals. If we consider steal operations in BPC, we can see that the

Figure 7: Performance of the Bouncing Producer-Consumer Benchmark with both SDC and SWS steal-half task queues.

stream generated using the SHA-1 secure hash algorithm. Nodes in
the tree are represented using a 20-byte hash digest – children are
located by composing the digest of the parent node and the identi-
fier of the child. This approach leads to a high degree of variability
in terms of subtree size for a given node. Each tree node corre-
sponds to a task, with a wide range of potential work (searching)
for a given node. The UTS benchmark was configured to perform an
exhaustive search on an unbalanced tree containing 270,751,679,750
nodes (T1WL), with a depth of 18.

5.3 Performance Evaluation
The design of SWS leads us to expect performance gains in several
areas: reduced latency for steal operations, lower overhead from
the load-balancer due to less time spent searching for work, and
improved responsiveness (throughput) at the target. All results are
with steal damping and completion epochs. Timing was done with
TSC-based timers that were calibrated every run. Whole program
timers start after initialization and stop after global termination
is detected. Since processes continue to search for work until it is
globally exhausted, these times represent the maximum runtime of

Benchmark Total Tasks Avg. Task Time Task Size
BPC 2,457,901 5 ms 32 bytes
UTS 270,751,679,750 0.00011 ms 48 bytes

Table 2: Benchmarking workload characteristics.

any process. All times are averaged over 10 runs at each process
count.

5.3.1 Bouncing Producer Consumer (BPC). In Figure 7 we can see
the performance of the bouncing producer consumer benchmark
with the SDC and SWS implementations. In terms of overall perfor-
mance, measured by runtime, we see only modest improvement.

Looking at both Fig. 7a and Fig. 7b, we can see that both SDC
and SWS perform similarly at small process counts, with SWS im-
proving as the workload scales out. Since BPC tasks are relatively
coarse-grained, computation dominates execution time, giving sim-
ilar performance. Discovering work at scale requires more steal
attempts, resulting in the benchmark being more sensitive to com-
munication overhead. In Fig. 7c, we see that both systems perform
well at scale, with SWS maintaining a slight edge in efficiency.

When considering small performance gains, we must consider
the variability between independent runs. In Fig. 7d, we look at the
relative standard deviation and range (max time - min time) as a
percentage of the averaged total run time. We see that the relative
standard deviation is flat and consistently under 0.1% for all runs.
Similarly, the relative range shows that the difference between the
fastest and slowest runs is also very small, mostly under 0.2%.

Both Figures 7e and 7f consider load-balancing efficiency. SDC
and SWS have different models of discovering and stealing work
– we treat steal time as time spent performing successful steal op-
erations and search time as time spent looking for work. Failed
steal attempts are treated as searches and successful attempts as
steals. If we consider steal operations in BPC, we can see that the

Optimizing Work Stealing Communication with Structured Atomic Operations ICPP ’21, August 9–12, 2021, Lemont, IL, USA
Optimizing Work Stealing Communication with Structured Atomic Operations ICPP ’21, August 9–12, 2021, Lemont, IL, USA

48 19
2

38
4

57
6

76
8

96
0

11
52

13
44

15
36

17
28

19
20

21
12

Number of Processes

0

1

2

3

4

5

6

Pe
rfo

rm
an

ce
 (B

illi
on

 ta
sk

s/
se

c) SDC
SWS

(a) Performance of UTS.

48 19
2

38
4

57
6

76
8

96
0

11
52

13
44

15
36

17
28

19
20

21
12

Number of Processes

95.0

97.5

100.0

102.5

105.0

107.5

110.0

112.5

115.0

Pe
fo

rm
an

ce
 a

s %
 o

f b
as

el
in

e SDC
SWS

(b) Relative UTS run-time performance
improvement with SWS over SDC.

48 19
2

38
4

57
6

76
8

96
0

11
52

13
44

15
36

17
28

19
20

21
12

Number of Processes

50

60

70

80

90

100

Ef
fic

ie
nc

y

SDC
SWS

(c) Parallel efficiency of UTS relative to ideal
execution.

48 19
2

38
4

57
6

76
8

96
0

11
52

13
44

15
36

17
28

19
20

21
12

Number of Processes

0.0

0.2

0.4

0.6

0.8

1.0

%
 R

el
at

iv
e

St
an

da
rd

 D
ev

ia
tio

n SDC-SD
SWS-SD
SDC-Range
SWS-Range

0.0

0.2

0.4

0.6

0.8

1.0

%
 R

el
at

iv
e

Ra
ng

e

(d) Variation in UTS runs.

48 19
2

38
4

57
6

76
8

96
0

11
52

13
44

15
36

17
28

19
20

21
12

Number of Processes

5
10
15
20
25
30
35
40
45

st
ea

l t
im

e
(m

s)
SDC
SWS

(e) Steal operation times for UTS.

48 19
2

38
4

57
6

76
8

96
0

11
52

13
44

15
36

17
28

19
20

21
12

Number of Procesors

0

20

40

60

80

se
ar

ch
 ti

m
e

(m
s)

SDC
SWS

(f) Search times for UTS.

Figure 8: Performance of the Unbalanced Tree Search Benchmark with both SDC and SWS steal-half task queues.

optimized communication in SWS contributes to scalability even
with compute-dominated dynamic workloads. In Fig. 7e, we see
that the time spent stealing work remains relatively flat, in contrast
to the growth trend of SDC as the process count increases.

5.3.2 Unbalanced Tree Search (UTS). The UTS benchmark has a
highly irregular workload consisting of a large number of very
short duration tasks. This benchmark is designed to be a challeng-
ing workload for dynamic load balancers. Due to the large number
of tasks spawned and their small lifetimes, UTS is much more sen-
sitive to the performance of both attempted and successful stealing
communication.

The performance characteristics of the UTS benchmark appli-
cation are shown in Figure 8. The SWS implementation shows a
clear performance gain over SDC in terms of task throughput, as
shown in Fig. 8a. This corresponds to a roughly 9% improvement in
overall program runtime as shown in Fig. 8b when comparing SWS
relative to SDC. In Fig. 8c, we see that both systems perform well
at scale, with SWS maintaining a slight edge in parallel efficiency.

Looking at the variability of runs for UTS in Figure 8d, we see
similar results to BPC, with the standard deviation relative to av-
erage runtime under 0.1% and the range (max-min) relative to av-
erage runtime is also small, typically under 0.2%, indicating that
the performance improvement in SWS is significant relative to run
variability.

Figs. 8e and 8f again consider the efficiency of the load-balancing
system. When considering the total time spent stealing work in
UTS, in Fig. 8e, we see that SWS outperforms SDC with lower steal

overhead. This graph shows an improvement in steal times by a
factor of 3-4, reflecting the lower number of communications.

With work discovery in the system, we consider both time spent
searching for and stealing work. The additional communications
needed for the baseline SDC implementation to determine a lack
of work incurs higher overhead when compared with the single
communication test used by SWS. The impact of this can be seen
in Fig. 8f, where SWS shows very low and flat trending search
times across all core counts, as compared with the higher and
upward trend seen with the SDC version. Searching for work is
more efficient in SWS, not only due to fewer communications, but
also the lower volume of communication needed to discover work
(i.e. a single 64-bit word vs. the queue metadata structure).

6 CONCLUSION
Work stealing is a known, effective method of load balancing tasks
in a distributed system. Current high-performance computing trends
are leading to increased programmability and acceleration in the
network. In this paper, we have shown how a compact task queue
representation enables the use of atomic operations to improve a
dynamic work stealing system.

Our implementation reduces the communication needed for
steals by half and has significantly better properties when a target
is contended. This eliminates the need for locking a critical section
and leads to lower steal overheads and a reduction in time spent
looking for work. Further, our approach combines both the work

Figure 8: Performance of the Unbalanced Tree Search Benchmark with both SDC and SWS steal-half task queues.

optimized communication in SWS contributes to scalability even
with compute-dominated dynamic workloads. In Fig. 7e, we see
that the time spent stealing work remains relatively flat, in contrast
to the growth trend of SDC as the process count increases.

5.3.2 Unbalanced Tree Search (UTS). The UTS benchmark has a
highly irregular workload consisting of a large number of very
short duration tasks. This benchmark is designed to be a challeng-
ing workload for dynamic load balancers. Due to the large number
of tasks spawned and their small lifetimes, UTS is much more sen-
sitive to the performance of both attempted and successful stealing
communication.

The performance characteristics of the UTS benchmark appli-
cation are shown in Figure 8. The SWS implementation shows a
clear performance gain over SDC in terms of task throughput, as
shown in Fig. 8a. This corresponds to a roughly 9% improvement in
overall program runtime as shown in Fig. 8b when comparing SWS
relative to SDC. In Fig. 8c, we see that both systems perform well
at scale, with SWS maintaining a slight edge in parallel efficiency.

Looking at the variability of runs for UTS in Figure 8d, we see
similar results to BPC, with the standard deviation relative to av-
erage runtime under 0.1% and the range (max-min) relative to av-
erage runtime is also small, typically under 0.2%, indicating that
the performance improvement in SWS is significant relative to run
variability.

Figs. 8e and 8f again consider the efficiency of the load-balancing
system. When considering the total time spent stealing work in
UTS, in Fig. 8e, we see that SWS outperforms SDC with lower steal

overhead. This graph shows an improvement in steal times by a
factor of 3-4, reflecting the lower number of communications.

With work discovery in the system, we consider both time spent
searching for and stealing work. The additional communications
needed for the baseline SDC implementation to determine a lack
of work incurs higher overhead when compared with the single
communication test used by SWS. The impact of this can be seen
in Fig. 8f, where SWS shows very low and flat trending search
times across all core counts, as compared with the higher and
upward trend seen with the SDC version. Searching for work is
more efficient in SWS, not only due to fewer communications, but
also the lower volume of communication needed to discover work
(i.e. a single 64-bit word vs. the queue metadata structure).

6 CONCLUSION
Work stealing is a known, effective method of load balancing tasks
in a distributed system. Current high-performance computing trends
are leading to increased programmability and acceleration in the
network. In this paper, we have shown how a compact task queue
representation enables the use of atomic operations to improve a
dynamic work stealing system.

Our implementation reduces the communication needed for
steals by half and has significantly better properties when a target
is contended. This eliminates the need for locking a critical section
and leads to lower steal overheads and a reduction in time spent
looking for work. Further, our approach combines both the work
discovery steps and work claiming steps into a single operation,
leading to a reduction in both communication count and volume.

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Hannah Cartier, James Dinan, and D. Brian Larkins

We show that our approach is effective by evaluating two repre-
sentative benchmarks, BPC and UTS. We also provide techniques
for improving asynchrony in queue management operations such
as acquire and release. The introduction of completion epochs al-
lows the queue owner to update the split point without needing to
lock the queue and poll until pending steals complete. More broadly,
we show how carefully partitioning structured data fields into an
atomic-friendly format can lead to both reduced communication
and higher performance.

ACKNOWLEDGMENTS
Initial development of SWS was completed using the cluster sys-
tems at the San Diego Supercomputer Center, with access provided
through the Extreme Science and Engineering Discovery Environ-
ment (XSEDE), which is supported by National Science Foundation
grant number ACI-1053575. This work was also supported by the
National Science Foundation under award 2018758.

REFERENCES
[1] Umut A. Acar, Arthur Chargueraud, and Mike Rainey. 2013. Scheduling Parallel

Programs by Work Stealing with Private Deques. In Proceedings of the 18th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(Shenzhen, China) (PPoPP ’13). ACM, New York, NY, USA, 219–228. https:
//doi.org/10.1145/2442516.2442538

[2] Brian W. Barrett, Ron Brightwell, Ryan E. Grant, Scott Hemmert, Kevin Pedretti,
Kyle Wheeler, Keith Underwood, Rolf Riesen, Arthur B. Maccabe, and Trammell
Hudson. 2017. The Portals 4.1 Network Programming Interface. Technical Report
SAND2017-3825. Sandia National Laboratories.

[3] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion:
Expressing Locality and Independence with Logical Regions. In Proceedings of
the International Conference on High Performance Computing, Networking, Storage
and Analysis (Salt Lake City, Utah) (SC ’12). IEEE Computer Society Press, Los
Alamitos, CA, USA, Article 66, 11 pages. http://dl.acm.org/citation.cfm?id=
2388996.2389086

[4] Guy E. Blelloch and John Greiner. 1996. A Provable Time and Space Efflcient
Implementation of NESL. In Proc. 1st ACM SIGPLAN Intl. Conf. on Functional
Programming (ICFP). Philadelphia, Pennsylvania, 213–225.

[5] Robert D. Blumofe and Charles Leiserson. 1994. Scheduling multithreaded com-
putations by work stealing. In Proc. 35th Symposium on Foundations of Computer
Science (FOCS). 356–368.

[6] Robert D. Blumofe and Philip A. Lisiecki. 1997. Adaptive and reliable paral-
lel computing on networks of workstations. In Proc. USENIX Annual Technical
Conference (ATEC) (Anaheim, California). 10–10.

[7] Ümit V. Çatalyürek, E. G. Boman, K. D. Devine, D. Bozdag, R. Heaphy, and Lee Ann
Riesen. 2007. Hypergraph-based Dynamic Load Balancing for Adaptive Scientific
Computations. In Proc. 21st Intl. Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 1–11. http://dx.doi.org/10.1109/IPDPS.2007.370258

[8] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. 2005. X10: an
object-oriented approach to non-uniform cluster computing. In Proc. Conf. on
Object Oriented Prog. Systems, Languages, and Applications (OOPSLA). 519–538.

[9] Guojing Cong, Sreedhar Kodali, Sriram Krishnamoorty, Doug Lea, Vijay Saraswat,
and Tong Wen. 2008. Solving Irregular Graph Problems Using Adaptive Work-
Stealing. In Proc. 37th Int Conf. on Parallel Processing (ICPP). Portland, OR.

[10] James Dinan, Sriram Krishnamoorthy, D. Brian Larkins, Jarek Nieplocha, and P.
Sadayappan. 2008. Scioto: A Framework for Global-View Task Parallelism. In
Proc. 37th Intl. Conf. on Parallel Processing (ICPP). 586–593.

[11] James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, and Jarek
Nieplocha. 2009. Scalable Work Stealing. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis (Portland, Oregon) (SC
’09). ACM, New York, NY, USA, Article 53, 11 pages. https://doi.org/10.1145/
1654059.1654113

[12] James Dinan, Stephen Olivier, Gerald Sabin, Jan Prins, P. Sadayappan, and Chau-
Wen Tseng. 2008. A message passing benchmark for unbalanced applications.
J. Simulation Modelling Practice and Theory 16, 9 (2008), 1177 – 1189. https:
//doi.org/DOI:10.1016/j.simpat.2008.06.004

[13] Noah Evans, Stephen L. Olivier, Richard Barrett, and George Stelle. 2017. Sched-
uling Chapel Tasks with Qthreads on Manycore: A Tale of Two Schedulers.
In Proc. 7th Intl. Workshop on Runtime and Operating Systems for Supercom-
puters (Washingon, DC, USA) (ROSS ’17). ACM, New York, NY, USA, 4:1–4:8.

https://doi.org/10.1145/3095770.3095774
[14] M. Frigo, C. E. Leiserson, and K. H. Randall. 1998. The Implementation of the

Cilk-5 Multithreaded Language. In Proc. Conf. on Prog. Language Design and
Implementation (PLDI). ACM SIGPLAN, 212–223.

[15] Yi Guo, Rajkishore Barik, Raghavan Raman, and Vivek Sarkar. 2009. Work-First
and Help-First Scheduling Policies for Terminally Strict Parallel Programs. In
Proc. 23rd Intl. Parallel and Distributed Processing Symposium (IPDPS).

[16] Yi Guo, Jisheng Zhao, Vincent Cave, and Vivek Sarkar. 2010. SLAW: A Scalable
Locality-aware Adaptive Work-stealing Scheduler for Multi-core Systems. In
Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (Bangalore, India) (PPoPP ’10). ACM, New York, NY, USA,
341–342. https://doi.org/10.1145/1693453.1693504

[17] Danny Hendler and Nir Shavit. 2002. Non-blocking steal-half work queues. In
Proc. of the 21st Symposium on Principles of Distributed Computing (Monterey,
California) (PODC ’02). ACM, New York, NY, USA, 280–289. https://doi.org/10.
1145/571825.571876

[18] V. Kumar, A. Y. Grama, and N. R. Vempaty. 1994. Scalable Load Balancing
Techniques for Parallel Computers. J. Parallel Distrib. Comput. 22, 1 (1994), 60–79.
https://doi.org/10.1006/jpdc.1994.1070

[19] Vivek Kumar, Karthik Murthy, Vivek Sarkar, and Yili Zheng. 2016. Optimized
Distributed Work-Stealing. 74–77. https://doi.org/10.1109/IA3.2016.019

[20] Yu-Kwong Kwok and Ishfaq Ahmad. 1999. Static scheduling algorithms for
allocating directed task graphs to multiprocessors. Comput. Surveys 31, 4 (1999),
406–471. https://doi.org/10.1145/344588.344618

[21] D. Brian Larkins, John Snyder, and James Dinan. 2019. Accelerated Work Stealing.
In Proceedings of the 48th International Conference on Parallel Processing (Kyoto,
Japan) (ICPP 2019). Association for Computing Machinery, New York, NY, USA,
Article 75, 10 pages. https://doi.org/10.1145/3337821.3337878

[22] T. G. Mattson, R. Cledat, V. Cavé, V. Sarkar, Z. Budimlić, S. Chatterjee, J. Fryman, I.
Ganev, R. Knauerhase, , B. Meister, B. Nickerson, N. Pepperling, B. Seshasayee, S.
Tasirlar, J. Teller, and N. Vrvilo. 2016. The Open Community Runtime: A runtime
system for extreme scale computing. In 2016 IEEE High Performance Extreme
Computing Conference (HPEC). 1–7. https://doi.org/10.1109/HPEC.2016.7761580

[23] Maged M. Michael, Martin T. Vechev, and Vijay A. Saraswat. 2009. Idempotent
work stealing. In Proc. of the 14th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPOPP) (Raleigh, NC, USA). 45–54. http:
//doi.acm.org/10.1145/1504176.1504186

[24] MPI Forum. 2015. MPI: AMessage-Passing Interface Standard Version 3.1. Technical
Report. University of Tennessee, Knoxville.

[25] J. Nieplocha and B. Carpenter. 1999. ARMCI: A Portable Remote Memory
Copy Library for Distributed Array Libraries and Compiler Run-Time Systems.
Lecture Notes in Computer Science 1586 (1999), 533–546. citeseer.ist.psu.edu/
nieplocha99armci.html

[26] NVIDIA Inc. 2021. MLNX_OFED Documentation Rev 5.3-1.0.0.1. https://docs.
mellanox.com/display/MLNXOFEDv461000/Advanced+Transport.

[27] OpenFabrics Alliance 2021. OpenFabrics Interface Application Programming
Interface, Version 1.12.1. https://ofiwg.github.io/libfabric/.

[28] OpenSHMEM Specification Committee 2020. OpenSHMEM Application Pro-
gramming Interface, Version 1.5. http://www.openshmem.org.

[29] Vijay A. Saraswat, Prabhanjan Kambadur, Sreedhar Kodali, David Grove, and
Sriram Krishnamoorthy. 2011. Lifeline-based Global Load Balancing. In Proceed-
ings of the 16th ACM Symposium on Principles and Practice of Parallel Program-
ming (San Antonio, TX, USA) (PPoPP ’11). ACM, New York, NY, USA, 201–212.
https://doi.org/10.1145/1941553.1941582

[30] Amitabh Sinha and Laxmikant V. Kalé. 1993. A Load Balancing Strategy for
Prioritized Execution of Tasks. In Proc. 7th Intl. Parallel Processing Symposium
(IPPS). 230–237.

[31] Olivier Tardieu, HaichuanWang, and Haibo Lin. 2012. AWork-Stealing Scheduler
for X10’s Task Parallelism with Suspension. ACM SIGPLAN Notices 47, 267–276.
https://doi.org/10.1145/2145816.2145850

[32] Aleksandar Trifunović and William J. Knottenbelt. 2008. Parallel multilevel
algorithms for hypergraph partitioning. J. Parallel Distrib. Comput. 68, 5 (2008),
563–581. https://doi.org/10.1016/j.jpdc.2007.11.002

[33] Unified Communication Framework Consortium 2021. Unified Communication
X Application Programming Interface, Version 1.10. https://www.openucx.org/
documentation/.

[34] UPC Consortium. 2013. UPC Language and Library Specifications, v1.3. Technical
Report LBNL-6623E. Lawrence Berkeley National Lab.

[35] Ke Wang, Xiaobing Zhou, Tonglin Li, Dongfang Zhao, Michael Lang, and Ioan
Raicu. 2014. Optimizing Load Balancing and Data-Locality with Data-aware
Scheduling. https://doi.org/10.13140/2.1.4577.8880

[36] Gengbin Zheng, Esteban Meneses, Abhinav Bhatele, and Laxmikant V. Kale. 2010.
Hierarchical Load Balancing for Charm++Applications on Large Supercomputers.
In Proceedings of the 2010 39th International Conference on Parallel Processing
Workshops (ICPPW ’10). IEEE Computer Society, Washington, DC, USA, 436–444.
https://doi.org/10.1109/ICPPW.2010.65

https://doi.org/10.1145/2442516.2442538
https://doi.org/10.1145/2442516.2442538
http://dl.acm.org/citation.cfm?id=2388996.2389086
http://dl.acm.org/citation.cfm?id=2388996.2389086
http://dx.doi.org/10.1109/IPDPS.2007.370258
https://doi.org/10.1145/1654059.1654113
https://doi.org/10.1145/1654059.1654113
https://doi.org/DOI: 10.1016/j.simpat.2008.06.004
https://doi.org/DOI: 10.1016/j.simpat.2008.06.004
https://doi.org/10.1145/3095770.3095774
https://doi.org/10.1145/1693453.1693504
https://doi.org/10.1145/571825.571876
https://doi.org/10.1145/571825.571876
https://doi.org/10.1006/jpdc.1994.1070
https://doi.org/10.1109/IA3.2016.019
https://doi.org/10.1145/344588.344618
https://doi.org/10.1145/3337821.3337878
https://doi.org/10.1109/HPEC.2016.7761580
http://doi.acm.org/10.1145/1504176.1504186
http://doi.acm.org/10.1145/1504176.1504186
citeseer.ist.psu.edu/nieplocha99armci.html
citeseer.ist.psu.edu/nieplocha99armci.html
https://docs.mellanox.com/display/MLNXOFEDv461000/Advanced+Transport
https://docs.mellanox.com/display/MLNXOFEDv461000/Advanced+Transport
https://ofiwg.github.io/libfabric/
http://www.openshmem.org
https://doi.org/10.1145/1941553.1941582
https://doi.org/10.1145/2145816.2145850
https://doi.org/10.1016/j.jpdc.2007.11.002
https://www.openucx.org/documentation/
https://www.openucx.org/documentation/
https://doi.org/10.13140/2.1.4577.8880
https://doi.org/10.1109/ICPPW.2010.65

	Abstract
	1 Introduction
	2 Background
	2.1 Task Execution Model
	2.2 Related Work

	3 Baseline SDC Implementation
	3.1 Implementation

	4 SWS Implementation
	4.1 Implementation
	4.2 Completion Epochs
	4.3 Steal Damping

	5 Experimental Evaluation
	5.1 Performance Baseline
	5.2 Benchmark Applications
	5.3 Performance Evaluation

	6 Conclusion
	Acknowledgments
	References

