
reCode: A Lightweight Find-and-Replace Interaction in the IDE
 
for Transforming Code by Example
 

Wode Ni 
woden@cs.cmu.edu 

Carnegie Mellon University 
Pittsburgh, USA 

Joshua Sunshine 
sunshine@cs.cmu.edu 

Carnegie Mellon Universit
Pittsburgh, USA 

Vu Le 
levu@microsoft.com 

y Microsoft 
Redmond, USA 

Sumit Gulwani Titus Barik 
sumitg@microsoft.com tbarik@microsoft.com
 

Microsoft Microsoft
 
Redmond, USA Redmond, USA
 

Figure 1: reCode is a mixed-initiative tool that automates code transformations via an example-driven interaction. The devel
oper finds relevant locations in their codebase and directly perform changes inline. Based on the search results and user edits, reCode 
automatically generalizes edits to other applicable locations as the developer iteratively refines code changes. 

ABSTRACT 
Software developers frequently confront a recurring challenge of 
making code transformations—similar but not entirely identical 
code changes in many places—in their integrated development en
vironments. Through formative interviews (n = 7), we found that 
developers were aware of many tools intended to help with code 
transformations, but often made their changes manually because 
these tools required too much expertise or effort to be able to use 
effectively. To address these needs, we built an extension for Vi
sual Studio Code, called reCode. reCode improves the familiar 
find-and-replace experience by allowing the developer to specify a 
straightforward search term to identify relevant locations, and then 
demonstrate their intended changes by simply typing a change 
directly in the editor. Using programming by example, reCode 
automatically learns a more general code transformation and dis
plays these transformations as before-and-after differences inline, 
with clickable actions to interactively accept, reject, or refine the 

This work is licensed under a Creative Commons Attribution International 
4.0 License. 

UIST ’21, October 10–14, 2021, Virtual Event, USA 
© 2021 Copyright held by the owner/author(s). 
ACM ISBN 978-1-4503-8635-7/21/10. 
https://doi.org/10.1145/3472749.3474748 

proposed changes. In our usability evaluation ( n = 12), developers 
reported that this mixed-initiative, example-driven experience is 
intuitive, complements their existing workflow, and offers a unified 
approach to conveniently tackle a variety of common yet frustrating 
scenarios for code transformations. 

KEYWORDS 
code transformation, program synthesis, find-and-replace 

ACM Reference Format: 
Wode Ni, Joshua Sunshine, Vu Le, Sumit Gulwani, and Titus Barik. 2021. re-
Code: A Lightweight Find-and-Replace Interaction in the IDE for Transform

ing Code by Example. In The 34th Annual ACM Symposium on User Interface 
Software and Technology (UIST ’21), October 10–14, 2021, Virtual Event, USA. 
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3472749.3474748 

1 INTRODUCTION 
Maria, a front-end developer, wants to rewrite the visual styles 
in her project to use vanilla CSS instead of the current styled-
components library. In other words, she wants to find lines of code 
in her project that look like this: 
border: 1px solid ${props => props.theme.black}; 

and replace them to look like this: 
border: 1px solid var(--black); 

To estimate the scope of this task, Maria invokes the find interface 
in her IDE and searches for props.theme. The interface returns 

258

https://doi.org/10.1145/3472749.3474748
https://doi.org/10.1145/3472749.3474748
mailto:tbarik@microsoft.com
mailto:sumitg@microsoft.com
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3472749.3474748&domain=pdf&date_stamp=2021-10-12


UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

around 30 results, scattered across multiple files. How should Maria

complete the task?

Developers like Maria frequently run into these kinds of sys-

tematic, repetitive code transformations—similar but not entirely

identical code changes in many places [23, 41, 42]. If it turns out

there are only a few lines of code to edit, Maria could simply make

the replacements manually in her IDE. If there are thousands of

lines to edit, however, manual approaches become intractable. Then,

there are a bewildering array of tools for developers to turn to

for automation. A common option is to write regular expressions,

which are essentially sequences of characters that specify search

patterns. More elaborate approaches include text-based find-and-

replace tools like sed [28] or ripgrep [6], or language-aware tools

like structural find-and-replace [36] and jscodeshift [3].
More often than not, developers end up in an unpleasant “murky

middle” that is somewhere between these two extremes. In this

murky middle, manually making the changes is both time consum-

ing and error prone, yet the investment required to automate with

a regular expression or script is also unappealing and difficult even

for seasoned developers [32]—it is possible that automating would

take longer than doing the task manually. Neither strategy feels

“just right.”

Through formative interviews with developers, we identified

limitations in current code transformation tools that were barriers

to developers. First, developers struggled to decide between trans-

forming code manually versus investing in using a tool to automate

the task, particularly when there are a murky middle number of

edits to make. Second, developers reported that writing code trans-

formation scripts was complicated because of the many edge cases

that arise. Third, scripting approaches were often too monolithic,

requiring developers to make code transformations in bulk across

their entire project. This made it difficult for developers to reason

about how the code transformation impacts their code. In short,

developers desired a more incremental and interactive approach

that allowed for automation while still allowing for oversight and

occasional intervention.

To address these needs, we propose a mixed-initiative [19] tool,

called reCode, that offers developers a lightweight interaction

for transforming code while balancing automation and inspection.

reCode is implemented as a Visual Studio Code extension, and en-

hances the familiar find-and-replace experience. reCode users first

specify a straightforward search term to identify relevant locations

of interest for the code transformation. To remove the burden of

having to write a complicated regular expressions or script, devel-

opers demonstrate their intended code transformation to reCode

by simply typing the code change directly in their editor. reCode

leverages programming-by-example to automatically learn a more

general code transformation, across a variety of transformation

scenarios. reCode displays these additional transformations as

before-and-after differences inline, and offers the developer click-

able actions through which they can interactively accept, reject, or

refine the proposed transformations.

The contributions of this paper are as follows:

• We propose a mixed-initiative interaction for the IDE that

improves the familiar find-and-replace experience through

programming-by-example. This interaction removes the

need to need write regular expressions or other complicated

scripts for a variety of code transformations. We implement

this interaction as an extension, called reCode, for Visual

Studio Code.

• reCode implements a feedback-driven, semi-supervised pro-

gram synthesis technique, called ReFazer* [16]. ReFazer*

accepts tree-based input and output examples to learn pro-

gram transformations. reCode surfaces this technique as a

usable system.

• Through a usability evaluation with 12 developers, we

demonstrate that the reCode example-driven experience

is intuitive, complements their existing workflow, and of-

fers a unified approach to conveniently tackle a variety of

common yet frustrating scenarios for code transformations.

2 A DEMO OF RECODE

Maria used reCode to rewrite her visual styles based on a col-

league’s recommendation: “it’s like find and replace. Just start edit-

ing after you find things and it’ll do the rest.” The next day, she

decides to tackle a more complex clean-up task. Her application

uses React and was originally written in JavaScript ES5. The appli-

cation had many calls in class constructors. These calls

were needed in ES5 to allow methods to work as they do in other

languages. With the new version of JavaScript, these calls are no

longer required1. Maria simplifies her code by: (1) deleting all lines

that look like and (2) rewriting

the corresponding method declarations as “arrow functions”.

To see how many of these functions there are, Maria types

in the Search Box (Figure 2 ) to search in the repository. Maria

thinks, “it’s 4 PM now and I want to get this done soon. If there are

only three of these functions, I’ll just do them manually.” Unfortu-

nately, the Summary View (Figure 2 ) shows 80 matches spread

across 32 files!

bind bind

this.func = this.func.bind(this)

bind

B

A

SEARCH � � � �

80 results in 32 files - Open in editor

bind � � �

…

Behind the scenes, Maria’s initial search with find-and-

replace has already activated the reCode tool. She clicks on the

first result in App.jsx and starts to edit the relevant lines for the

function. She removed the

call from line 25 and added before and after on

line 29:

bind

changeTab this.changeTab.bind(this)

= (tabName) =>

1https://reactjs.org/docs/faq-functions.html#how-do-i-bind-a-function-to-a-
component-instance

259



reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA

SEARCH

80 results in 32 files - Open in editor

bind

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.…

removeNoti = this.removeNoti.bind(…

App.jsx … 2~/code/official-react-

App.jsx …

official-react-site app App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

   const { dispatch } = this.props;
   dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
   const { dispatch } = this.props;
   dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

   this.removeNoti = this.removeNoti.bind(this);

   super(props);
   

 constructor(props) {
class App extends PureComponent {
// Components

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

202020202020

 0  0 Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

…

A
B

C

D

E

F

Figure 2: The user interface of reCode. In the Summary View ( ), the developer enters a simple query in the Search Box ( ) and

previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are highlighted

in yellow ( ). The developer directly edits the source code in the main editor ( ) and reCode synthesizes a generalized transformation. In

the Inline Diff, suggested deletions are highlighted in pink and suggested replacements are highlighted in green. ( ). The developer can

accept or reject the suggestions via Inline Actions ( ).

A B

C D

E

F

28
29

23
24
25
26
27

22

 
  changeTab = (tabName) => {

  constructor(props) {
    super(props);
    
    this.removeNoti = this.removeNoti.bind(this);
  }

class App extends PureComponent {

Maria notices in the search result for is now high-

lighted in green and she understands that reCode is generalizing

her edits. Immediately after, other results light up in yellow, indi-

cating suggestions made by reCode:

changeTab

changeTab = this.changeTab.bind(this); 

removeNoti = this.removeNoti.bind(this);

�� App.jsx 2~/code/official-react-site/app

Within the main editor pane (Figure 2 ), reCode gives two sug-

gestions related to . The first one seems correct: reCode

proposes to delete the whole line with the call.

E

removeNoti

bind

26
27

   this.removeNoti = this.removeNoti.bind(this);
 }

Accept Changes | Reject Changes | Accept All in This File

Looking at the second suggestion, Maria concludes it’s correct,

too: the line with the call is removed, and reCode correctly

kept the argument for the function declaration (but if it hadn’t

been, Maria could have clicked “Reject Changes” to revert to the

original or changed the code manually—reCode would learn from

this correction and update its suggestions).

bind

id

34   removeNoti(id) { removeNoti = (id) => {
Accept Changes | Reject Changes | Accept All in This File

Maria clicks “Accept Changes” for both suggestions. She then

clicks on several other results in the Summary View (Figure 2 )

to review the changes proposed by reCode. In the first three files,

she clicks “Accept Changes” for each suggestion that she is con-

fident about. To speed things up, she then goes to the rest of the

files, review all of the changes, and clicks “Accept All in This File”

once she determines everything is correct. Using this workflow,

inspecting each file takes about 10 to 20 seconds, and she finishes

changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would

have faced the same challenge of the “murky middle” described

in Section 1. On the one hand, changing all 80 instances manually

can easily take an hour and is error prone. On the other hand, it

might not be worth the investment to write a custom script or

complex regular expression to feed to a find-and-replace tool. For

these reasons, Maria prefers the convenience of reCode to help

her accomplish a variety of day-to-day code transformation tasks.

A

3 BACKGROUND AND RELATEDWORK

The design of reCode is inspired by BluePencil [35], which imple-

ments a comparable underlying synthesis technology to reCode’s

engine [16], but surfaces the interaction through a different work-

flow: BluePencil passively detects and presents code transforma-

tion suggestions as “quick fix” lightbulbs to the developer as they

edit their code, which the developer can either accept or ignore.

260



UIST ’21, October 10–14, 2021, Virtual Event, USA	 Ni, et al. 

In contrast, reCode supports developers who frequently desire to 
have more control over their code transformations (Section 4). 

The rest of this section describes related work on challenges 
developers have making code transformations and the multitude of 
programmatic approaches to code transformations. 

3.1	 Challenges of Making Code 
Transformations 

Developers edit their code in a patterned and repetitive way to fix 
bugs [43], migrate from one API/language to another [11, 21], or 
make systematic changes to their codebases [22]. 

Nguyen et al. [41] conducted a large-scale study to show that 
70-100% of small changes are repeated, and the repetitiveness of 
changes decreases exponentially as the change size increases. The 
smaller, fine-grained changes are especially meaningful and perva
sive in both time and space: a given code change is often repeated 
by others, and the same developer has usually made the same kind 
of change in the past [42]. Within the same codebase, Kim et al. 
[23] found that “locally unfactorable, consistently changing clones” 
(that is, duplicated code that cannot be easily factored out and al
ways change together) are common, and changing these clones 
together can be error-prone and difficult. 

Automated tools aim to help developers make code transfor
mations, but they are often too hard to use, leading to tool aban
donment. For instance, Murphy-Hill et al. [38] found that 90% of 
changes that refactoring tools already support are performed with
out the help of tools. Most editors have find-and-replace functionali
ties baked in and support regular expressions for more general code 
transformations. However, find-and-replace can be error-prone [33] 
and regular expressions are especially hard to use [32]. 

reCode addresses the need for a more intuitive and reliable tool 
to automate repetitive code changes. It improves on the familiar 
find-and-replace user experience and leverages program synthesis 
to generate semantic code transformations from developers’ direct 
edits. 

3.2	 Programmatic Approaches to Code 
Transformations 

To automate code transformations, developers can write queries or 
scripts that typically operate in batch across their repository. These 
tools emphasize either text-level or tree-level transformations. 

Text-based tools allow developers to perform changes to pro
grams by matching a string pattern and treating the code as an 
unstructured string of text. Tools in this space include regular ex
pressions [14] or regex-based codemods [1]. 

Instead of operating on strings, developers also can use tools that 
provide access to the code’s abstract syntax tree (AST), types, or 
another language-specific information. Structural find-and-replace 
tools let developers transform their code by specifying patterns and 
grammatical constructs that take the code structure into account. 
For example, in these representations it becomes possible for the 
developer to specify constraints like “within class constructors only” 
or “fields of type integer.” JetBrain’s family of IDEs supports struc
tural find-and-replace for a variety of programming languages [36]. 
Comby [50] introduces a simpler query syntax for find-and-replace 
by generating parser combinators. Because Comby understands the 

syntax of code blocks, strings, and comments, Comby queries are 
usually more concise and readable than alternatives like regular 
expressions. 

More elaborate code transformations require developers to go 
beyond queries and rewrite rules to scripts that directly operate 
on ASTs. jscodeshift transforms JavaScript programs via an API 
for JavaScript AST nodes. Rafazar includes a domain-specific lan
guage that encodes AST-level edit actions for program transfor
mations [47]. Although these APIs may suffer from a variety of 
usability problems [40], AST transformers have shown their robust
ness and scalability for transforming ultra-large codebases [13, 51]. 
Refactorings tools [5, 7, 31, 37] are also instances of code transfor
mation scripts, as are linters [2, 4]. 

Developers using reCode sidestep the decision of which ap
proach to code transformation to choose. Developers edit examples 
and reCode “invisibly” [39] programs code transformations for 
them. 

3.3	 Editing by Example 
In editors, programming-by-example systems infer changes to 
text or source code based on concrete user actions on the source 
text and/or other representations of the program. These inferred 
changes are often high-level programs consistent with the user 
actions but generalized to similar instances [18]. 

Several early programming-by-example tools, beginning in the 
1980s, can operate on text [15, 25–27, 44, 45, 48, 49, 52], either by 
inferring a program from input-output examples (result-based) or 
recording users’ edit steps (action-based). Nix synthesizes string 
transformation patterns from a set of input-output examples pro
vided by the user [44]. The transformations are expressed as gap 
programs. SMARTEdit does not require an output example upfront 
and learns string-based macros from direct edits on an input ex
ample [25]. It requires an explicit start/stop command and treats 
all the text in the editor as the input example. Some editors allow 
developers to record edit steps as scripts called keyboard macros. 
For instance, both GNU Emacs [48] and vi [45] users can encode 
edit actions as a program and replay the same sequence of actions 
elsewhere. Because ordering is important in the edit steps, macros 
are known to be brittle and difficult to specify correctly [26, 49]. 
Different from text-based tools, reCode is tree-based and gener
ates AST transformations. The resulting code transformations are 
resilient to edit ordering and formatting variations. 

Sydit and Lase are Eclipse plugins for transforming functions 
or methods [29, 30]. In contrast to reCode’s lightweight user expe
rience which allows for fine-grained code transformations, Sydit 
requires developers to make code transformation at the method 
level. ReSynth is an Eclipse plugin that generates a sequence of 
refactoring operations from user edits [46]. reCode supports code 
transformations that are not limited to an existing catalog of refac
torings. 

Lapis [34] is a specialized editor that allows users to edit multiple 
lines of code concurrently. Lapis asks users to specify a natural-
language like query to seed the examples. reCode differs in that 
it allows a straightforward, keyword-style search, and provides a 
more sophisticated synthesis backend. Codelink is an extension for 
XEmacs. The tool requires the developer to “link” code duplicates, 

261



reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example	 UIST ’21, October 10–14, 2021, Virtual Event, USA 

or code clones, explicitly. Once these code clones are linked, any 
edits the developer makes simultaneously updates the other linked 
locations. In other words, Codelink’s interaction is a variation of 
multi-cursor editing in modern editors [8, 9]. By contrast, reCode 
does not rely on cursor position and uses the developers’ initial 
search term to bootstrap relevant locations. reCode presents a 
lightweight interaction workflow different from existing tools. 

4	 FORMATIVE INTERVIEWS AND DESIGN 
GOALS 

To discover challenges that developers have with existing code 
transformation tools, we sent out an initial recruitment survey at 
a large software company to developers with at least three years 
of experience, sampled from their company address book. The sur
vey pre-screened for prior experience using tools in participants’ 
programming environments that allow them to perform code trans
formations, such as find-and-replace, refactoring, or other structural 
find-and-replace tools. We interviewed 7 of these survey respon
dents (F1-F7) to understand how they use tools to automate code 
editing. The interviews serve as a need-finding activity, from which 
we derive design goals for reCode. 

In the interviews, we asked about the challenges they faced 
with code transformations, which tools they use to automate them, 
and why the tools they use work or don’t work for them. Five 
participants showed us code samples from recent tasks, which we 
used to design tasks for our later usability evaluation (Section 6). 
From these interviews, we identified three common problems across 
participants. 

First, developers reported having to make continuous trade-offs 
between performing code transformation tasks manually and reach
ing for programmatic approaches that enable automation, which 
resulted in decision fatigue. While some participants experimented 
with writing custom scripts (F1, F3) or regular expressions (F2, F4, F6, 
F7) to automate tasks, F2 reported encountering unanticipated bar
riers: “I could use find-and-replace, copy-paste, use multi-cursors, 
or use refactorings. But none of them worked exactly the way I 
wanted.” Given these uncertainties, participants often impulsively 
gravitated towards more familiar, manual strategies like find-and
replace because it minimized their decision fatigue and was the 
path of least resistance (F1-F7). As F2 described, “there’s probably 
already a secret tool or some magical trick [in my editor]. I just 
don’t want to look.” 

Second, writing a robust regular expression or script is tricky, and 
several participants desired more lightweight but still expressive 
approaches. As one example, F7 described trying to use a regular 
expression but that the language lacked a “good way to specify 
context or scope.” They also used macros, which were more generic 
but indicated that “the amount of time it takes to remember how to 
do macros doesn’t justify using it for ordinary tasks” (F7). F1 added 
that when scripting, they “often run into these corner cases that the 
script doesn’t handle” and wonders, “Do I really have to write my 
own static analyzer to do it correctly?” They desired an editor to 
“do it automagically, sees you doing this many times, and automates 
this.“ F6 explicitly described an example-driven experience: “I want 
to find-and-replace by example. I want to edit a file directly and 
say ‘Apply that elsewhere’ ”. 

Third and finally, participants reported a need for human over
sight and inspection in automated approaches. F3 and others (F1, F2, 
F4, F5) worried about “over-replacing” and “matching on the wrong 
thing. Because things like find-and-replace are syntax-based, your 
compiler may not catch the error, so I have to check it manually.” 
Several participants mentioned that ‘Apply all’ is “dangerous” (F1
F6) and F2 had to “watch very carefully to make sure I don’t replace 
things I don’t want.” To guard against these issues, all participants 
shared their experiences building up search queries iteratively from 
a simple keyword, and then further narrowing down their results 
as needed. 

Participants reported that their existing tools were mismatched 
with their desire for inspection. F3, for example, said that they 
“spend one hour to click apply and next and apply, and I’ll just give 
up and apply all, hoping the compiler catches errors for me,” and F5 
reports that automated tools “stress me out and I don’t really trust 
them” because they can’t easily verify if the code transformations 
have been correctly applied. Towards improvements in the editor, 
F2 and F4 suggested “live previews and highlights” to inspect the 
changes within the editor. F5 indicated that comparisons in current 
editors are difficult because they use too little “screen real estate” 
and require them to refine code transformations through “tiny text 
boxes.” 

Based on their reported experiences and feedback, we reflected 
on their needs and formulated several design goals to address them: 

D1. Provide a unified entry point for code transforma
tions. To minimize decision fatigue, developers should be 
able to make a variety of common code transformations 
through a familiar user experience. 

D2. Offer a lightweight way to transform code. Writing reg
ular expressions and custom scripts are difficult. An intel
ligent user experience should provide this capability “au
tomagically,” offloading script building to the system. 

D3. Design affordances that enable oversight and inspec
tion for code transformations. Developers were cautious 
about automated tools over-replacing or matching on the 
wrong things, and existing tools were mismatched with de
veloper expectations. Developers should be able to incremen

tally inspect code transformations and more easily compare 
their results. 

5	 SYSTEM DESIGN AND IMPLEMENTATION 
reCode realizes the design goals from Section 4 and offers a user 
experience that: 1) reduces the decision overhead of having to 
choose among different tools; instead, the developer can use find-
and-replace as a unified entry-point for their code transformation 
(D1), 2) eliminates the burden of having to author complicated reg
ular expressions or scripts; instead, the developer can directly type 
their change in the editor (D2), and 3) removes the requirement to 
inspect all code transformations in bulk; instead, the developer can 
incrementally inspect, apply, and revise their code transformations 
(D3). 

reCode is implemented as an extension of Visual Studio Code 
(VSCode). Most of its features are implemented within the Search 
View and main editor pane. First, we augmented the Search View 
to indicate the state of each search match. Second, the main editor 

262



UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al. 

captures developer edit events and the ReFazer* synthesizer runs 
as an editor service in the background and generates transformation 
programs based on the edits. Finally, we implemented inline code 
diffs to surface the synthesizer’s suggestions and we adapted Code 
Lenses2 to allow the developers to interact with the synthesizer. 

5.1 reCode Workflow 
In this section, we will walk through the detailed design of reCode’s 
mixed-initiative workflow (Figure 1), which we demonstrated in 
Section 2. 

5.1.1 Step 1: Bootstrapping Synthesis via Find. The developer initi
ates the workflow by typing search terms in the Search Box (Fig
ure 2 ). The search and results are displayed in the corresponding 
Result View (Figure 2 ). As we described in Section 4, our par
ticipants were comfortable with constructing search queries via 
simple keywords and narrowing down results using find. Conse
quently, we made an intentional design decision to sacrifice some 
expressiveness in search (for example reCode users cannot limit 
search to “only within fields of a class”) to favor simplicity. reCode 
only supports conventional plain-text search. 

Because the developer provides search terms that are less precise 
than the locations they actually intend to change, the search results 
will be a superset of what they actually intended to change. This 
has implications for programming-by-example, and there are two 
approaches to tackle this situation—both of which are supported in 
reCode. 

The first approach is manual: the developer can navigate to the 
Summary View (Figure 2 ), hover over one of the extraneous 
matches (Figure 2 ), and click the ‘x’ icon to remove it from the 
search results. The second approach is to for the synthesis engine 
to filter matches: ReFazer* considers all search results as candidate 
additional inputs, and applies an anti-unification mechanism to dis
card candidates that are incompatible with the developer-provided 
changes. Thus, the first approach is useful if the developer wants to 
use the Summary View for manual investigation and bookkeeping; 
the second approach is useful if the developer just wants to the 
reduce the amount of work needed to do their code transformation. 

 A 
B 

 A 
 C 

5.1.2 Step 2: Transforming Code by Example. Through our forma

tive study, we learned that a barrier to correctly authoring regular 
expressions or scripts is the need for developers to construct a 
complete specification upfront. In textual or modal transformation 
tools, the developer also typically needs to know the tool exists 
and learn the syntax of a language or the UI to perform their code 
transformation task. 

By contrast, reCode lets developers demonstrate program 
changes directly in the editor. Essentially, developers are able to 
construct this specification incrementally through a more intuitive 
editing affordance. reCode’s by-example workflow is also designed 
to solve the problem of discoverability and provide better context. 
Because the developer types their examples within the main editor 
pane (Figure 2 ), they can take advantage of the full range of 
editor support, including syntax highlighting and auto-completion. 

 D 

2https://code.visualstudio.com/blogs/2017/02/12/code-lens-roundup 

5.1.3 Step 3: Iteratively Refining the Synthesis Results. The inter
action so far has been developer-initiated. But once the developer 
types their first code transformation, the synthesizer takes the 
initiative. 

ReFazer* accepts each developer’s code transformation as a posi
tive input-output example to drive synthesis, uses the search results 
as candidate locations, and returns suggestions to the user interface. 
reCode renders these suggestions directly in the editor as Inline 
Diffs—the original code is highlighted in pink and the suggested 
replacement is highlighted in green (Figure 2 . Users can act 
on each suggestion by clicking Accept, Reject, or Accept All in This 
File above the suggestion. We decided to limit Accept All to the 
current file based on our formative study, where participants were 
reluctant to accept all changes from a code transformation tool 
without inspection (however, “Accept All” is available under the 
kebab menu to the lower right of Figure 2 . 

Since the synthesizer is operating in the background in a black-
box manner, the visibility of system status is an important aspect 
of reCode. In addition to code diffs inline, the Summary View also 
conveys the status of the synthesizer by directly highlighting search 
results: Green highlights indicate original edits done by the user; 

Yellow highlights indicate matches with available suggestions; 

Blue highlights show the current selection. 
One consideration is when to send the developer-provided code 

transformation to the synthesizer: they may be typing slowly, paus
ing to think, or any variety of other activities that may cause the 
user interface to prematurely roundtrip to the synthesizer and incor
rectly update the suggestions to the developer. Our unsophisticated 
solution to this problem was to add a short debounce—delaying 
sending examples to the synthesizer until the developer pauses for 
a few seconds—which worked reasonably well. 

Another consideration is what happens when the developer 
edits a line that does not match the original search. For example, 
consider when a developer searches for a comment like // TODO, 
but makes all of their actual edits to the line below. Again, we 
implemented a simple approach that constructs a window around 
the search location overlaps the edit location (in the above example, 
the window size is ±1). This heuristic also worked reasonably well, 
with the caveat that ReFazer* becomes sluggish if the window-size 
becomes too large. 

Any suggestions the developer chooses to accept becomes an ad
ditional positive input-output example. To avoid infinite recursion, 
once a region of code is accepted, it will not be considered again as 
a candidate location for synthesis. Any suggestion that a developer 
chooses to reject becomes a negative input-output example, or filter. 
Finally, accept all changes in the current file works essentially the 
same as accept, but sends all of the accepted suggestions at once. 

These iterations continue until the user closes the find UI. 

( E ) F )

 B )

5.2 Overview of ReFazer* 
ReFazer* [16] is a robust, general-purpose synthesizer that reasons 
about differences in abstract syntax trees to learn code transforma

tions. Although ReFazer* is not specifically designed to support 
a find-and-replace user experience, the engine has several proper
ties that reCode is able to usefully exploit. This section presents a 
high-level overview of these properties; detailed formal semantics 

263



reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example	 UIST ’21, October 10–14, 2021, Virtual Event, USA 

of ReFazer* and its full performance benchmarks can be found in 
Gao et al. [16]. 

Gao et al. [16] report that with only one input-output exam

ple, ReFazer* can learn a correct program transformation with 
96% precision (through a benchmark of 12,642 test cases ranging 
from single-statement to multi-line edits). With two examples, the 
precision increases to 98%, and with three examples, 99%. For all 
three cases, recall is above 99%. Because we rely on ReFazer* for 
program synthesis, we expect reCode to have similar performance 
for comparable tasks. 

ReFazer* frames code transformation as a semi-supervised learn
ing problem. In addition to the concrete edits (input-output pairs) 
that the technique uses as instances, the learning process also ex
ploits access to additional inputs—that is, program subtrees—if they 
are provided to the synthesizer. Conveniently, this interface for Re-
Fazer* maps closely with the user experience needs for reCode’s 
find-and-replace: the developer’s initial search results become the 
additional inputs, and the developer’s subsequent code transfor
mations correspond to input-output subtrees. ReFazer* applies a 
strategy of anti-unification that discards incompatible additional lo
cations. From reCode’s perspective, this means that we do not need 
special handling to support developers who apply simple keywords, 
resulting in a superset of the actual locations required. 

ReFazer* requires the developer to enter a special mode to pro
vide examples and feedback to the system. While this can be a 
limitation for modeless user interfaces, it is precisely the interac
tion model for find-and-replace because developers enter an explicit 
mode. 

Because ReFazer* works on abstract syntax trees, we built a shim 
layer that sits between the front-end and ReFazer*; this shim takes 
lines of text and rewrites them them into trees and vice versa. Mod

ern compilers offer built-in APIs to facilitate this, so our integration 
work more or less involves invoking the appropriate facilities. 

5.3 Limitations and Future Work 

User interface. When the number of search results are large, devel
opers are likely to hit perceptual and cognitive scalability limits that 
make it overwhelming to make sense of and navigate the search re
sults. One solution to push these scalability limits outwards would 
be to apply an intelligent clustering algorithm that groups “related” 
changes together, and only present one exemplar search result from 
that group. For instance, one type of relation might be to might 
cluster matches by their relative location in the program, such as 
“all bind calls in constructors.” Existing research on detecting code 
clones [10, 20, 24] can serve as inspiration for how to group code 
transformations in the Summary View. 

Although we implemented an inline diff within the editor, our 
approach was less-than-ideal due to limitations in the Visual Studio 
Code extension API. Specifically, Visual Studio code already pro
vides a high-fidelity inline diff experience for comparing version 
control changes, but this facility is not exposed in a way that ex
tension authors can use. Although our inline diff is conceptually 
similar, it lacks some of the niceties like syntax highlighting, theme 
support, and support for diffing long lines. 

In our design, we made an assumption that developers in the 
find-and-replace will only make relevant edits. That is, only edits 
are intended to be used as part of the ReFazer* synthesis process. 
However, it is possible that developers might make unrelated, in
terleaving edits (for example, they might fix a typo while making 
a code transformation). A future implementation should consider 
options for addressing this scenario. One possibility is to allow 
the developer to explicitly pause the mixed-initiative loop when 
making an unrelated edit. Another option would to be incorporate 
the concept of noisy edits within the ReFazer* engine itself. 

Developers may unintentionally provide ambiguous or conflicting 
code transformation examples. For instance, f(a, b) to g(b, a) 
is ambiguous if the developer provides an example f(c, c) to g(c, 
c) demonstrate renaming and swapping the arguments. Similarly, 
code transformations can also be conflicting: a to b and also a to c. 
For ambiguous code transformations, the developer must inspect 
the transformation closely. For conflicting code transformations, 
we surface a generic error message to the developer. However, 
an improvement to this user experience would be to provide an 
explanation for why one or more code transformations conflict. 

Program synthesis engine. ReFazer* is useful for a variety of 
code transformation tasks, but currently has some known limita

tions. Because ReFazer* is tree-based, it works at the node level 
and does not perform substring-to-substring transformations. For 
example, translate to tranform works, but translateObject to 
transformObject would not. To support this scenario, ReFazer* 
could be extended by adding FlashFill-style string transforma

tions [17]. 
One scenario that is not handled by ReFazer* are code trans

formations that require reasoning about a countable but arbitrary 
number of nodes in the tree. For example, consider the program: 
new string[] {

a.ToString(), 
b.ToString(), 
c.ToString() } 

	   

which the developer wants to transform to: 
new	 string[] { 

a.ToString(), 
b.ToString(), 
c.ToString() } 

The problem is that this code transformation requires general
izing to an arbitrary number of elements in the array—this is not 
supported in ReFazer*. The current workaround is for the devel
oper to do repeated find-and-replace tasks for arguments of length 
one, length two, length three, and so on up to the largest number 
of arguments. 

ReFazer* does not understand the concept of associated edits. 
For example, the Multiloc in our usability evaluation requires 
the developer to delete the line with bind, as well as modify the 
corresponding function having the same function name. To allow 
this, an extension to ReFazer* implements a heuristic that treats 
this task as two independent synthesis tasks: one for deleting bind, 
and another for the function modification. The consequence of this 
is that a developer might accidentally delete a bind and forgot to 

264



UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al. 

modify the corresponding function, and ReFazer* would be unable 
to detect this error. 

ReFazer* is resilient to variations in program text (for example, 
whitespace, newlines, and other formatting trivia) and tries to mimic 
the formatting that developers do as best-effort. However, there is 
no guarantee that the suggested code transformation will preserve 
formatting in same style as the input example, and this annoys 
developers. 

6 USABILITY EVALUATION OF RECODE 

6.1 Participants and Setup 
We recruited 12 participants (10 men, 2 women, mean self-reported 
experience of 6.8 years) using the same recruitment survey de
scribed in Section 4. Participants are denoted as P1-P12 in subse
quent sections. For programming languages, participants in their 
day-to-day tasks report using TypeScript (4), Python (2), C# (8), 
C++ (4), with some reporting more than one language. On a 5
point Likert-type scale, participants reported the frequency of code 
transformation tasks to be: very frequently (2), frequently (5), occa
sionally (3), rarely (2). Participants also reported their familiarity 
with VSCode: extremely familiar (2), moderately familiar (8), some

what familiar (2). 
Each session took 45-60 minutes and was conducted remotely 

on Microsoft Teams. Developers connected to a remote desktop 
environment pre-configured with reCode. All sessions were audio 
and video recorded, including participants’ screens. 

6.2 Tasks 
In the formative study, participants discussed the challenges they 
had endured when transforming code and several participants 
shared recent transformation tasks. Through the formative study, 
we designed four tasks (Table 1) that represent increasingly com

plicated code transformations. We identified an applicable public 
GitHub repository for each task. We then selected a subset of the 
files so that the size of each task (“Required changes” in Table 1) 
reflects the “murky middle“ (15-50 lines-of-code changes), in which 
we expected the participants to make an deliberate decision on 
whether to use a tool or perform the task manually. 

(1) Constant-string3 replaces a constant string in an entire 
program. This transformation is supported by almost all ed
itors through find-and-replace or rename refactoring. All 
participants in the formative study reported frequently mak

ing this kind of change. 
(2) Gather-args4 gathers arguments from chained function 

calls into a single call. This transformation requires more 
effort since the arguments from the found code needs to be 
reused in the replacement. This transformation might be 
accomplished by using regex-based find-and-replace with 
capture groups. Formative study participants reported that 
refactoring function calls is common, but also demand sig
nificant effort. For example, F2 reported “copy-pasting and 
editing lots of function calls in a test suite”. 

3The code for Constant-string is adapted from a test file of the svgpath library:
 
https://github.com/fontello/svgpath.
 
4The code participants received for Gather-args is one of the transformations required
 
to migrate from Jest to AVA.js: https://jestjs.io/docs/migration-guide.
 

(3) Multiline-add5 finds one existing line of code, changes 
this line, and appends additional code. The task repre
sents changes involving a single-line match and multi-line 
changes, such as adding a null-pointer check around a line 
of code, or breaking up a line of code into multiple lines. 
The task requires developers to take extra care to handle 
formatting and newlines, and might be accomplished using 
a keyboard macro or a multi-line regular expression. 

(4) Multiloc6 changes two separate locations that are con
nected by a common method name (e.g., func in Table 1). 
This transformation involves multiple matches and changes, 
which is common in language migration and design-pattern 
changes [11]. Specifying such transformations in one regex 
or macro is challenging since they depend heavily on syntax 
and formatting. Therefore, this task is often accomplished 
with more complex tools that manipulate programming lan
guage structure like Comby [50] or AST transformers such 
as jscodeshift. 

Since we did not require our participants to have experience with 
a specific programming language, we provided them with a before
and-after example to illustrate the kind of code transformation they 
would need to perform for each task. 

6.3 Protocol 
To reacquaint participants with code transformation tasks, partic
ipants started by performing a warm-up exercise using VSCode 
without reCode. In this exercise, we asked participants to change 
from t.is(a, b) to expect(a).toEqual(b) (17 lines in 5 files). We 
then showed participants a short reCode tutorial. Afterwards, they 
performed the remaining tasks in random order using VSCode 
with reCode (Section 5). Participants were free to access online 
resources during all tasks. 

After completing the transformation tasks, participants were 
given a questionnaire. The questionnaire asked them to self-
evaluate the difficulty and tediousness of each task on a 5-point 
Likert scale (Strongly disagree–Strongly agree). To validate the 
relevance of the tasks, we also included a question asking how fre
quently participants encountered similar tasks in their work. The 
questionnaire also asked if the participant would use a production 
version of reCode. At the end of the evaluation, we conducted a 
retrospective interview to gather feedback about reCode. 

7 RESULTS 
In this section, we describe our participants’ task performance, their 
responses to the follow-up questionnaire, and feedback from the 
retrospective interview. 

7.1 Efficiency and Effectiveness 
Table 2 shows the average time taken and number of participants 
that successfully completed each task. After each task, participants 
were asked to rate the frequency of which they encounter similar 

5The code for Multiline-add is one of the breaking changes introduced by v9 of
 
next.js. The authors of the library provided a script to automate this complex change:
 
https://nextjs.org/docs/upgrading.
 
6Multiloc is a structural change for using a new language feature of JavaScript
 
ES6. An implementation for this particular task can be found in react-codemod:
 
https://github.com/reactjs/react-codemod.
 

265

https://github.com/reactjs/react-codemod
https://nextjs.org/docs/upgrading
https://jestjs.io/docs/migration-guide
https://github.com/fontello/svgpath


reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example UIST ’21, October 10–14, 2021, Virtual Event, USA 

Table 1: Tasks for the usability evaluation. The tasks reflect the range of scenarios identified in the formative interviews: from constant 
strings to tree transformations. Each task represents a type of code edits developers often encounter. 

Task Code to find Replacement code Task type Required changes 

Constant-

string 
translate transform Plain text replacement 14 lines in 2 files 

Gather-args expect(a).toEqual(b); same(a, b); Function refactoring 17 lines in 5 files 

Multiline

add 
export default withAmp(Box) 

export default Box 
export const config 
= { withAmp: true } 

API migration 28 lines in 13 files 

class Example { 

Multiloc 

constructor() { 
this.func = 
this.func.bind(this); 

} 
func() {} 

class Example { 
constructor() {} 
func = () => {}  

} 

AST transformation 50 lines in 10 files 

} 

Table 2: Summary results for each task. The number of participants that completed each task and the average task time are shown. After 
each task, they were asked to rate (1) “this task was difficult to complete;” (2) “this task was tedius;” and (3) “I encounter similar tasks in my 
work.” The rating scale as from left-to-right was: disagree (1), Disagree (2), Neither agree nor disagree (3), Agree (4), Strongly 
Agree (5). Median values precede each distribution. 

Frequency of task Difficulty rating Tediousness rating 

Task 

Constant-string

Gather-args 

Avg. 

 1:35 

3:09 

time taken # completed 

12 

Med. Dist. 

5 1.5 

2 

1.5 

Med. Dist. Med. Dist. 

2 

Multiline-add 

Multiloc 

4:34 

3:22 

12 

12 

10 

4 

4 

3 2 

2 

1.5 

2 

tasks, the difficulty of the task, and the tediousness of the task. All 
participants were able to complete Constant-string, Gather
args, and Multiline-add using reCode. The average completion 
time was less than than five minutes. Finally, two participants failed 
to complete (P1, P2) Multiloc because of an unexpected failure 
in the reCode synthesizer. The most complicated task, Multiloc, 
also appeared least frequently in participants daily work. Most 
participants encounter all other tasks frequently. 

7.2 Participant Feedback 
We group participants’ feedback using the steps from the reCode 
user experience: Find, Edit, and Generalize. Finally, we report par
ticipants’ feedback on the overall user experience. 

Find. All participants initiated the reCode experience using the 
“Find” feature very early on: participants either immediately started 
using “Find,” or they poked around a few files first, made a guess 
about a keyword, and then used “Find” to search for that keyword. 

Most participants (P1, P2, P3, P5, P7, P8, P9, P10, P11, P12) used 
an overly broad keyword rather than an elaborate but precise ex
pression (P4, P6). For instance, when performing Gather-args, 
P4 and P6 searched for expect\((.*)\).toEqual\((.*)\) , whereas all 

other participants searched for toEqual initially. Participants later 
added punctuation around the keyword as an ad hoc solution to 
narrow down the scope (for example, ).toEqual( ), because they 
“usually search for something very generic and see if I need to nar
row down my search later” (P9). Some participants reported that 
this is “what [they] would have done anyway” (P2), with or without 
reCode. 

Some participants expressed a desire for “structural search to 
prevent over-matching, because bind can appear anywhere and 

what I really want to find is all function calls of bind ” (P1, P4). 
However, these participants struggled to achieve this because they 
“don’t know how [they] would say it” (P1) and resorted to adding 
simple punctuation around the search term because it was “the best 
they could do” (P1). 

After performing the find, all participants (P1-P12) manually 
inspected more than one results before performing any changes 
because they “wanted to see all the possible cases to see if [they’re] 
overmatching” (P3). When navigating through the find results, they 
liked the “holistic view of all the results” (P1) in the Summary View 
Figure 2 .  A 

266



UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al. 

Change. After reCode displayed the find results, all participants 
(P1-12) proceeded to directly edit one of the found code locations. 

Direct edits helped participants make sense of the transformation 
and estimate “if it’s easy enough to go through things manually. If 
it takes more than 5 minutes, [they’ll] go for other tools” (P7). After 
editing one or more find results, participants noticed reCode’s 
suggestions inline and noted that reCode “figured out what [they] 
did” (P3) and “picked up on the pattern now that [they] did it a 
couple of times” (P5). 

Participants appreciated that direct editing is “way faster and 
much easier than writing regexes” (P10) and the fact that reCode 
“analyzes what you are doing and you don’t have to write scripts 
by hand” (P1). But for trivial tasks like constant string replacement 
(Constant-string), some participants (P4, P5) were fine with using 
the replace box in find-and-replace: “I was equally satisfied here 
[directly editing using reCode], but I might fall back to regular 
find-and-replace since this is not a challenging task” (P4). 

Some participants (P2, P4, P6, P7) requested better visibility of 
the system’s status. For instance, in the first task, P7 asked, “Is this 
running? I guess I’ll just keep doing thing manually” until reCode 
displayed the first inline diff in their editor pane. P7 wanted to 
“know it’s there in the first place” and “know if it starts working or 
not.” P2 needed “more confirmation in the UI that it’s searching” and 
P6 proposed adding “an indicator that say ‘suggestion in progress’ 
in the editor pane.” P4 speculated that “exposure might be key, 
because after getting used to it I understand the green bar is telling 
me if it’s active.” 

Generalize. All participants (P1-12) understood reCode’s sugges
tions after seeing inline diffs and inline actions (Figure 2 ) 
in the same file or yellow highlights in the Summary View (Fig
ure 2 ). 

P5 thought the inline diffs were “really cool because [they] 
wanted to see what things were before replacement and this way 
[via inline diffs] [they] can verify if everything’s right.” P12 said 
the inline diff and actions were “pretty intuitive, and just like git 
in VSCode. I can see the diffs inline and choose to accept or not. 
Very familiar.” P9 preferred our inline diffs to a separate window for 
find-and-replace; in their editors “screen real estate is important, 
and [a separate diff view] is too distracting.” 

After viewing a few of the suggestions by scrolling around and/or 
clicking through search results, participants felt that “it’s doing the 
right thing” (P12) and “trusted it like [they] trust ‘Rename Variable’ 
in VSCode” (P11). When performing Multiline-add, P6 deliber
ately looked for “the trickiest case” and found out “it’s reusing the 
component names correctly, now I think it works.” Some partici
pants (P4, P6, P10) directly edited the suggestion to test if reCode 
would update the rest of the suggestions as well, and found that 
“every string gets updated after I changed one of them, great!” (P6). 

After participants expressed some confidence in reCode’s sug
gestions, all of them (P1-P12) interacted with the inline actions 
(Figure 2 . For instance, P3 was “comfortable accepting all after 
reviewing a few items” but requested an “an ’Accept All in Project’ 
button to finish the whole thing.” However, after making the same 

( E ) F 

 A 

 F )

request as P3, P2 commented that “the engineer in me says be care
ful. I would compile and see if anything breaks. The diligent person 
in me says there shouldn’t be this [Accept All in Project] button to 
allow me to do it.” 

As noted in Section 5.3, reCode sometimes does not preserve the 
exact formatting of the developer’s original edit. For instance, P4 
noticed an extra new line in the suggestion and said: “Boo, it added 
this new line. I deleted the new line character, so should you!” For 
the most complicated task (Multiloc), a few participants requested 
the ability “to link two related edits and if I click on accept changes 
for 

raisebox-4pt bind , the function below should change, too” (P10). 
P9 mentioned the same feature because “in [their] head, these two 
changes are grouped together and [they] wished the tool could 
show [them] how they are related.” 
End-to-end feedback. Participants liked the overall reCode expe
rience because it “was really fast” (P1, P2, P10), “worked naturally” 
(P2, P5, P6, P12), “was easy to use” (P4, P7, P9, P12), and “saved time” 
(P2, P3, P4, P6, P8, P9, P10, P11). P9 noted that they “spent too much 
time battling things like regular expressions and this will be a huge 
productivity multiplier.” P2 appreciated how well reCode fits into 
their workflow because “it’s basically how I would do it normally.” 
P11 shared their experience with auto-completion tools and said, 
“it’s always trying to give me suggestions and I don’t need them 
most of the time and after a while I just turned it off.” Instead, P11 
preferred reCode’s workflow because “it’s more selective. Instead 
of listening passively and trying to come up a plan for me, it only 
works when I have a plan to actively change things.” 

When asked whether they will use a production version of re-
Code in the questionnaire after the study, participants responded 
either “Would use” (9/12) or “Probably use” (3/12). All participants 
asked when reCode would be shipped officially so they can start 
using it. They were excited to use reCode to automate a vari
ety of their daily tasks such as “writing repetitive tests” (P2) and 
“refactoring my Powershell scripts” (P4). Automatic synthesis of 
code transformations enabled them to have ways to perform a task 
“when the editor doesn’t have refactoring support” (P9). P4 gave it 
“10 out of 10” and said, “I’d use this daily. Sometimes when I get 50 
matches and I just thought I’ll just do it manually, but this thing 
is like ’do you want me to automate it?’ I love it!” P5 “loved the 
granularity of the tool,” and P9 said that because “find-and-replace 
is such a common thing, the ability to do this all directly [in my 
editor] makes this my favorite tool.” 

8 DISCUSSION 
The results of our evaluation suggest that reCode addresses the

design goals we formulated in Section 4. Participants found reCode 
provides a unified entry point for code transformations (D1), offers 
a lightweight way to transform their code (D2), and provides useful 
affordances to allow developers to incrementally inspect their code 
transformations and compare the before-and-after-results. In this 
section, we discuss the benefits of reCode’s unified interaction, 
developers’ expectations about code transformation explainability, 
and other insights about how developers might leverage reCode. 

          

267



reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by Example	 UIST ’21, October 10–14, 2021, Virtual Event, USA 

8.1	 Example-driven Intent through a 
Lightweight, Unified Interaction 

We found that developers frequently need to make code trans
formations, but existing tools require them to make unsatisfying 
trade-offs, particularly in the “murky middle.” reCode removes 
much of this decision-making dilemma by offering a unified entry-
point for their code transformation task. When using reCode, the 
developer does not have to consider the cost of switching out of 
their editing workflow or calculate the utility of automation (D1). 
Instead, they find and make manual edits as usual, and automat

ically get non-intrusive suggestions that perform the remaining 
edits on their behalf. 

Existing code transformation tools also force them to switch out 
of their editing workflow to automate these edits. For example, P9 
recalled that “they don’t want to switch out of my editors to do find-
and-replace. We really don’t like distractions from our workflows.” 

Our participants told us that using tools like regular expressions 
and AST transformers required a careful planning and authoring 
process. Before using any transformation tool, developers have to 
learn their intricacies. The cost of this learning is often a significant 
barrier to automating code transformation. As P7 reminded us, “if 
you have a problem to solve with regular expressions, now you have 
two problems.” reCode enables developers to make a variety of code 
transformations without needing to turn to regular expressions or 
another intricate code transformation language (D2). 

8.2	 Expectations about Explainability 
Developers are careful about code transformations, especially when 
an automated tool is performing the changes. Our participants ex
pressed a desire to iteratively and incrementally develop and test 
their code transformations. In addition, because code transforma

tions can have many edge cases, they were wary of transforming 
code without directly being able to observe the changes. 

In contrast to scripts that typically operate in batch across the 
entire project, participants preferred the ability to interactively 
inspect the code transformation and verify them inline through 
reCode. Instead of requiring developers to make all-in decisions on 
the code transformation, reCode iteratively generalize developers’ 
direct edits and provides the developer with autonomy over accept
ing, rejecting, or modifying individual suggestions. Importantly, the 
mixed-initiative workflow of reCode lets developers progressively 
evaluate the effect of their edits through concrete examples, while 
balancing automation and inspection (D3). 

8.3	 Reusable Code Transformations 
Developers often make code transformations that are highly con
textual and tailored to their own projects: while these code trans
formations are important for this developer, it’s unlikely that they 
would be able to find an off-the-shelf tool that already provides the 
transformation they need. As a result, developers mostly performed 
most edits manually and repeatedly. When working with reCode, 
some participants thought the tool could be improved by allowing 
them to keep a personal “history” (P1), “export” (P3), or reusable 
catalog of their own transformations. 

Since the ReFazer* internally learns a code transformation, one 
possibility is for reCode to save or serialize this code transforma

tion so that the developer may reuse it at a later time without having 

to reinitiate a find-and-replace interaction from scratch. A more am

bitious representation would to provide a readable representation 
of the code [12], perhaps by presenting the developer with a close
to-source language like Comby [50], a structural find-and-replace 
template, or a codemod script like jscodeshift. 

The ability to offer the developer a readable representation of 
the code transformation has several benefits. If the developer is 
able to read the synthesized program, they may be more comfort

able accepting code transformations without needing to manually 
inspect and verify as many locations (D3). The developer may also 
want to use the synthesized program to learn how to use one of 
the many code transformation languages (D2). As one example, the 
Gather-args task can be written as the following Comby script: 
match template: 'expect(:[a]).toEqual(:[b])' 
rewrite template: 'same(:[a], :[b])' 

For large-scale projects, developers might use reCode to syn
thesize a transformation from a smaller project, and then use the 
script to “bootstrap” (P3) a more elaborate script for code transfor
mations in a larger project. Alternatively, an interesting possibility 
is that the developer may already have a script that they want to 
understand, apply, or refine. In this situation, instead of bootstrap
ping find-and-replace with search keywords, they could bootstrap 
the reCode experience using their script—and use reCode, just 
as before, to understand or refine the script through the unified 
reCode interaction (D1). 

9 CONCLUSION 
Our formative study showed that developers struggled to automate 
code transformations using existing tools; as result, they abandoned 
these tools and often ended up performing the changes manually. 
To address their needs, we designed reCode, an example-driven, 
mixed-initiative interaction that improves on their familiar find-
and-replace experience. After performing a simple code search, 
reCode users can demonstrate their intended changes by directly 
editing code, and reCode automatically learns a more general code 
transformation to help developers complete the task. Participant 
feedback from our usability evaluation suggests that the reCode 
example-driven experience is intuitive, complements their existing 
workflow, and offers a unified approach to conveniently tackle a 
variety of common yet frustrating scenarios for code transforma

tions. Developers in our evaluation were enthusiastic about using 
reCode in their own day-to-day work. 

ACKNOWLEDGMENTS 
We thank developers at Microsoft for their helpful insights and for 
participating in the interviews and studies. This material is based 
in part upon work supported by the National Science Foundation 
under Grant No. 1910264. 

REFERENCES 
[1] [n.d.]. codemod. https://github.com/facebook/codemod 
[2] [n.d.]. ESLint. https://eslint.org/ 
[3] [n.d.]. jscodeshift. https://github.com/facebook/jscodeshift 
[4] [n.d.]. Pylint. https://www.pylint.org/ 
[5] [n.d.]. ReSharper. https://www.jetbrains.com/resharper/ 
[6] [n.d.]. ripgrep. https://github.com/BurntSushi/ripgrep 
[7] [n.d.]. Roslyn Analyzers. https://github.com/dotnet/roslyn-analyzers 
[8] [n.d.]. Sublime Text. https://www.sublimetext.com/ 

268

http:https://www.sublimetext.com
https://github.com/dotnet/roslyn-analyzers
https://github.com/BurntSushi/ripgrep
https://www.jetbrains.com/resharper
http:https://www.pylint.org
https://github.com/facebook/jscodeshift
http:https://eslint.org
https://github.com/facebook/codemod


UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al. 

[9] [n.d.]. Visual Studio Code. https://code.visualstudio.com/ 
[10]	 I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. 1998. Clone detection 

using abstract syntax trees. In Proceedings. International Conference on Software 
Maintenance. 368–377. https://doi.org/10.1109/ICSM.1998.738528 

[11]	 Danny Dig and Ralph Johnson. 2006. How do APIs evolve? A story of refactoring. 
Journal of Software Maintenance and Evolution: Research and Practice 18, 2 (2006), 
83–107. https://doi.org/10.1002/smr.328 

[12]	 Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani. 2020. 
Wrex: A unified programming-by-example interaction for synthesizing readable 
code for data scientists. In Proceedings of the 2020 CHI Conference on Human 
Factors in Computing Systems (CHI ’20). Association for Computing Machinery, 
1–12. https://doi.org/10.1145/3313831.3376442 

[13]	 R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. 2013. Boa: A language 
and infrastructure for analyzing ultra-large-scale software repositories. In 2013 
35th International Conference on Software Engineering (ICSE). 422–431. https: 
//doi.org/10.1109/ICSE.2013.6606588 ISSN: 1558-1225. 

[14] Jeffrey E. F. Friedl. 2006. Mastering Regular Expressions (3rd ed. ed.). O’Reilly. 
[15]	 Yuzo Fujishima. 1998. Demonstrational automation of text editing tasks involving 

multiple focus points and conversions. In Proceedings of the 3rd International 
Conference on Intelligent User Interfaces (IUI ’98). Association for Computing 
Machinery, 101–108. https://doi.org/10.1145/268389.268408 

[16]	 Xiang Gao, Shraddha Barke, Arjun Radhakrishna, Gustavo Soares, Sumit Gulwani, 
Alan Leung, Nachiappan Nagappan, and Ashish Tiwari. 2020. Feedback-driven 
semi-supervised synthesis of program transformations. Proceedings of the ACM 
on Programming Languages 4, OOPSLA (Nov. 2020), 219:1–219:30. https://doi. 
org/10.1145/3428287 

[17]	 Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-
output examples. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Sym
posium on Principles of Programming Languages (POPL ’11). Association for Com
puting Machinery, 317–330. https://doi.org/10.1145/1926385.1926423 

[18]	 Sumit Gulwani. 2016. Programming by examples. Dependable Software Systems 
Engineering 45, 137 (2016), 3–15. 

[19]	 Eric Horvitz. 1999. Principles of mixed-initiative user interfaces. In Proceedings 
of the SIGCHI conference on Human Factors in Computing Systems (CHI ’99). 
Association for Computing Machinery, 159–166. https://doi.org/10.1145/302979. 
303030 

[20]	 T. Kamiya, S. Kusumoto, and K. Inoue. 2002. CCFinder: A multilinguistic token-
based code clone detection system for large scale source code. IEEE Transactions 
on Software Engineering 28, 7 (July 2002), 654–670. https://doi.org/10.1109/TSE. 
2002.1019480 

[21]	 A. Ketkar, A. Mesbah, D. Mazinanian, D. Dig, and E. Aftandilian. 2019. Type 
migration in ultra-large-scale codebases. In Proceedings of the 2019 International 
Conference on Software Engineering (ICSE ’19). 1142–1153. https://doi.org/10. 
1109/ICSE.2019.00117 

[22]	 Miryung Kim and David Notkin. 2009. Discovering and representing systematic 
code changes. In Proceedings of the 31st International Conference on Software 
Engineering (ICSE ’09). Association for Computing Machinery, 309–319. https: 
//doi.org/10.1109/ICSE.2009.5070531 

[23]	 Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. 2005. An empir
ical study of code clone genealogies. In Proceedings of the 13th ACM SIGSOFT 
International Symposium on Foundations of Software Engineering (ESEC/FSE ’13). 
Association for Computing Machinery, 187–196. https://doi.org/10.1145/1081706. 
1081737 

[24]	 P. Kreutzer, G. Dotzler, M. Ring, B. M. Eskofier, and M. Philippsen. 2016. Automatic 
clustering of code changes. In 2016 IEEE/ACM 13th Working Conference on Mining 
Software Repositories (MSR). 61–72. 

[25]	 Tessa Lau, Steven A. Wolfman, Pedro Domingos, and Daniel S. Weld. 2001. Learn
ing repetitive text-editing procedures with SMARTedit. In Your Wish is My 
Command: Programming by Example. Morgan Kaufmann Publishers Inc., 209– 
226. 

[26]	 Toshiyuki Masui and Ken Nakayama. 1994. Repeat and predict: Two keys to 
efficient text editing. In Proceedings of the SIGCHI Conference on Human Factors 
in Computing Systems (CHI ’94). Association for Computing Machinery, 118–130. 
https://doi.org/10.1145/191666.191722 

[27]	 David Maulsby and Ian H. Witten. 1997. Cima: An interactive concept learning 
system for end-user applications. Applied Artificial Intelligence 11, 7-8 (Oct. 1997), 
653–671. https://doi.org/10.1080/088395197117975 

[28]	 Lee E. McMahon. 1990. Sed: A non-interactive text editor. In UNIX Vol. II: Research 
System (10th ed.). W. B. Saunders Company, 389–397. 

[29]	 Na Meng, Miryung Kim, and Kathryn S. McKinley. 2011. Sydit: Creating and 
applying a program transformation from an example. In Proceedings of the 19th 
ACM SIGSOFT symposium and the 13th European conference on Foundations of 
software engineering (ESEC/FSE ’11). Association for Computing Machinery, 440– 
443.	 https://doi.org/10.1145/2025113.2025185 

[30]	 Na Meng, Miryung Kim, and Kathryn S. McKinley. 2013. LASE: Locating and 
applying systematic edits by learning from examples. In Proceedings of the 2013 
International Conference on Software Engineering (ICSE ’13). 502–511. 

[31]	 T. Mens and T. Tourwe. 2004. A survey of software refactoring. IEEE Transactions 
on Software Engineering 30, 2 (Feb. 2004), 126–139. https://doi.org/10.1109/TSE. 
2004.1265817 

[32]	 L. G. Michael, J. Donohue, J. C. Davis, D. Lee, and F. Servant. 2019. Regexes are 
hard: Decision-making, difficulties, and risks in programming regular expres
sions. In 2019 34th IEEE/ACM International Conference on Automated Software 
Engineering (ASE). 415–426. https://doi.org/10.1109/ASE.2019.00047 

[33]	 Robert C. Miller and Alisa M. Marshall. 2004. Cluster-based find and replace. In 
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems 
(CHI ’04). Association for Computing Machinery, 57–64. https://doi.org/10.1145/ 
985692.985700 

[34]	 Robert C. Miller and Brad A. Myers. 2001. Interactive simultaneous editing of 
multiple text regions. In Proceedings of the General Track: 2001 USENIX Annual 
Technical Conference. USENIX Association, 161–174. 

[35]	 Anders Miltner, Sumit Gulwani, Vu Le, Alan Leung, Arjun Radhakrishna, Gustavo 
Soares, Ashish Tiwari, and Abhishek Udupa. 2019. On the fly synthesis of edit 
suggestions. Proceedings of the ACM on Programming Languages 3, OOPSLA, 
Article 143 (Oct. 2019), 29 pages. https://doi.org/10.1145/3360569 

[36]	 Maxim Mossienko. 2004. Structural search and replace: What, why, and how-to. 
OnBoard Magazine (2004). 

[37]	 E. Murphy-Hill and A. P. Black. 2008. Refactoring tools: Fitness for purpose. IEEE 
Software 25, 5 (Sept. 2008), 38–44. https://doi.org/10.1109/MS.2008.123 

[38]	 Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. 2012. How We 
Refactor, and How We Know It. IEEE Transactions on Software Engineering 38, 1 
(Jan. 2012), 5–18. https://doi.org/10.1109/TSE.2011.41 Conference Name: IEEE 
Transactions on Software Engineering. 

[39]	 B. A. Myers. 1990. Invisible programming. In Proceedings of the 1990 IEEE Work
shop on Visual Languages. 203–208. https://doi.org/10.1109/WVL.1990.128407 

[40]	 Brad A. Myers and Jeffrey Stylos. 2016. Improving API usability. Commun. ACM 
59, 6 (May 2016), 62–69. https://doi.org/10.1145/2896587 

[41]	 Hoan Anh Nguyen, Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N. Nguyen, 
and Hridesh Rajan. 2013. A study of repetitiveness of code changes in soft
ware evolution. In Proceedings of the 28th IEEE/ACM International Conference 
on Automated Software Engineering (ASE’13). IEEE Press, 180–190. https: 
//doi.org/10.1109/ASE.2013.6693078 

[42]	 H. A. Nguyen, T. N. Nguyen, D. Dig, S. Nguyen, H. Tran, and M. Hilton. 2019. 
Graph-based mining of in-the-wild, fine-grained, semantic code change patterns. 
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE) 
(ICSE ’19). 819–830. https://doi.org/10.1109/ICSE.2019.00089 

[43]	 Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar Al-Kofahi, and 
Tien N. Nguyen. 2010. Recurring bug fixes in object-oriented programs. In 
Proceedings of the 32nd ACM/IEEE International Conference on Software Engi
neering - Volume 1 (ICSE ’10). Association for Computing Machinery, 315–324. 
https://doi.org/10.1145/1806799.1806847 

[44]	 Robert P. Nix. 1985. Editing by example. ACM Transactions on Programming 
Languages and Systems 7, 4 (Oct. 1985), 600–621. https://doi.org/10.1145/4472. 
4476 

[45]	 Andreas J. Pilavakis. 1989. The vi Editor. In UNIX Workshop, Andreas J. Pilavakis 
(Ed.). Macmillan Education UK, 59–65. https://doi.org/10.1007/978-1-349-19900
6_6 

[46]	 Veselin Raychev, Max Schäfer, Manu Sridharan, and Martin Vechev. 2013. Refac
toring with synthesis. Proceedings of the ACM on Programming Languages, 339– 
354.	 https://doi.org/10.1145/2509136.2509544 

[47]	 Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit 
Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. 2017. Learning syntactic 
program transformations from examples. In 2017 IEEE/ACM 39th International 
Conference on Software Engineering (ICSE). 404–415. https://doi.org/10.1109/ 
ICSE.2017.44 

[48]	 Richard M Stallman. 1981. EMACS the extensible, customizable self-documenting 
display editor. In Proceedings of the ACM SIGPLAN SIGOA Symposium on Text 
Manipulation. 147–156. 

[49]	 Atsushi Sugiura and Yoshiyuki Koseki. 1996. Simplifying macro definition in 
programming by demonstration. In Proceedings of the 9th Annual ACM Symposium 
on User Interface Software and Technology (UIST ’96). Association for Computing 
Machinery, 173–182. https://doi.org/10.1145/237091.237118 

[50]	 Rijnard van Tonder and Claire Le Goues. 2019. Lightweight multi-language 
syntax transformation with parser parser combinators. In Proceedings of the 40th 
ACM SIGPLAN Conference on Programming Language Design and Implementation 
(PLDI 2019). Association for Computing Machinery, 363–378. https://doi.org/10. 
1145/3314221.3314589 

[51]	 Louis Wasserman. 2013. Scalable, example-based refactorings with refaster. In 
Proceedings of the 2013 ACM Workshop on Workshop on Refactoring Tools (WRT ’13). 
Association for Computing Machinery, 25–28. https://doi.org/10.1145/2541348. 
2541355 

[52]	 Andrew J. Werth and Brad A. Myers. 1993. Tourmaline (abstract): Macrostyles by 
example. In Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human 
Factors in Computing Systems (CHI ’93). Association for Computing Machinery, 
532.	 https://doi.org/10.1145/169059.169532 

269

https://doi.org/10.1145/169059.169532
https://doi.org/10.1145/2541348
https://doi.org/10
https://doi.org/10.1145/237091.237118
http:ICSE.2017.44
https://doi.org/10.1109
https://doi.org/10.1145/2509136.2509544
https://doi.org/10.1007/978-1-349-19900
https://doi.org/10.1145/4472
https://doi.org/10.1145/1806799.1806847
https://doi.org/10.1109/ICSE.2019.00089
https://doi.org/10.1145/2896587
https://doi.org/10.1109/WVL.1990.128407
https://doi.org/10.1109/TSE.2011.41
https://doi.org/10.1109/MS.2008.123
https://doi.org/10.1145/3360569
https://doi.org/10.1145
https://doi.org/10.1109/ASE.2019.00047
https://doi.org/10.1109/TSE
https://doi.org/10.1145/2025113.2025185
https://doi.org/10.1080/088395197117975
https://doi.org/10.1145/191666.191722
https://doi.org/10.1145/1081706
https://doi.org/10
https://doi.org/10.1109/TSE
https://doi.org/10.1145/302979
https://doi.org/10.1145/1926385.1926423
https://doi
https://doi.org/10.1145/268389.268408
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1002/smr.328
https://doi.org/10.1109/ICSM.1998.738528
http:https://code.visualstudio.com

	Abstract
	1 Introduction
	2 A Demo of reCode
	3 Background and Related Work
	3.1 Challenges of Making Code Transformations
	3.2 Programmatic Approaches to Code Transformations
	3.3 Editing by Example

	4 Formative Interviews and Design Goals
	5 System Design and Implementation
	5.1 reCode Workflow
	5.2 Overview of ReFazer*
	5.3 Limitations and Future Work

	6 USABILITY EVALUATION OF RECODE
	6.1 Participants and Setup
	6.2 Tasks
	6.3 Protocol

	7 Results
	7.1 Efficiency and Effectiveness
	7.2 Participant Feedback

	8 Discussion
	8.1 Example-driven Intent through a Lightweight, Unified Interaction
	8.2 Expectations about Explainability
	8.3 Reusable Code Transformations

	9 Conclusion
	Acknowledgments
	References



