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ABSTRACT

Procedural content generation via machine learning (PCGML) is
the process of procedurally generating game content using models
trained on existing game content. PCGML methods can struggle
to capture the true variance present in underlying data with a
single model. In this paper, we investigated the use of ensembles of
Markov chains for procedurally generating Mega Man levels. We
conduct an initial investigation of our approach and evaluate it on
measures of playability and stylistic similarity in comparison to a
non-ensemble, existing Markov chain approach.

CCS CONCEPTS

« Computing methodologies — Ensemble methods.

KEYWORDS

procedural content generation, ensemble methods, markov chains,
mega man

ACM Reference Format:

Bowei Li, Ruohan Chen, Yuqing Xue, Ricky Wang, Wenwen Li, and Matthew
Guzdial. 2021. Ensemble Learning For Mega Man Level Generation. In The
16th International Conference on the Foundations of Digital Games (FDG)
2021 (FDG’21), August 3-6, 2021, Montreal, QC, Canada. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3472538.3472600

1 INTRODUCTION

Procedural content generation via machine learning (PCGML) is
the process of procedurally generating game content using mod-
els trained on existing game content [29]. Although the usage of
machine-learned models in PCGML can reduce the need for hand-
coding design knowledge compared to traditional PCG [29], it in-
troduces new problems. Many PCGML approaches use a single
model that can struggle to capture the variance present in existing
game content [25]. In particular, the high variance of game levels
means that it may be better to model them with an ensemble of
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multiple models. However, popular PCGML approaches like neural
networks that require more training data may not be appropriate
for ensemble methods [13]. PCGML methods already suffer from a
lack of training data, and ensemble methods divide the available
data even further. Furthermore, models like neural networks have
issues such as interpretability and training time [29], making them
not always preferable. We identify an unexplored area of PCGML
research: the usage of an ensemble of multiple simpler, interpretable
models.

The current, common solutions to dealing with high variance in
PCGML still employ a single model. When confronted with high
variance many researchers focus on modeling a sub-problem, for
example training a model to generate subsections of levels [1, 14]
or by employing a more abstract representation [30]. Alternatively,
some researchers have used fitness functions to attempt to guide the
machine learned model’s generation when the available training
data does not allow for sufficient generalization alone [31, 32].
Much of this prior work focuses on Super Mario Bros., which is
itself a relatively simple platformer game, with levels that only
ever progress left-to-right. These existing solutions may not be
appropriate if one seeks to model more complex levels, such as
larger levels that progress along both the x and y dimensions.

In our work, we explore procedurally generating game levels
using an ensemble of simple models. Ensemble Learning combines
multiple learning algorithms/models so that the ensemble can better
capture the distribution of high variance training data [13]. For
this initial exploration of the topic, we trained multiple Markov
chains to learn the structure of levels of the platformer game Mega
Man. Typical ensemble learning approaches train each model on a
random split of their data, but as an initial investigation we focus on
a domain-dependent method meant to better capture the dynamics
of Mega Man levels. We evaluate our approach by comparing it to
an existing, non-ensemble Markov chain approach [21].

The remainder of the paper is organized as follows. First, we
introduce the background on Mega Man game levels as well as
Markov chains. Second, we discuss related prior work. We then
describe our approach for training our ensemble of Markov chains
and how we generate new game levels from this ensemble. We
evaluate the performance of our models on playability, the compu-
tational cost of generating new levels, and the stylistic similarity
between the generated levels and the original game levels, all in
comparison to an existing approach [21]. The paper closes with
conclusions and directions for future work.
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Figure 1: Section of a Mega Man Level
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Figure 2: A Third Order Multidimensional Markov chain

2 BACKGROUND

In this section, we provide some background information about our
game domain Mega Man and Markov chains.

2.1 Mega Man

Mega Man is a platformer game series developed and released by
Capcom [9]. In the original Mega Man, the player takes on the
role of Mega Man, travelling across a land named Monsteropolis,
fighting through enemies and performing various tasks in themed
levels. Figure 1 shows a part of an original Mega Man game level.
The goal of each Mega Man level is to reach the end of the level,
which requires platforming challenges and fighting various enemies.
Notably, in comparison to other “flat” platformer levels like those
from Super Mario Bros., Mega Man levels require significantly more
movement along the y-axis.

2.2 Markov Chains

A Markov chain is a machine learning method for modelling prob-
abilistic transitions between states over time. A Markov chain is
defined as a set of states S = {s1, 52, ..., Sn }, and the conditional prob-
ability distribution (CPD) P(S;|S;-1), representing the probability
of transitioning to a state Sy C S given that the previous state was
St—1 C S [11]. Standard Markov chains restrict the probability dis-
tribution to only take the previous state into account. Higher-order
Markov chains relax this condition by taking into account k prior
states, where k is a finite natural number [19]. The CPD defining
a Markov chain of order k can be written as: P(S¢|S¢—1, .., Sy_)-
That is, P is the conditional probability of transitioning to a state
St, given the states of the Markov chain in the past k states.

A Multidimensional Markov chain (MdMC) is another extension
of higher-order Markov chains that expands the structure of the
model to take into account the surrounding states in a multidimen-
sional graph instead of the past k states as a sequence. In this way,
the model can capture relations and dependencies more easily from
2D training data such as video game levels. In this work, we base

our models on a third-order MAMC structure introduced by Snod-
grass and Ontafén due to its simplicity [18], which we visualize in
Figure 2. The CPD defining this particular MAMC can be written
as P(St.r|St=1,r, St,r—1, St—1,r—1), where each state depends on the
states to the left, below, and to the left and below in a 2D grid.

3 RELATED WORK

In this section, we introduce prior work on Procedural Content
Generation via Machine Learning (PCGML), focused on approaches
employing probabilistic graphical models and ensemble methods.

Procedural Content Generation via Machine Learning (PCGML)
is the generation of game content by machine-learned models that
have been trained on existing game content [29]. There are a large
number of PCGML approaches such as using n-grams [4], autoen-
coders [8], Long Short-Term Memory recurrent neural networks
(LSTMs) [27], reinforcement learning [10], and so on. In this paper
we focus on probabilistic graphical models, such as Markov chains
and Bayesian Networks. Guzdial and Riedl [6] trained a Bayesian
Network to generate Super Mario Bros. levels from gameplay videos.
Summerville et al. [26] investigated the use of a data-driven level
generation approach using Bayesian Networks on Zelda dungeons.
We employ a Markov Chain over a Bayesian Network, as they rep-
resent simpler models that require less training data, and so are
more suited to ensemble methods.

Markov chains have been a common method for PCGML since
its inception [18]. Much of this prior work has focused on Super
Mario Bros. level generation, a common area of PCGML research
[18, 20, 21, 28]. However, Markov chains have also been applied
to games outside of Super Mario Bros. and outside the platformer
genre [34]. Of particular relevance to our paper is the work of
Snodgrass and Ontafnoén, who first applied Markov chains to PCG
[18]. They trained hierarchical Markov chains on Super Mario Bros.
levels, on both low-level tiles and high-level tiles [20, 21]. Although
this approach performed well on games with linear levels such
as Super Mario Bros., the authors stated it needed to be expanded
to be able to handle games with nonlinear levels that progress in
multiple directions such as Mega Man or Metroid [20]. Our work
was partially inspired by theirs, and we also employed a resampling
technique similar to theirs [22] to process the content generated
by our model. Our approach differs from theirs in that we use
an ensemble of different Markov chains based on the concept of
game paths to better capture both horizontal and vertical patterns.
Snodgrass and Ontaiion developed multi-layered representation of
game levels to generate levels for Super Mario Bros., which employed
multidimensional Markov chains [24]. They took the player path



Ensemble Learning For Mega Man Level Generation

into consideration in this work. We employ the concept of a “game
path”, which is distinct, as the player path describes the movement
of the player through the level, whereas our game path represents
the way a level itself moves along the horizontal and vertical axes.

Mega Man has had significantly fewer PCGML approaches ap-
plied to it in comparison to Super Mario Bros.. Some prior work has
modeled Mega Man with machine learning without generating new
Mega Man content [7, 12]. Sarkar et al. have modeled Mega Man
levels along with levels from a large number of other games with
Variational Autoencoders (VAEs) for the purpose of recombining
this content to create entirely new types of content [14-17, 33]. We
instead focus on the problem of generating levels that resemble
those from the original Mega Man. Recently, Capps and Schrum
employed Generative Adversarial Networks (GANs) to model Mega
Man levels and modeled the direction of subsections of levels in a
similar manner to our approach [2]. However, their output levels
did not resemble the original Mega Man levels in terms of shape, and
the GANs they used were much more complex models than ours.
We demonstrate that our approach closely models original, unseen
Mega Man content, and outperforms an existing PCGML platformer
level generation model, all with a much simpler approach.

To the best of our knowledge, the only prior PCGML work that
has incorporated ensemble learning has been work that employs
a Random Forest (RF). However, all prior instances that have em-
ployed RFs have done so for a secondary classification task, and
not for the primary generation task [5, 14, 17]. As such, our work
stands out as the first PCGML approach to employ an ensemble of
simple models for the primary generation task.

4 APPROACH

In this section, we introduce our ensemble learning approach to
train Markov chains to generate levels for the game Mega Man.
Ensemble Learning combines multiple, simple learning models to
achieve better performance and accuracy than could be obtained
from a single model alone [13]. Typically, one might randomly di-
vide the training data into different buckets for each constituent
model. In this case, as an initial exploration of this approach, we
split the training data based on domain-specific knowledge. We
employed three models in our approach. The first one is a first-order
Markov chain for learning the high-level structure of the levels,
which we call the “game path”. To model the low level content
of levels we divided all the existing levels into fixed-sized rooms
and assigned them one of two types: horizontal and vertical. Our
second and third models are multidimensional Markov chains, one
for the horizontal room type and one for the vertical room type.
We combine the rooms generated by our multidimensional Markov
chains according to the high-level structure generated by the sim-
ple Markov chain to form a generated level. Our goal is to train
models that can generate high-quality Mega Man levels, and we
hypothesize that we can achieve higher quality output levels with
this approach, as opposed to attempting to model the problem with
a single model. This may seem counterintuitive, as with more data
a machine learning model will often generalize more effectively.
However, in the case of Mega Man, which includes very different
level structure in vertical or horizontal rooms, we anticipate that
ensemble methods can be beneficial.

FDG’21, August 3-6, 2021, Montreal, QC, Canada

4.1 Data

Our training data consists of the 10 Mega Man game levels from
the Video Game Level Corpus (VGLC) [30]. The VGLC is an online
collection of video game levels represented in an easy to parse
format for PCGML and other game Al research purposes [30]. Figure
3 shows a part of an original game level from Mega Man and the
corresponding input text data after conversion. Each symbol in our
input text file corresponds to a tile in the original level. For instance,
the above figure shows that the symbol ‘#’ corresponds to a solid
tile, a ‘I’ corresponds to a ladder tile, a -’ corresponds to an empty
tile, and so on. There are in total 18 different types of such tiles in
Mega Man, for full details please see the original VGLC paper [30].

4.2 Categorizing Rooms

Unlike Super Mario Bros., games with levels like Mega Man require
players to progress both horizontally and vertically [3]. To dif-
ferentiate between different subsections of levels that require the
player to progress in different dimensions, we employ the concept
of rooms. We identify two types, horizontal rooms and vertical
rooms, to represent these sections based on their features. In order
to travel through a level in Mega Man, the player needs to follow
a fixed path of rooms. We can thus identify how the player is ex-
pected to enter and exit these rooms. We refer to each room with a
left entrance and right exit as a horizontal room, and rooms with at
least one entrance or exit in the up or down direction as a vertical
room. In Mega Man, the player begins in one of the leftmost rooms
and ends up in one of the rightmost rooms, thus horizontal rooms
always contain path segments going from left to right, not right to
left.

Our training process first converts a given level into rooms to
capture the high-level structure of the level. We divide Mega Man
levels into 16*15 tile chunks, where 16 is the width, and 15 is the
height of the chunk. We choose this specific size because most Mega
Man levels from the VGLC can be divided into 16*15 tile chunks
evenly. Since we have the sequence of rooms for each input level,
we are then able to label each chunk as a horizontal (H) or vertical
(V) room. The picture at the top left corner in Figure 4 shows an
example of such a conversion, where the red arrow denotes the
game path and the yellow and green outlines denote vertical and
horizontal rooms respectively. Additionally, we define non-playable
areas that the player cannot enter as null rooms. We do not model
these rooms explicitly, but we indirectly model them as the regions
the game path does not travel through.

4.3 Learning High-level Level Structure

We require some way to model each level as a sequences of rooms
for the purpose of generating new sequences. We employ a simple,
linear Markov chain to model these sequences. Since every level
of Mega Man allows only one valid sequence of rooms that the
player must follow to complete it, we can extract a one-dimensional
sequence for each level. The rooms are labelled as horizontal or
vertical. Figure 4 shows an example of this process.

We employ a simple Markov chain to learn the probabilistic
distribution of room sequences over our training set of levels. We
define the Markov chain as the probability of a certain type of
room in the level given the prior room type. The prior room here
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Figure 3: Left: An Original Mega Man Level, Right: The Level Converted To Text Format From VGLC [30]
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Figure 4: (1): Categorizing rooms. Yellow outline: vertical room; Green outline: horizontal room; Black: non-playable room.
Red arrow: game path. (2): Learning high-level structure using simple Markov chains for the game path/room sequence. (3):
Learning low-level structure within the rooms using room-specific Markov chains.

means the last room that the path for this level passed through
before passing through the current room. The CPD is defined as
P(Room;|Room;_1), where Room; represents the ith room in the
room sequence. The trained Markov chain can then generate new
room sequences of given lengths. Once we have a generated room
sequence, our ensemble of models can generate the content of each
individual room.

4.4 Learning Room Structure

To model room structure we employed a variant of the multidi-
mensional Markov chain from Snodgrass and Ontanén [20]. They

defined the nodes of the network to be the probability of a cer-
tain type of tile in the level given the tiles to its immediate left,
bottom and bottom left. In order to improve the performance of
the L-shaped Markov chain in accurately learning the probabilistic
distribution within a room, we trained two separate models, one for
horizontal rooms and one for vertical rooms. This left us with an
ensemble of these two models for the Mega Man room generation
task.

We added an extra direction node to the original Snodgrass and
Ontanén model [20]. Unlike other nodes representing local tiles
in the L-shaped Markov chain, the direction node represents the
direction to the next room, which is also the direction that the
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Figure 5: The visualization of the new CPD of S; j, with D
being the direction node

player needs to travel in the current room. Figure 5 shows a visu-
alization of the model that is defined by the CPD of the tile s; j,
P(si,jlsi-1,j» Si,j—1, Si-1,j—1, D), where D is the direction node. Since
the player always passes a horizontal room from left to right, the
value of D is always “right” for horizontal rooms, indicating the
next room is to the right of the current horizontal room. For vertical
rooms, the value of D can be either “up”, “down” or “right” depend-
ing on the relative position of the next room. Without the direction
node, the model could fail to capture specific room structure. For
example in Mega Man, the next room being above the current room
usually leads to a higher probability of the room having climbable
ladders, while the next room being below the current room does
not, as the player can simply fall to move down. After training on
the two different room types separately, we learned two modified
multidimensional Markov chains that could each model the corre-
sponding room behavior more accurately than training one such
model on both room types, as we will demonstrate below. Note
that the use of the direction node can be seen as further dividing
the model for learning vertical rooms into several sub-models that
each learn a specific type of vertical rooms (e.g. the vertical rooms
with path from top to bottom, from bottom to top, from left to top,
and so on). Figure 4 shows an example of using such a modified
L-shaped Markov chain to learn the low-level structure within a
vertical room.

4.5 Generation

When generating a level, we first produce a room sequence using
our high-level model. After randomly choosing the type for the first
room in the sequence (either horizontal or vertical), we use the sim-
ple Markov chain to probabilistically generate the next room given
the previous one until we reach a sequence of a given length. After
we produce the room sequence, we build the corresponding level
structure. Our model first creates a coordinate plane with the first
room in the room sequence at the origin point. Every subsequent
room in the room sequence is assigned a coordinate according to
the room type and the locations of the adjacent rooms. For example,
assuming that the first room in the room sequence is a vertical
room at the origin point (0, 0), a subsequent horizontal room will
be plotted at (1,0), while a subsequent vertical room can be placed
at either (0,—1) or (0,1) depending on the randomly generated
direction (moving upwards or downwards). The coordinate plane

JH]
on @y ey |6y @y | 61| 61) | (7| 61| (9,1) |@0,1)

H H H A% Null Null v Null Null v Null
(0,0) | (1,0) | (2.0) | 3,0) | (4,0) | (5,0) | (6,0) | (7,0) | (8,0) | (9,0) [ (10,0)

Null Null Null Null Null Null W H H v Null
0,-v|a,-n | -n]e-v|w-n|e-v|e-nfE=DjE=0]o - |w.-1

Figure 6: Top: The Generated Coordinate Plane; Bottom: The
Generated Incomplete Level

can then be converted to an empty level consisting of several, ini-
tially empty rooms. Any “room” not on the path is considered a
null room, and is left blank. Figure 6 shows the coordinate plane
and an empty level corresponding to room sequence:

HHHVVHHVVVHHVVVH

After producing the level structure, we then fill the empty rooms
with content generated by our two modified L-Shaped Markov
Chains based on their type. When generating rooms, our model
generates a new room one tile at a time starting from the bottom
left corner. It first generates the bottom row, followed by the row
above it, and so on. It keeps generating rows until there are 15
rows (15 is the height of each room). Tiles that are generated by
our method are selected probabilistically, based on the learned
probability distribution. Note that while the process of generating
a horizontal room is the same as that of generating a vertical room,
the two generation processes are based on different probability
distributions generated by two different L-shaped Markov chains.
If we encounter a combination of previous tiles that were not seen
during training, we put an empty tile in that position for simplicity.
Rooms labelled as null are non-playable and are filled with null
tiles.

We integrate a resampling method that guarantees an accessi-
ble path between the border of adjacent rooms when generating a
level. The method takes two rooms along with their relative posi-
tions as inputs. With the relative positions specified, our method
checks if the joint between the two rooms is open. For example, if
the next room is on the right side of the current room, our resam-
pling method will determine whether the path that connects the
rightmost column of the current room and the leftmost column of
the next room is blocked or not. If it is blocked, the program will
generate a new room until the path is no longer blocked.

5 EVALUATION

In this section, we describe the evaluation of our approach in com-
parison to two baselines. The evaluations are based on the following
five metrics: layout playability, overall playability, necessary resam-
pling, layout similarity, and inverse content similarity. We describe
these in more detail below.
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5.1 Experimental Setup

For our experiments, we used nine levels from Mega Man to train
our models, with one level withheld as a test level. In order to
evaluate each approach, we generated 50 levels with 12 playable
rooms each for our approach and our two baselines. We evaluated
them using these metrics:

o Layout Playability: the percentage of playable room layouts
or game paths. Note that we are evaluating the high-level
layout of rooms without considering the structure within
each room when evaluating the layout playability. Every
room is viewed as a high-level tile in a layout. If there exists
a path that goes from the starting room to the ending room
without any null rooms breaking the path, then the layout
is playable. In a room sequence, the starting room and the
ending room are automatically defined as the first and last
rooms in the sequence. In a room layout generated by our
baselines, we manually define the starting room and end-
ing room as a leftmost and rightmost room respectively. We
choose the layout playability as one of our metrics because
in our approach, the high-level structure and the low-level
structure are learned separately using different models. A
higher layout playability indicates a better performance of
our high-level model in generating coherent high-level struc-
ture of levels.

o Overall Playability: the percentage of 50 generated levels that
are playable. To decide whether the whole generated level
is playable, we implemented an A* agent specially designed
for tile-based Mega Man levels to find paths through the
levels. We approximated the Mega Man-specific max jump
height and width from the annotated player path information
provided by the VGLC Mega Man level data [30]. This jump
information was then used by our A* agent to simulate jumps
in the tile representation. If the A* agent finds a path for a
level, then we conclude that this level is playable. However,
the A* agent sometimes will fail to find a path even for some
playable levels. This happens under a few circumstances,
such as the player encountering some unavoidable traps
on the optimal path that reduce the player’s health, or the
player needing to pass through a room with the help of some
movable objects. The A* agent will stop at the traps and end
up failing to find another path, and since the level generated
by our model is static, the A* agent cannot take advantage
of the movable objects as in the original game. Therefore,
the number of playable levels given by our A* agent should
be understood as a lower bound. We choose to measure the
overall playability of our generated levels because this could
help us understand how our three Markov models perform
at generating coherent levels in comparison to our baselines.

o Necessary Resampling: We count the average number of times

the generated levels for each level needed to resample rooms.

We prefer a lower number for this metric since resampling

requires extra computation power, and a smaller number

indicates a better performance of our models in generating
coherent levels.

Layout Similarity: We measure the probabilistic similarity be-

tween room sequence model and the layout of the withheld

Li et al.

test level. Since the test level was one used in the original
video game, we assume that its layout has suitable complex-
ity and represents desired structure for generated levels. We
calculate the probability of our high-level model generating
the layout of the test level to evaluate the similarity between
the layouts. The similarity between the layouts of our gener-
ated levels and the test level can be a good indicator of how
complex the layouts of our generated levels are, so we prefer
a higher value for this metric.

Inverse Content Similarity: We measure the stylistic similarity
between the content of rooms generated by our room-level
models and the content of rooms from the test level we
chose. As above, we assume the rooms from the test level
have suitable complexity and desired structure. The way we
evaluate this similarity is as follows: when we evaluate the
inverse content similarity of our room-level models, we train
a second ensemble using the rooms from the test level as the
training data. We then compare the conditional probabilistic
distribution (CPD) of our existing models with the CPD of
the new models that reflects the tile distribution patterns in
the test level. For example, when we evaluate an L-shaped
model, we get the total difference between these two CPDs
by measuring the sum of squared difference

Z(P(si,jlsi—l,j, Si,j—1, Si=1,j=1) = P’ (5 j18i=1,j» 81, j—1, Si=1,j-1) )

ij

~

where s; j denotes one type of tile, P(s;, j|si—1,j, Si, j—1, Si—1,j-1)
is the probability of generating a tile of the type s; ; given
three other tile types (si—1,j, Si,j1, Si—1,j—1) using our L-shaped
model, and P’ is the probability distribution in the test level.
For each combination of three tile types (s;-1,j, Si,j—1, Si-1,j-1)
in the test level, we find all possible next tile types s; j and
the corresponding conditional probabilities both in the test
level and in our L-shaped models, and calculate the sum
of squared differences between the probabilities. After cal-
culating the squared sum of differences, we also calculate
the mean difference by dividing the total difference by the
total number of entries in the conditional probability table.
Because we want the content generated by our model to be
similar to the content of the test level, we prefer a lower
difference for our models.

compare our approach with these two baselines:

Simple Hierarchical Markov Chains (MCs) This approach was
previously introduced by Snodgrass and Ontafién [20]. By
setting it as a baseline and comparing our approach to it
on the metrics we chose, we can determine whether using
this single Markov chain is sufficient for achieving high
quality output levels, and specifically how it compares to
our ensemble approach.

Our Simplified Approach This baseline is a simplified version
of our approach. The difference here is that we employ a
single L-shaped Markov chain with the directional node as
seen in Figure 5, trained on all available room data. Since this
baseline shares the same way of modeling the high-level,
room layout structure with our approach, we can gain a
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more direct view of whether ensemble learning has an im-
pact on the overall playability and stylistic similarity of the
generated levels. One might naively assume this approach
should outperform our ensemble, since it will have much
more data to train on, and can therefore theoretically gener-
alize more effectively. Thus it is an important baseline for
demonstrating the benefits of our approach.

6 RESULTS

Table 1 shows the average or percentile values of our metrics over
the 50 generated levels from each approach. As we can see from
the first row in the table, when generating layouts of levels, our
approach outperforms the Simple Hierarchical MCs used by Snod-
grass and Ontafién [20]. Only 62% of the layouts generated by the
L-shaped Markov chain are playable, since some misplaced null
rooms (non-playable areas) often block the path from source room
to destination room. On the other hand, over 95% of the layouts
generated by the simple Markov chain method used by our ap-
proach are playable. That is because the room sequences that we
used to represent the layout only consist of playable rooms. The
high-level structure constructed from the room sequences and our
assembling approach is more likely to be playable compared to the
structure generated by the L-shaped Markov chain. Notice that Our
Approach, Our Simplified Approach both used the simple Markov
chain for layout generation, so the difference between these two
results in layout playability is due to random chance.

The second row in Table 1 shows the overall playability of the
levels generated by the three approaches. As we can see, generating
playable levels is much harder than generating playable layouts as
we take the content of each room into consideration. Only 6% of
the levels generated by the Simple Hierarchical MCs are playable.
The performance of this approach was once again affected by the
misplaced null rooms, which led to levels with rooms that were dis-
connected from one another. Our approach generates a higher num-
ber of playable levels compared to our simplified approach, which
can only be attributed to our use of ensemble learning. Despite
Our Simplified Approach having more training data by training
one model on all available rooms, it performed worse at generating
coherent rooms. We expect this is due to the fact that horizontal and
vertical rooms have significantly different content, which means
that modeling them separately leads to better performance than
attempting to generalize between them. However, Our Simplified
Approach also outperformed the Simple Hierarchical MC, which
we attribute in part to the direction node. For example, a room is
more likely to have a higher number of climbable objects such as
ladders if the player is supposed to travel up to proceed to the next
room, i.e. if the next room is at the top of the current room. On the
other hand, if the next room is below the current room, then the
current room is less likely to have a row of spikes or traps at the
bottom of the room. By adding the direction node, our models are
better able to capture these behaviors and therefore able to generate
more playable levels.

The third row in Table 1 shows the average number of room
resamplings needed for generating a level for each of the three
approaches. Note that the resampling was done before the playabil-
ity check. A high number indicates a model has less probability of
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generating coherent rooms, and we can clearly see that the Simple
Hierarchical MC approach requires more resampling than the other
two approaches. That is mainly because the misplaced null rooms
in the layout generated by the L-shaped Markov chain often makes
it impossible to proceed in the level, leading to continuous resam-
pling. In this case, we had to include 70 as a maximum number of
resampling, and just conclude that the levels were unplayable. Our
Approach again yields a better result than Our Simplified Approach,
which indicates the benefits of ensemble learning to split up the
task of room generation.

The last row in Table 1 shows the stylistic similarity between
the level layouts generated by our high-level models and the layout
of the test level we chose. Note that the Simple Hierarchical MC
approach used the L-shaped Markov chain to model the entire
tile layout, whereas Our Simplified Approach and Our Approach
both used the higher-level, simple Markov chain to model the room
layout structure. The L-shaped Markov chain has a very low chance
(<0.1%) of generating the same layout structure as the test level.
In contrast, the simple Markov chain did a better job of learning
and reproducing the same layout structure, having a chance of 2.4%
in generating the layout of the test level. We attribute this low
number to the large number of layouts that can be generated by our
approach. However, the fact that it is above the Simple Hierarchical
MC likely indicates that more of the generated layouts are similar
to those from the original Mega Man levels.

Table 2 shows the stylistic similarity between the content within
rooms from the test level and the content within rooms generated
by Our Simplified Approach and Our Approach. As we mentioned
above, we evaluate the inverse content similarity by measuring the
difference between the conditional probability distribution (CPD) of
our low-level models and the CPD of tiles in the test level. The total
difference is the sum of squared differences between all entries from
the two conditional probability tables. Each entry in the conditional
probability table is the probability of observing a certain type of
tile given three other surrounding tile types. We divide the total
difference by the number of entries to get the mean difference
between the two CPDs. The mean difference is therefore a good
indicator of the difference between the CPD of our low-level models
and the CPD of tiles in the test level. When the difference is smaller,
a learned model is more likely to generate the same content within
each room as in the test level. We prefer smaller differences and
therefore greater similarity to indicate our models have a good
coverage of Mega Man structure. As we can see from the table,
our approach is more capable of capturing room structure as the
differences are smaller. Thus we can confirm that training multiple
models led to better coverage of the structures of different types of
rooms in comparison to training one model on all available rooms.

7 DISCUSSION

From the above observations, the simple Markov chain we used
has outperformed the L-shaped Markov chain in learning and gen-
erating sequences of rooms, and our approach also outperformed
our simplified approach in learning and generating complex room
content that is similar to the content in the original game Mega
Man. Therefore, we can conclude that our approach did an overall
better job than the other two baselines in producing content that
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Table 1: Results of the Three Approaches

Simple Hierarchical MC  Our Simplified Approach Our Approach

Layout Playability 62.0%
Overall Playability 6.0%
Necessary Resampling  58.2
Layout Similarity <0.1%

96.0% 98.0%
16.0% 32.0%
10.4 6.6
2.4% 2.4%

Table 2: Comparison of Inverse Content Similarity of the Two Low-Level Models

Our Simplified Approach  Our Approach

Total Difference  0.867148
Mean Difference  0.003496

0.145836
0.000343

i
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Figure 7: An output level generated by our approach

is more stylistically similar to the original game levels. In Table 1,
we also observed that our approach has a higher probability of
generating playable content with less cost from resampling than
the other two baselines. We conclude that by using an ensemble
of multiple models, our approach has done an overall better job in
generating Mega Man game levels. We would recommend employ-
ing an ensemble of models for PCGML tasks that involve modeling
content with a high degree of variance, where that variance can be
reduced by splitting up the available training data.

The base learners in our ensemble, which are the three different
Markov chains, are all simple Markov chain models. Snodgrass and
Ontafién later introduced more complex multidimensional Markov
chains [24] and Markov Random Fields [23] on level generation for
Super Mario Bros., Kid Icarus, and Loderunner. We avoided these
more complex models as part of our initial investigation into en-
semble learning for PCGML, but we hope to explore them in future
work.

Figure 7 shows an output level from our approach. The player
enters the level from the room at the bottom left corner and exits
on the rightmost room of the level. This level was playable by our
A* pathfinding agent. However, we can see that it still has a number
of issues. For example, there is level content that the player would
be cut off from, as in the fourth, upper rightmost room. while the
level is not equivalent to a human-authored Mega Man level, it
does contain interesting structure, and employs more tile types
than just the basic solid and empty background tiles, which we
think compares favorably with prior work employing deep neural
networks for generating Mega Man levels [2].

8 CONCLUSION

We explored the use of ensemble learning on video game level gen-
eration using a combination of multiple Markov chains. By dividing
game levels into rooms and categorizing them using the concept of
game paths, we were able to use a simple Markov chain to learn the
high-level structure of levels and generate room sequences, leading
to high layout playability. Based on the categorization, we trained
multiple multidimensional Markov chains, one for each type of
room, to better capture low-level structure of Mega Man game lev-
els. The use of ensemble learning outperformed an existing Markov
method, and a variation of our approach without ensemble learning.
We encourage future PCGML researchers to employ ensembles of
models to better model high variance game content.
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