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ABSTRACT
Given the rapidly evolving nature of social media and people’s
views, word usage changes over time. Consequently, the perfor-
mance of a classifier trained on old textual data can drop dramati-
cally when tested on newer data. While research in stance classi-
fication has advanced in recent years, no effort has been invested
in making these classifiers have persistent performance over time.
To study this phenomenon we introduce two novel large-scale,
longitudinal stance datasets. We then evaluate the performance
persistence of stance classifiers over time and demonstrate how
it decays as the temporal gap between training and testing data
increases. We propose a novel approach to mitigate this perfor-
mance drop, which is based on temporal adaptation of the word
embeddings used for training the stance classifier. This enables us
to make use of readily available unlabelled data from the current
time period instead of expensive annotation efforts. We propose
and compare several approaches to embedding adaptation and find
that the Incremental Temporal Alignment (ITA) model leads to the
best results in reducing performance drop over time.
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1 INTRODUCTION
Word meanings drift over time, with new words emerging, words
adopting new senses and the frequency of word usage varying.
Vocabulary and usage patterns in social media evolve rapidly [9],
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and people’s views change over time [2, 10]. This can have an
impact on stance classification in social media as the data used
for training may not generalise well to future data with different
patterns. Previous research has either assumed that a classifier
trained on static, temporally-restricted data would suffice to track
public opinion over time [4], or focused on short time periods,
analysing stance on trending topics such as Brexit, death penalty or
climate change [19, 26]. Our work contributes to research in stance
classification by focusing on the impact of a hitherto overlooked
aspect: time.

A recent study by Florio et al. [6] demonstrated that social me-
dia hate speech detection models do not perform well on newer
data when simply trained on older data. Despite highlighting the
existence of this problem, their work did not propose any solutions
to the problem. Here we show that this problem is not exclusive
to hate speech detection and that it also impacts the performance
of social media stance classifiers [1]. We collect two longitudinal
stance detection datasets that we use for the classifier performance
evaluation over time (Section 4). In our experiments we reproduce
a real world scenario in which training data remains unchanged
while new testing data is generated over years. Our findings indi-
cate that a regular stance classifier can drop up to 18% in relative
performance in only five years (Sections 6, 7). We then propose
novel methodology that makes a social media stance classifier more
robust when applied to data that is temporally distant from the
training data, which would in turn enable improved tracking of
public opinion.

While one can choose the costly option of annotating new stance
data regularly to re-train a classifier, here we investigate the sce-
nario where one needs to make the most of the originally labelled
data, e.g. due to limited resources. Hence we propose to use tem-
porally adapted word embeddings, to re-train the classifier on the
unchanged training data. This approach adapts the model to the
vocabulary changes that happened over time while making use
of readily available unlabelled data. We compare two types of ap-
proaches to update the word embeddigns: (1) incrementally up-
dating the same embedding model with new unlabelled data over
time and (2) creating a temporally contextualised embedding for
the testing year by incrementally aligning a new embedding with
preceding embedding models over time. We find that the second ap-
proach is more successful at mitigating the performance drop over
time. We can obtain improved performance with a substantially
reduced performance drop of up to 5%.
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2 RELATEDWORK
Stance classification. There is a body of work on target-specific
stance classification [20, 27] aiming to determine a user’s support-
ing or opposing view towards a target. This research generally
focused on a specific target [14] and investigated as a static prob-
lem, looking at datasets that cover limited periods of time without
paying attention at the impact of time. Others have looked at the
problem of dealing with new targets on cross-target stance classi-
fication [29], i.e. having training data associated with a particular
target (e.g. Donald Trump), exploring the possibility of adapting
the classifier to new targets (e.g. Joe Biden). Our research differs
from this body of work in that we aim to (1) investigate the impact
of time in stance classification for a particular target, and to (2)
propose a model that makes this longitudinal tracking of stance
more robust to changes in opinion [8, 25] and language [3], and
hence more stable in performance. A line of research in stance
identification has looked at the evolving nature of stance in rumour
conversations [15, 31], however this work focuses on stance ex-
changes in temporally brief conversations, rather than longitudinal
persistence of models.

Temporal persistence of classifiers. Previous research has
shown that classifiers trained on old data can drop in performance
when tested on new data, as is the case with Amazon reviews
[16] or hate speech detection [6]. Works by Rocha et al. [24] and
Nishida and Hoshide [21] also find that the temporal gap between
training and test data has a big impact on the performance of a
classification model. Work by Nishida and Hoshide [21] proposed
a multinomial naive Bayes classifier which switches between two
probability estimates based on changes in word frequencies. Simi-
larly, Preoţiuc-Pietro and Cohn [22] model periodic distributions
of words over time for the hashtag prediction task using Gaussian
Processes. Previous work however assumes that new labelled data
is available over time, and therefore the classifier can be adapted
using new labelled instances progressively; in our work we assume
the realistic scenario where we have a labelled dataset pertaining
to a period of time, and access to new labelled data for subsequent
periods of time is not affordable. We tackle this problem by us-
ing word embeddings, which have been used in previous work for
capturing semantic shift [11, 28, 30] (i.e. determining whether a
word has changed its meaning over time), but there is a dearth of
research exploring the use of embeddings to achieve persistence of
classifiers.

3 TASK DEFINITION
We define the stance classification task as identifying the attitude
of the author of a post towards a certain topic as either support-
ing or opposing. Our task in this paper is to maximise the perfor-
mance of a stance classifier when tested on the new data, which is
several years apart from the training data, i.e. make the classifier
persistent in time. Our proposed approach is based on adapting
the word embeddings used to train the classifier, and thus we refer
to is as adaptive stance classification. To study this we use (1) a
longitudinal, unlabelled dataset 𝐷 , divided into𝑇 equally sized
temporal slices where D = {𝐷1, 𝐷2, . . . , 𝐷𝑇 }, and (2) a longitu-
dinal, labelled dataset of annotated stance tweets representing

Source Target Labels
Train. Eval. Test. % Support % Oppose

GE. 35100 3900 9000 76.9% 23.1%
H. 22500 2500 5040 53.6% 46.4%

Table 1: Dataset statistics for Gender Equality (GE) and
Healthcare (H) per year. Tweet counts for source and tar-
get for each year. Originally collected tweets were downsam-
pled to the same number of supporting and opposing tweets
per year.

temporal utterances from a particular domain (e.g., gender equal-
ity, healthcare) with a corresponding set of binary stance labels
𝑠 ∈ {𝑠𝑢𝑝𝑝𝑜𝑟𝑡, 𝑜𝑝𝑝𝑜𝑠𝑒} spanning 𝑇 years, 𝑌 = {𝑦1, ..., 𝑦𝑇 }, where 𝑦𝑡
is a set of tweets from year 𝑡 . We use the unlabelled data to generate
a sequence of temporal embeddings X = {𝑋1, 𝑋2, . . . , 𝑋𝑇 }, where
each 𝑋𝑡 , 𝑡 ∈ [1,𝑇 ] contains vector representations of words gener-
ated using the temporal slice 𝐷𝑡 representing the ground truth of
temporal representation at time 𝑡 . We assess the persistence of a
classifier performance by training on data from one of the years
𝑦𝑖 , where 𝑖 ∈ {1, ..., 𝑡 − 1} and testing it on each of the subsequent
years 𝑦 𝑗 , where 𝑗 ∈ {𝑡 + 1, ...,𝑇 }. Our objective is to update the
representation so as to adapt it to the vocabulary change and to
maximise persistence in stance classification for any pair 𝑦𝑖 and 𝑦 𝑗 .

4 DATA
Weuse two types of datasets for our work: (1) labelled datasets, to as-
sess stance detection models, and (2) larger unlabelled datasets, for
building temporal word embedding models. Both types of datasets
cover the same time period, enabling experiments on stance over
time (labelled) by incrementally adapting word embeddings (unla-
belled).

Figure 1: Jaccard similarity between vocabularies for test
sets of our annotated data collections.

4.1 Labelled Datasets
Due to the lack of large-scale temporally annotated datasets for
stance classification, we collected new datasets. To enable collection
of labelled datasets with sufficient data for each of the years under
study, we opted for retrieving distantly supervised datasets, in this
case for a six-year time period from 2014 to 2019. The data collection
is based on predominantly supporting or opposing hashtags.
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Figure 2: Our adaptive stance classificationmodels. DTE represents the baseline, static classifier. The other four are temporally
evolving classifiers: 2TA and 2TE only consider source and target periods tomodel the evolution, whereas ITA and ITE consider
all the periods between the source and the target.

Distant supervision became popular for collection of social me-
dia datasets labelled for sentiment [7] and has more recently been
extended to other tasks, including stance classification [13, 20]. Dis-
tant supervision consists of defining a set of keywords (e.g. hash-
tags) which serve as a proxy to data labels, subsequently removing
these keywords from the resulting dataset and leaving the rest of
the text of the posts. We collected two Twitter stance datasets by us-
ing hashtags1 spanning the same time period (2014-2019): (1) with
hashtags supporting and opposing Gender Equality, involving
issues such as feminism and gender pay gap, and (2) with hash-
tags supporting and opposing Healthcare, involving issues such
as dieting and medical care. To assess the quality of the distantly
supervised labels, we manually inspected a subset of 225 random
tweets from the resulting datasets. We observed that only 11% of
the instances are noisy, i.e. opposite stance. This is in line with
previous work on distant supervision (cf. [23]).

We randomly selected a stratified sample from each year, which
is split into train, evaluation and test data. Table 1 shows the per-
year statistics of the resulting datasets.

To measure the temporal evolution of the datasets, we com-
pute the Jaccard similarities between the vocabulary observed for
each year. Figure 1 shows the pairwise Jaccard similarity scores
for the two datasets. We can observe that these similarity scores
consistently decrease as the distance between the years increases,
indicating an increasing variation of vocabulary over time.

4.2 Unlabelled Datasets
We also collected larger domain-specific Twitter datasets linked
to the same two topics and using the same hashtags, however
disregarding labels to avoid supervision when training the word
embedding models. This resulted in 578K and 343K aggregated
tweets for Gender Equality and Healthcare, respectively.

1https://github.com/OpinionChange2021/opinion_are_made_to_
be_changed.git

Embedding Learning Strategy Data
DTE Discrete None S
ITE Incremental Model Update SPT
2TE Incremental Model Update ST
ITA Incremental Diachronic Alignment SPT
2TA Incremental Diachronic Alignment ST

Table 2: Temporal embedding models. Data sources: source
year (S), target year (T), and preceding years (P).

5 METHODS FOR INCORPORATING
TEMPORAL KNOWLEDGE INTOWORD
EMBEDDINGS

We assess the potential of word embeddings [18] to aid classifiers
to have a temporally persistent performance, and propose novel
methods to further their temporal persistence (see Figure 2). We
use the CBOW model [17], which outperformed skip-gram [17]
for linguistic change detection [12]. We control for other variables
(e.g. prediction models, label distributions) by keeping them stable
across experiments.

Method 1. Discrete Temporal Embedding (DTE), a baseline
method that lacks awareness of the temporal evolution. DTE learns
CBOW word vector representations given a collection of tweets
pertaining to a particular time frame as input. For example, where
our classifier needs to train from data pertaining to year 𝑦1 and test
it on 𝑦2, a DTE embedding is generated from the unlabelled data
pertaining to 𝑦1. We can formally represent it as follows: Discrete
Temporal Embedding (DTE) are the embeddings 𝑋 generated using
temporal slice 𝐷𝑠 where 𝑠 represents the time frame of the source
set.

In this work we propose four models to incorporate knowledge
over time by leveraging unlabelled data.

Method 2. Incremental Temporal Embedding (ITE).New em-
beddings 𝑋 are trained using the unlabelled data incrementally
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(a) (b)

Figure 3: Performance (a) of temporal embeddings by temporal gap between training and test data (0-5 years) and (b) Relative
performance drop. Flat line indicates consistent temporal performance.

Time gap 0 1 2 3 4 5

G
en

.E
qu

al
it
y DTE 0.653 0.591 (-9.5%) 0.589 (-9.8%) 0.567 (-13.2%) 0.571 (-12.6%) 0.554 (-15.2%)

ITE 0.691 0.646 (-6.5%) 0.626 (-9.4%) 0.636 (-8.0%) 0.605 (-12.4%) 0.628 (-9.1%)
2TE 0.653 0.635 (-2.8%) 0.613 (-6.1%) 0.600 (-8.1%) 0.591 (-9.5%) 0.606 (-7.2%)
ITA 0.704 0.649 (-7.8%) 0.631 (-10.4%) 0.613 (-12.9%) 0.620 (-11.9%) 0.617 (-12.4%)
2TA 0.653 0.639 (-2.1%) 0.633 (-3.1%) 0.624 (-4.4%) 0.615 (-5.8%) 0.618 (-5.4%)

H
ea
lt
hc

ar
e DTE 0.664 0.590 (-11.1%) 0.568 (-14.5%) 0.562 (-15.4%) 0.570 (-14.2%) 0.542 (-18.4%)

ITE 0.673 0.626 (-7.0%) 0.609 (-9.5%) 0.610 (-9.4%) 0.615 (-8.6%) 0.604 (-10.2%)
2TE 0.664 0.631 (-5.0%) 0.619 (-6.8%) 0.583 (-12.2%) 0.593 (-10.7%) 0.599 (-9.8%)
ITA 0.722 0.656 (-9.1%) 0.648 (-10.2%) 0.631 (-12.6%) 0.640 (-11.4%) 0.629 (-12.9%)
2TA 0.664 0.656 (-1.2%) 0.640 (-3.6%) 0.629 (-5.3%) 0.635 (-4.4%) 0.616 (-7.2%)

Table 3: Experiment results by temporal gap between training and test data (0-5 years). Reported values in brackets indicate
relative performance drops with respect to same-year (temporal gap of 0) experiments for the same method.

aggregated from all years preceding and including the target year,
i.e. 𝐷𝑝 , where 𝑝 ∈ [2014, 𝑡] and 𝑡 is the target year. Then the stance
classifier is retrained using the labelled data from the source year
represented using the new up-to-date embeddings 𝑋 .

Method 3. Source-Target Temporal Embedding (2TE). New
embeddings 𝑋 are generated using the unlabelled data aggregated
from the source 𝐷𝑠 and the target 𝐷𝑡 years only, while ignoring
all years in between. These embeddings are then used to represent
source year training data for the stance classifier.

While ITE and 2TE incorporate temporal knowledge, they do
not explicitly handle other phenomena such as semantic shift of
vocabulary [11], which we anticipate may lead to performance
limitations. To address this, we propose alternative methods that
perform temporal word alignment. Our proposed solution comes
from using a compass [5] method for temporal alignment. With
compass each temporal embedding becomes temporally contextu-
alised to the testing year semantic-meaning. With this method,
we assume words contextual usage fluctuates over time as in so-
cial associations creating subtle meaning drift. For example, the
word ‘Clinton’ shifted from being related to administration to pres-
idential context over time [5]. The compass aligns the embeddings

of different temporal years using pivot non-shifting vocabularies.
It constructs a dynamic temporal context embedding matrix that
changes over time, allowing the context embedding to be more time
relevant. These settings allow natural selection of vocabularies in
terms of temporal contextual words of the target year, and a time-
aware representation of the target year in general. We show that
this approach is more useful in some cases than model update as
the model trained considering the semantic meaning of the target
year without additional contexts.

Method 4. Incremental Temporal Alignment (ITA). 𝑋 is in-
crementally aligned using compass from all preceding 𝐷𝑝 , where
𝑝 ∈ [2014, 𝑡].

Method 5. Source-Target Temporal Alignment (2TA). 𝑋 per-
forms temporal alignment using compass of 𝐷𝑠 and 𝐷𝑡 .

We summarise all five models in Table 2 and Figure 2, which
enable us to test the impact of three different parameters: (i) the use
of discrete vs incremental embeddingmodels, (ii) the use of different
learning strategies (none, model update, diachronic alignment), and
(iii) the use of different data sources for building embedding models
(source, target and preceding years).
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6 EXPERIMENTAL SETUP
To control for the impact of model choice [16, 24], we consistently
use a Convolutional Neural Network (CNN) model with 32 filter and
5-gram region sizes. Our 5-gram kernels encompass a Rectified Lin-
ear Unit (ReLU) activation function, and a max-pooling operation.
We use a softmax activation function, the Adam optimiser with
the learning rate fixed at 2𝑒−5 and 10 epochs. Sentence length for
vector representations is also fixed in all experiments to 32. While
keeping the CNNmodel intact, our aim is to assess the effectiveness
of the proposed embedding-based representations for the task.

We experiment with all 21 possible combinations from 2014 to
2019 of 𝑦𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 for training and testing. In each case,
we are interested in the temporal gap between train and test data,
measured in number of years. For brevity and clarity, we report
the mean average performance of models with the same gap (e.g.
4-year gap performance averages 2014-2018 and 2015-2019). In each
case, we report the macro-averaged F1 score, as well as the Relative
Performance Drop (RPD) to measure the sharpness of the drop in
our model, defined as:

RPD =
𝑓𝑠𝑐𝑜𝑟𝑒𝑡 𝑗 − 𝑓𝑠𝑐𝑜𝑟𝑒𝑡0

𝑓𝑠𝑐𝑜𝑟𝑒𝑡0

Where 𝑡0 represents performance when temporal gap is 0; 𝑡 𝑗
represents performance when temporal gap is one of 1-5.

7 RESULTS AND DISCUSSION
Table 3 and Figure 3 show the results of our experiments. Results
are aggregated by temporal gap. We observe that the best results
are obtained for same-period experiments (i.e. temporal gap of 0)
and a decrease in performance as the temporal gap increases, i.e.
confirming our hypothesis that model persistence drops as training
data gets older. Furthermore, the performance drops (percentage,
shown in brackets) indicate that the drop has an upwards tendency
for larger temporal gaps, demonstrating that the older the training
model, the less accurate the model becomes when dealing with new
data. Temporal dynamics in the stance datasets can indeed lead to
deterioration in model persistence.

When we look at the methods separately, we observe that ITA
achieves an overall best performance. This is especially true for the
healthcare dataset, where ITA is the best method for all temporal
gaps under consideration; for the gender equality dataset, ITA is
the best method for small temporal gaps (0-1), and while it achieves
competitive performance for larger gaps, 2TA and ITE occasionally
achieve better performance.

We observe interesting trends when we look at performance
scores and performance drops in conjunction. The use of the base-
line DTE, solely relying on source-year embeddings, leads to the
lowest performance and also the largest performance drops. This
reinforces that embeddings from a particular time period gradually
become less useful for subsequent periods, more so when the target
period is more distant in time. Among the four proposed methods,
ITA yields the best same-period performance, however it is also
the method experiencing the highest performance drop for larger
temporal gaps; this demonstrates ITA’s competitive performance
for shorter temporal gaps, but its performance on longer temporal
gaps is more uncertain. For methods relying on source and target

years, 2TE and 2TA, we observe a modest performance for same-
period experiments (equivalent to DTE), which however experience
a substantially smaller performance drop for larger temporal gaps.
While their performance is not as good for small temporal gaps,
they show a good capacity to persist better over time for larger
temporal gaps. A look at longer temporal gaps, beyond the 5-year
gap considered in our experiments, would be an interesting avenue
for future work, e.g. to assess the capacity of 2TA and 2TE to persist
further.

In addition, our experiments help us assess the impact of three
parameters (see Table 2):

Embedding type: we show that the use of an incremental ag-
gregation of embeddings (ITE, 2TE, ITA, 2TA) improves over the
use of discrete embeddings (DTE). This is consistent across datasets
and temporal gaps.

Learning strategy: our results indicate that the best learning
strategy is the use of diachronic alignment (ITA, 2TA), in our case
tested using compass. With a few exceptions, we observe that these
methods generally outperform methods that perform incremental
model updates (2TE, ITE), and consistently outperform the lack of
a learning strategy by relying on discrete embeddings (DTE).

Data source: theworst performance is for the embeddingmethod
solely using the source year (DTE), a baseline method that one
would naturally use with static classifiers. Other methods consid-
ering additional years lead to improved performance. We observe
two main patterns: (1) use of all years preceding the target year
(ITE, ITA) lead to improved performance over the use of source and
target years (2TE, 2TA), however with a larger performance drop
for longer temporal gaps, and (2) use of source and target years
only leads to lower performance in short temporal gaps, however
with a substantially lower performance drop showing a promising
trend towards achieving model persistence.

8 CONCLUSION
Our work demonstrates the substantial impact of temporal evo-
lution on stance classification in social media, with performance
drops of up to 18% in relative macro-F1 scores in only five years.
We investigate temporal adaptation of word embeddings used to
thrain the classifier to mitigate this drop in performance, showing
that incrementally aligning embedding data for all years (ITA) leads
to the best performance. However, we also find that consideration
of only source and target years in the alignment leads to the small-
est performance drop with promising trends towards longer term
persistence.

Furthering this research, we aim to investigate the extent to
which different factors (e.g. opinion change, social media use) im-
pact performance drop, as well as to explore the potential of using
few-shot learning to quantify the benefits of labelling small amounts
of target data.
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