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Figure 1: An overview of our implementation of screen parsing. To infer the structure of an app screen, our system (i) detects 
the location and type of UI elements from a screenshot, (ii) predicts a graph structure that describes the relationships between 
UI elements, and (iii) classifes groups of UI elements. 

ABSTRACT 
Automated understanding of user interfaces (UIs) from their pixels 
can improve accessibility, enable task automation, and facilitate 
interface design without relying on developers to comprehensively 
provide metadata. A frst step is to infer what UI elements exist on 
a screen, but current approaches are limited in how they infer how 
those elements are semantically grouped into structured interface 
defnitions. In this paper, we motivate the problem of screen parsing, 
the task of predicting UI elements and their relationships from a 
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screenshot. We describe our implementation of screen parsing and 
provide an efective training procedure that optimizes its perfor-
mance. In an evaluation comparing the accuracy of the generated 
output, we fnd that our implementation signifcantly outperforms 
current systems (up to 23%). Finally, we show three example appli-
cations that are facilitated by screen parsing: (i) UI similarity search, 
(ii) accessibility enhancement, and (iii) code generation from UI 
screenshots. 
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1 INTRODUCTION 
User interfaces are, unsurprisingly, designed for consumption by 
human beings, and it can be difcult for automated systems to 
understand what functionality is present in a user interface, how 
the diferent components of the interface work together, and how it 
can be operated to accomplish some goal. This is particularly true if 
the automated system does not have access to any meta-data about 
the user interface, such as view hierarchies or accessibility tags, or 
if this information is missing or incompletely defned, as is often 
the case. Automated user interface understanding systems could 
ofer many benefts. For example, a screen reader (e.g., VoiceOver 
and TalkBack) could facilitate access to user interfaces for blind and 
visually impaired users when the underlying app does not provide 
appropriate meta-data [41], and task automation agents (e.g., Siri 
Shortcuts and IFTTT) could allow users to automate repetitive or 
complex tasks with their devices more efciently. These benefts 
are gated on how well these systems can understand and interact 
with the underlying applications. Many of today’s systems rely 
on the availability of UI meta-data and fail when this information 
is unavailable. To overcome this recent eforts have focused on 
predicting the presence of an app’s on-screen elements solely from 
its visual appearance. 

Structure is a core property of UIs that is refected both in how 
they are constructed and how they are used. However, many current 
approaches to visual modeling of UIs ignore or fail to centralize 
this aspect. In this paper, we present a new approach called screen 
parsing, which applies techniques used in NLP for natural language 
parsing to produce machine-learned models that predict the UI 
hierarchy of an app from its screenshot. Our approach involves 
(i) a Faster-RCNN model for detecting the set of elements on a 
screen, (ii) a stack-based transition parser model for predicting the 
hierarchy of how those elements relate to each other, and (iii) a Deep 
Averaging Network model that classifes element groupings. We 
describe the details and training procedure of our implementation 
of screen parsing, and conduct an evaluation in which we compare 
the performance of our system against baseline approaches. Using 
a set of 5 metrics, we show that our implementation performs up 
to 23% better than baseline systems depending on the performance 
metric used. Finally, we show three example applications enabled 
by our implementation of screen parsing. 

More broadly, we believe that systems can beneft from perceiv-
ing UI screens as humans do – not as a set of elements, but as a 
coordinated and organized presentation of content. Structural un-
derstanding is an important step that can help systems reason about 
relationships between interaction controls and content. Our model 
implementation is trained to predict one type of relation (links in 
the view hierarchy), but we believe screen parsing and our mod-
eling approach can be extended to others as well (e.g., navigation 
order). 
To summarize, this paper makes the following contributions: 

• A problem defnition of screen parsing which is useful for a 
wide range of UI modeling applications. 

• A description of our implementation of screen parsing and 
its training procedure. 

• A comprehensive evaluation of our implementation with 
baseline comparison. 

• Three implemented examples of how our model can be used 
to facilitate downstream applications such as (i) UI simi-
larity, (ii) accessibility metadata generation, and (iii) code 
generation. 

2 RELATED WORK 

2.1 Reverse Engineering UIs 
Many approaches to visual UI modeling focus on “reverse engineer-
ing" hidden attributes and potentially modifying them at runtime. 
Reverse-engineering methods often focus on extracting semantic 
attributes from visible information presented by the app (i.e., pixel 
information), which allows them to support a broader array of 
use-cases. 

An important use-case is facilitating non-visual access to apps for 
people with disabilities. Outspoken [34] was of one the frst screen 
readers that supported GUIs, which required it to describe both text 
and graphical elements of the screen. To process icons and other 
pictorial elements, the system maintained a database of graphical 
elements (paired with a verbal description) and matched on-screen 
elements to descriptions of similar items. Today, the ecosystem of 
UI toolkits is much larger and permits much greater functionality, 
including allowing developers to embed icon and image descriptions 
in an app’s metadata, yet many apps are still inaccessible because 
they do not include this data. To support inaccessible apps, recent 
screen reader technology [7, 41] uses deep convolutional neural 
networks to generate element descriptions and other accessibility 
metadata. 

Reverse engineering methods can also be used to extend existing 
GUI applications. A common approach to interface with applica-
tions without an application programming interface (API) is to 
defne “macros" that automate sequences of key-strokes and mouse 
movements. To acquire interaction targets, many automation toolk-
its provide functions for searching the screen for pixel values and 
returning their coordinates [2]. Sikuli [39] and PAX [5] are systems 
that improve the localization of targets by supporting more ad-
vanced matching techniques (e.g., bitmap matching and heuristics) 
and combining hierarchical information extracted from an external 
source, such as the system window manager. Elements localized us-
ing pixel-based methods can also be used to modify apps at runtime 
[9], and previous work has investigated the beneft of hierarchy 
prediction (using heuristics) for this use-case. 

Finally, reverse-engineering approaches have been applied to 
generate code from UI mockups or screenshots. A subset of these 
approaches have focused on translating hand-drawn wireframes to 
GUI code. These tools [1, 23] are useful for designers who wish to 
quickly sketch and prototype possible UI layouts. A more complex 
version of this task is generating code from complete UI screenshots, 
as it requires that the system handle the stylistic and structural 
variation present in real-world app screens. REMAUI [29] is a sys-
tem that uses heuristics to combine OCR detection results and 
cropped patches from the original screenshot to generate working 
UI code. Pix2Code [4] is an end-to-end code generation model that 
uses a CNN encoder to encode a screenshot and a RNN decoder 
to generate code. UI2Code uses a similar architecture to generate 
a “GUI Skeleton" from a screenshot [6] that describes the relative 
positioning of UI elements. 
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2.2 Defning and Extracting UI Models 
While reverse-engineering systems can efectively predict a subset 
of a screen’s attributes, automated systems aimed at deeper and 
more complex interactions with UIs must support higher-level, 
semantic understanding of UIs. We reviewed literature related to 
model-based user interface (MBUI) development, which here we use 
as a conceptual framework for describing how UIs are constructed, 
presented, and used. 

MBUI development refers to a development process that (i) frst 
defnes high-level models for an interface, then (ii) produces code 
that conforms to that model [14]. Models, among other things, 
detail what data the UI will display and how it will be used, and 
are a helpful tool for organizing the creation of UI applications. 
Puerta [32] describes an example of how this process is applied 
and categorizes common types of models (e.g., data model, domain 
model, presentation model). Because a well-designed model can 
describe all or nearly all aspects of an interface, it is often possible 
to automatically generate code from model specifcations [12, 30]. 

Similarly, it may be useful for automated systems to extract or 
infer models from a fnished application, as doing so would reveal 
semantics. In this paper, we present an system that predicts the UI 
hierarchy (closely related to the presentation model) of an app from 
its screenshot. More broadly, our formulation of screen parsing as 
visual inference of structured relationships is useful for extracting 
UI models, which are often structured relationships among items. 

2.3 Structured Prediction from Visual 
Information 

To provide additional background about our work and opportunities 
for UI modeling, we review some machine learning approaches that 
can be used to predict structure from visual information. 

Many approaches to structured prediction have their roots in nat-
ural language processing (NLP). Early work on scene segmentation 
used stochastic grammars to analyze layouts (known as geomet-
ric parsing [35]) or construct hierarchical representations from 
proposal regions (i.e., image patches) [37, 42]. However, it can be 
difcult to defne or induce a grammar that explicitly describes 
all primitives and relationships and work well with continuous 
attributes. Moreover, many grammars are designed to work with 
sequential input (common in language) rather than spatial input 
(common in vision). Socher et al. propose a more general architec-
ture that learns to recursively join related items in both images and 
text using a neural network model [36]. 

More recent work in the computer vision literature has focused 
on visual scene understanding through scene graphs. Scene graphs 
represent relationships between objects detected in an image and 
are described as a collection of relationship triplets (<subject, pred-
icate, object>) [20]. Approaches to scene graph detection vary – 
some models frst perform object detection then consider all possi-
ble pairs [40], while others directly generate a set of likely relation-
ships [38]. 

As we will discuss later, screen parsing is closely related to these 
structured visual understanding tasks and is targeted towards as-
pects UI modeling. The design of our model is also based on many 
of the same core ideas, which we implement in service of our task 
defnition. 

Tab Bar

List View

Root

Nav Bar

Nodes in the 
output are 
grounded to 
UI elements

The output is 
abstractive

The graph is 
complete, 

connecting all 
input elements

Figure 2: We show an example of an input screen (Left) and 
the corresponding screen parse (Right). The graph contains 
all of the visible elements on the screen (the output is com-
plete), groups them together to form higher-level structures 
(abstractive), and nodes can be used to reference UI elements 
(the output is grounded). 

3 SCREEN PARSING 

3.1 Problem Formulation 
We defne the problem of screen parsing, which we use to refer to 
the prediction of structured UI models from visual information. As 
a review, we use UI models to refer to high-level abstractions of 
UI semantics e.g., logic, presentation, and associated tasks [14]. A 
screen parsing model takes a UI screenshot as input and produces a 
graph representation of a model as output. The connections in the 
graph can be used to express a variety of semantic and syntactic 
concepts. For example, one might use an edge to represent interac-
tion fow (e.g., the “Username" text feld should be flled out before 
tapping on the “Login" button). 

In this paper, we focus on generating an app’s UI hierarchy (i.e., 
presentation model) which is a specifcation of how UI elements 
are grouped and rendered on the screen [32]. Figure 2 shows an 
example of a screen and corresponding UI hierarchy graph. The 
properties of UI hierarchies introduces some constraints on the 
types of valid outputs. 

• Complete – the output is a single tree that spans all of the 
detected UI elements. 

• Grounded – Nodes in the output reference specifc UI ele-
ments in the screen. 

• Abstractive – The output can group elements together (po-
tentially more than once) to form higher-level structures. 

Moreover, all UI hierarchies can be described as directed trees, which 
we constrain our system to generating. 

3.2 Comparison to Related Problems 
Screen parsing is closely related to and, in many ways, motivated 
by other problems in the UI modeling and computer vision. Specif-
cally, we select three similar tasks for comparison: (i) UI Element 
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Table 1: This table shows the requirements of several down-
stream applications and support for them among our im-
plementation and related approaches. Screen parsing’s prob-
lem formulation allows it to be applied more widely. 

Requirements Complete Grounded Abstractive 

Applications 
Structural Similarity N N Y 
Screen Reader N Y N 
Code Generation Y N N 

Approaches 
Scene Graph Y Y N 
GUI Skeleton N N Y 
Heuristics Y Y N 
Our Implementation Y Y Y 

Detection, (ii) GUI Skeleton Generation, and (iii) Scene Graph Gen-
eration. All of these approaches generate semantic output from a 
visual representation of a screen (i.e., screenshot). However, there 
are important diferences that make screen parsing applicable to a 
wider range of down-stream applications (Table 1). 

3.2.1 UI Element Detection. UI Element Detection is a specifc 
application of object detection, which extract a set of class-labeled 
bounding boxes from an image. When trained and applied to UI 
screens, the prediction output corresponds to the set of UI elements 
on the screen, which is useful on its own or as a “frst-pass" step 
for further processing. The main diference from screen parsing is 
that UI Element results in a fat structure, which prevents it from 
representing relationships between elements. Heuristics can be 
applied to detect and group elements; however there is no guarantee 
that all elements will be connected. 

3.2.2 GUI Skeleton Generation. The GUI Skeleton is an artifact 
produced by the UI2Code system that describes the types of widgets 
in a screen and their hierarchical structure [6]. Similar to our model 
implementation, UI2Code is trained to produce trees processed 
from view hierarchies. 

It is important to note that an app’s GUI Skeleton is diferent its 
UI hierarchy (the target output of our model). Namely, it doesn’t 
support we what refer to as element grounding, the ability to match 
items in its output to its input. For example, an app’s GUI Skeleton 
might indicate that the screen contains a list container with three 
buttons, but it is unable to indicate which three buttons (on a screen 
with many buttons) belong to the list. Thus, the GUI Skeleton 
cannot be used to support certain applications, such as screen reader 
navigation. 

3.2.3 Scene Graph Generation. Screen Graph Generation (SGG) is 
a visual scene understanding problem that models the relationships 
between visible objects using scene graphs. Like our model, SGG 
models are designed to process an input image and generate a 
graph whose nodes are detected objects in the scene and edges are 
semantic relationships between those objects. 

Scene graphs are often constructed to describe real-world vi-
sual scenes [21]. Unlike UIs, which are typically constructed using 
nested views stemming from a single root node, visual scenes can 

contain multiple entities, represented as independent sub-graphs. 
We purposefully constrained our model to produce a single con-
nected tree to refect this property of UIs. 

Most edges in a scene graph correspond to direct relationships 
between detected objects, and SGG models often consider pairwise 
relationships rather than hierarchical ones. Because of this, a strong 
and frequently-used baseline for SGG is computing the prior prob-
abilities of relationships between object classes (ignoring position) 
on the training set [40]. Edges between leaf nodes are relatively 
rare among UI hierarchies, as most elements are indirectly joined 
by container elements. 

4 IMPLEMENTATION 
Our implementation of screen parsing uses separate models to (i) 
detect elements from a screenshot, (ii) group them together in a 
graph structure, and (iii) predict labels for the element groups. 

4.1 UI Element Detection 
We used a standard object detection model to extract the set of UI 
elements in a screen and their parameters. Specifcally, we trained 
a Faster-RCNN [33] model with a ResNet-50 [16] backbone on our 
UI screen dataset. Before feeding an image to the element detection 
model, we resized images to 256x256 and normalized each input 
channel to have a mean of 0 and standard deviation of 0.5. We 
frst run our detection model on an input screenshot and keep all 
detections that have a confdence of at least 0.7. We then apply 
non-max suppression to remove overlapping detections with lower 
confdence (IoU threshold of 0.5). 

4.2 UI Hierarchy Prediction 
After a set of detections is obtained from the Element Detection 
model, the next step is to predict their hierarchical relationship. A 
natural way of representing this is using a graph structure, where 
elements are linked to one another with parent-child relationships. 
Intuitively, the problem can be thought of as generating a com-
plete graph (i.e., the UI hierarchy) given the leaf nodes (i.e., visible 
elements). We draw inspiration from the NLP literature on text 
parsing, where such graph structures are often used to defne re-
lationships between words in a sentence. Specifcally, we build a 
top-down transition-based parser [25], which is able to construct 
any UI hierarchy1, and ofers fast and efcient decoding. 

Like other transition-based parsers, our model incrementally 
produces a graph structure through a sequence of actions, and is 
most closely related to the approach detailed in similar dependency 
parsers used in NLP [25]. Our model uses three data structures to 
perform parsing: the input bufer (l ) that holds the set of visible UI 
elements, the stack (σ ) that allows the model to traverse the graph, 
and the set of visited nodes (α ). The actions that we support are: 

• Arc – A directed edge is created between the node on top of 
σ (parent) and the node in l − α with the highest attention 
score (child). The child is pushed onto σ and added to α . 

• Emit – An intermediate node (represented as a zero-vector) 
is created and pushed onto σ . 

• Pop – σ is popped (i.e., the top element is removed). 
1Some parsing algorithms are designed to handle only a subset of parse trees known 
as projective trees, which makes them difcult to apply to view hierarchies. 
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Figure 3 provides an example of how these actions are used to 
parse a screen. 

4.2.1 Model Architecture. Our model architecture (Figure 3) con-
sists of a LSTM-based encoder and decoder. Our chosen encoder 
model, the LSTM [17], is a type of recurrent neural network efec-
tive at encoding long sequences. LSTMs are designed with special 
gated memory cells that enable it to perform computations useful 
for our task, such as counting and recognizing hierarchy [15]. The 
input of the model is the list of UI elements in a screen, sorted using 
y-position as the primary key and x-position as the secondary key. 
Each element represented as the concatenation of its position and 
a one-hot class vector for the UI element type (e.g., Text, Slider, 
Picture, etc...). The fnal hidden state is used as the initial state of 
the decoder. 

4.2.2 Decoding. At every decoding timestep, the LSTM is fed the (i) 
last hidden state (ht ) and (ii) the element at the top of σ . The LSTM 
returns (i) an output vector (ot +1) and (ii) an updated hidden state 
(ht +1). The output ot +1 is fed through a linear layer that produces 
the logits for the emit and pop actions. The output ot +1 is also 
used to compute the scaled dot-product attention between all of 
the encoded UI elements {s0, s1, ..., sN }. Finally, an action vector is 

i iconstructed by concatenating the emit (ue ) and pop (up ) activations 
with the attention scores. 

ej
T hii u = √ (1)j n 

i i p(ai |a0, a1, ..., ai−1, P) = so f tmax(concat(ue ,up ,u i )) (2) 
n is the size of the hidden state, P represents the input and a0, a1, ...an 
represent the previously selected actions. This process is repeated 
until all leaf nodes are added to α , which guarantees that the gen-
erated graph is complete. Finally, as a heuristic to prevent repeated 
Emit and Pop actions, we set the probability of the Emit action to 0 
if the last 10 actions does not contain an Attend. 

The output of the model is additionally smoothed to remove 
extraneous intermediate nodes. 

4.3 Group Labeling 

Table 2: Table of group labels considered for each dataset, 
along with number of occurrences. 

AMP RICO 

Tab Bar Button (63170) List Item (56186) 
Table (23693) Toolbar (29068) 
Tab Bar (19602) Card (6091) 
Collection (19420) Drawer (5756) 
Button (9779) Multi-Tab (3189) 
Segmented Control (2988) Bottom Navigation (236) 

To label the intermediate nodes in a tree, we train a separate clas-
sifer. We frst inspect each dataset to determine the most common 
labels assigned to “containers" and select 7 classes (including an 
“Other" class) based on frequency and relevance to our task (Table 
2). 

Our Group Labeling classifer is based of the Deep Averaging 
Network (DAN) architecture used for sentence classifcation [18]. 
To classify a given node, we retrieve a list of all of its descen-
dant elements. Each element in the list is embedded using using 
a feed-forward layer, and all of the embeddings are pooled using 
the sum operation. The pooled representation is fed into a MLP 
that predicts its label. Because some containers appear much more 
frequently than others, we use a weighted loss function for training 
(class-weighted cross entropy), and the F1-macro metric to measure 
validation and test performance. Our best group labeling models 
achieved F1-macro scores of 0.61 and 0.76, on AMP and RICO (our 
two training datasets). 

This approach to classifying element groups is a simple one that 
does not model the joint probability of multiple element groups 
(e.g., the probability of one group’s label conditioned on another’s). 
We will improve this aspect of our system in future work. 

5 TRAINING 
In this section, we primarily describe the training procedure for our 
system’s primary component – the UI Hierarchy model. We frst 
describe how we extracted and processed a dataset for this purpose. 
Then, we describe an efective approach for training parsing models 
that is especially relevant to UI Hierarchy modeling. 

5.1 Datasets 
We trained our models on two mobile UI datasets: (i) AMP, an 
internal dataset of 130,000 iOS screens, and (ii) RICO, a publicly 
available dataset of 80,000 Android screens [8]. Each dataset con-
tains screenshots, annotated screens, and their view hierarchies. 
Both datasets collected by crowdworkers who installed and ex-
plored popular apps across 20+ categories (in some cases excluding 
certain ones such as games, AR, and multimedia) on the iOS and 
Android app stores. More information is available in the original 
papers [8, 41]. Before training, three splits are created for each 
dataset: training (70%), validation (15%), and testing (15%). When 
training our system, we only train on screens with less than 64 
elements (to make training more efcient), but we do not apply this 
constraint to our test set. 

5.1.1 Node Correspondence. The frst step is to match up visible 
elements with a corresponding node in the view hierarchy. We ran 
our trained UI Element detector on screenshots, which produced a 
list of detections above a confdence threshold (0.7). We employed 
a best-cost matching algorithm [22] to compute the best match 
between the set of element detections and the set of bounding 
boxes found in the view hierarchy. The matching score between 
two bounding boxes are defned as the intersection-over-union 
(IoU) score, and pairs with low scores (IoU < 0.5) are ignored. 

5.1.2 Extracting Hierarchical Information. We found that many 
of the screens in our dataset had missing or mostly incomplete 
view hierarchies (i.e., most of the visible elements did not have 
a corresponding element in the view hierarchy). For example, in 
the AMP dataset, we found that around 40,000 screens had view 
hierarchies that were suitable for ground truths. To train and eval-
uate our model on a higher-quality subset, fltered both datasets. 
The AMP dataset was fltered by selecting screens where at least 
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Figure 3: Our UI Hierarchy prediction model is a stack-based transition parser. A Bi-directional LSTM encoder is fed a set of 
embedded UI elements and query tokens. The fnal hidden state is used to initialize a LSTM decoder network. The decoder 
produces a sequence of actions that describe the UI hierarchy using a continuously updated state (stack, bufer, and visited 
set). 

80% of annotated nodes had a corresponding element in the view 
hierarchy. The RICO dataset was fltered using scores from the node 
correspondence step – only screens where the average match score 
was greater than 0.8. 

5.1.3 Graph Smoothing. Because the view hierarchy is an artifact 
of the UI rendering system, it contains some irrelevant nodes and 
edges that represent class inheritance and singleton containers. We 
preprocessed view hierarchy graphs using a smoothing algorithm 
that removed nodes which (i) only had one child and (ii) did not 
correspond to a visible element. 

5.2 Training Algorithm 
A standard approach to training transition-based parsers is defn-
ing an “oracle" function that produces a sequence of actions for 
every view hierarchy. An example of an oracle function for graph-
structured data is running a depth-frst search and recording the 
order nodes were entered and exited (Figure 4). We compared two 
diferent approaches to oracle training for our element grouping 
model. 

The frst approach we compared is the static oracle, which is 
a simple and common implementation that traverses the graph 
deterministically (i.e., produces exactly one sequence of actions for 
every graph). For screen parsing, this requires defning an ordering 
function that sets a deterministic order by which children are pro-
cessed (e.g., children are ordered top-down, left-to-right). During 
training, the parser is trained to maximize the likelihood of the 
static oracle’s “gold" action at every timestep. 

The second approach is a dynamic oracle, which provides a set 
of optimal actions at every state for the model to learn instead of a 
single action. During training, if the model’s top-choice action is 
optimal then it is executed, and otherwise an optimal action from 
the oracle’s output is randomly selected and executed. While other 

Static Oracle
Sequences

Dynamic Oracle
Sequences

8, 6, POP, POP, EMIT, EMIT, 7, POP, 5, POP, … 8, 6, POP, POP, EMIT, EMIT, 7, POP, 5, POP, …

EMIT, EMIT, 0, POP, 13, POP, EMIT, 1, POP, 3, POP …

EMIT, EMIT, 7, POP, 5, POP, POP, EMIT, 2, POP, 4 …
EMIT, EMIT, 1, POP, 3, POP, POP, EMIT, 2, POP, 4 …
EMIT, EMIT, 2, POP, 4, POP, POP, EMIT, 5, POP, 7, …

EMIT, EMIT, 13, POP, EMIT, 11, POP, 12, POP, POP, …
EMIT, EMIT, EMIT, 11, POP, 12, POP, POP, 2, POP, …
EMIT, EMIT, EMIT, 12, POP, 11, POP, 13, POP, 0, …

8, 6, POP, POP, EMIT, EMIT, EMIT, 11, POP, 12, …
8, 6, POP, POP, EMIT, EMIT, 11, POP, 10, POP …

Explores left
subtree first

Explores right
subtree first

Explores center
subtree first

…

Figure 4: We explored two oracle-based training procedures 
for UI hierarchy prediction. For a given ground-truth UI 
hierarchy (top), a static oracle (left) only produces one se-
quence of optimal actions, while a dynamic oracle (right) 
produces all optimal sequences. 
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options are available [3, 13], we found that training to maximize 
the average likelihood of the set of optimal actions [26] led to the 
best results: Õ1 

p(zg |pt) = p(zдi |pt) (3)
|zg | zдi ∈zg 

6 EVALUATION 
We compared our fnal system (Screen Parser Dynamic) to (i) a base-
line system [41] and (ii) a baseline training procedure [25], and we 
show that our implementation signifcantly improves performance. 

Screen Recognition is a heuristic-based system used to generate 
accessibility metadata from pixel data, and it is similar to heuristic-
based approaches employed by other UI reverse-engineering work 
[29]. Similar to our system, Screen Recognition frst runs an ob-
ject detection model on a screenshot, which returns a set of ele-
ment detections. These detections are then processed using a set of 
manually-defned heuristics that check for features such as nesting, 
text grouping, tab grouping, and picture subtitles. 

We also used a baseline training procedure to train our system 
(Screen Parser Static), and we show that our chosen approach sig-
nifcantly outperforms standard training methods for NLP parsers. 

To summarize, we compared the following systems in our evalu-
ation: 

• RCNN Oracle - This is not a system; it represents the best 
possible matching between the RCNN detections and the 
ground truth hierarchy. This gives a rough bound for the 
best-case parsing performance given the accuracy of the UI 
element detector. 

• Screen Recognition - The complete Screen Recognition with 
its original UI element detector and heuristics. 

• Screen Recognition + RCNN - The Screen Recognition heuris-
tics run on the output of our RCNN-based UI element detec-
tor. When run on the RICO dataset, we used an RCNN model 
trained on the RICO dataset and mapped the the labels from 
the RICO label set to the AMP equivalent (the heuristics 
were designed for AMP). 

• Screen Parser Static - The Screen Parser system where the 
UI Hierarchy model is trained using a static oracle (standard 
training procedure). 

• Screen Parser Dynamic - The Screen Parser system where 
the UI Hierarchy model is trained using a dynamic oracle 
(improved training procedure). 

6.1 Performance Metrics 
To compare prediction outputs to ground truth view hierarchies, 
we frst used our node correspondence algorithm (Section 5.1.1) 
to label the nodes in each graph with corresponding identifers. 
Container nodes are matched using a similar method, where the 
score is the IoU of their descendant nodes. 

We computed three types of metrics that measure diferent per-
formance aspects relevant to down-stream tasks. 

6.1.1 Edge-based metrics. Popular approaches to evaluating natu-
ral language parsers (e.g., constituency parsing) are based on mea-
suring the number of correctly predicted edges (e.g., constituents) 
[19]. We decomposed both the ground truth and prediction graph 
into sets of edges and computed two metrics: (i) the overall F1 

score and (ii) the F1 score for only edges that are attached to leaf 
nodes. The F1 score of the leaves can be more relevant for some 
downstream applications which use lower-level element groupings. 

The F1 score is bounded from 0 to 1 and a higher score indicates 
better performance. If the prediction doesn’t contain any matched 
nodes (possibly due to inaccurate element detection), the F1 scores 
for the overall tree and leaves are set to 0. 

6.1.2 Distance-based metrics. While edge-based metrics are simple 
to compute, they can unfairly penalize some types of mistakes (e.g., 
correct grouping but wrong parent). Graph Edit Distance (GED) 
is a measurement of graph similarity that considers the minimum 
number of “edits" needed to make a graph isomorphic to another. 

kÕ 
GED(д1, д2) = min c(ei ) (4)

(e1, ...,ek )∈P(д1,д2) i=1 

P(д1, д2) refers to the set of possible edit paths between д1 and д2. 
We consider GED that allows 4 edit operations all with cost of 1: 
the insertion and deletion of nodes and edges. Exact computation 
of GED is computationally expensive (NP-complete), so we use an 
inexact algorithm that approximates an upper bound of the true 
distance [11]. 

Because a lower GED indicates better performance, we set the 
GED to the number of edges in the ground truth tree if the predic-
tion doesn’t contain any matched nodes. 

6.1.3 Group-based metrics. Finally, we considered group-based 
metrics that target the grouping of elements rather than their struc-
ture. This metric is more relevant for some downstream tasks such 
as screen segmentation that aim to partition the screen. 

This metric is computed as the mean of each container’s (e.g., 
intermediate node) IoU score with the ground truth. Similar to 
edge-based metrics, the container match (CM) score is bounded 
between 0 and 1, where a score of 1 indicates that all groups were 
correctly matched. For trees without any matched modes, we set 
the score to 0. 

6.2 Results 
Table 3 shows the results of our performance evaluation using our 
set of metrics. Our results show that our fnal system, Screen Parser 
Dynamic outperforms all baselines in all performance metrics. In 
this section, we provide more detailed comparison with baselines 
and further analyze factors that impact performance. 

6.2.1 Comparison with Screen Recognition. Both Screen Parser 
models outperform Screen Recognition on both datasets. One rea-
son is that Screen Recognition and most other heuristics-based 
approach are not abstractive, which prevents them from producing 
“deep" trees. Performance on edges containing leaf nodes (i.e., shal-
lower relations) is generally much better; Compared to overall F1 
score, Screen Recognition had a 25% higher F1 Leaves score. 

More importantly, Screen Recognition was not designed to pro-
duce output similar to app view hierarchies; instead, it was designed 
to support common groupings required by screen reader navigation. 
In addition to the set of performance metrics described here, we 
recommend holistically evaluating systems in downstream tasks. 
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Table 3: We evaluated screen parsing performance using 4 metrics: F1 score (F1), F1 score of edges with leaf nodes (F1 Leaves), 
graph edit distance (GED), and container match cost (CM). Higher is better for all metrics except GED. More details are de-
scribed in the performance metrics section. Note that the RCNN Oracle is not a system – it is the best possible matching 
between the RCNN detections and the ground truth. 

AMP RICO 

F1↑ F1 Leaves↑ GED↓ CM↑ F1↑ F1 Leaves↑ GED↓ CM↑ 

RCNN Oracle 0.76±0.22 0.75±0.22 16.6±20.9 0.79±0.19 0.89±0.14 0.89±0.14 8.8±15.9 0.93±0.07 

Screen Recognition 0.40±0.20 0.52±0.26 23.5±20.7 0.63±0.23 0.39±0.19 0.47±0.26 23.8±21.4 0.43±0.19 
Screen Recognition + RCNN 0.34±0.19 0.44±0.24 25.5±21.1 0.54±0.21 0.41±0.23 0.44±0.28 17.8±19.7 0.48±0.23 
Screen Parser Static 0.53±0.23 0.62±0.22 26.1±24.6 0.59±0.16 0.61±0.27 0.59±0.27 15.2±16.2 0.69±0.24 
Screen Parser Dynamic 0.60±0.23 0.67±0.23 20.2±20.9 0.63±0.16 0.66±0.28 0.64±0.28 13.2±15.5 0.74±0.24 

6.2.2 Efect of Improved Training Procedure. Based on our results, 
Screen Parser Dynamic performs up to 23% better than Screen 
Parser Static. Since both static and dynamic versions of our model 
was trained to maximize the likelihood of the same data, we can 
conclude that the dynamic oracle training technique is efective in 
increasing screen parsing performance. 

Recall that the main diference between the two training pro-
cedures is that the static oracle only produces one sequence of 
optimal actions (i.e., the canonical action sequence) while the dy-
namic oracle produces all optimal sequences (Figure 4). This is 
especially relevant for UI hierarchies, where the tree structure can 
be several levels high, leading to exponentially more possible opti-
mal sequences. This is in contrast to natural language parse trees, 
which are typically limited by the relatively short length of sen-
tences. 

While the canonical action sequence provably correct (i.e., con-
tains all correct element relationships) [13], it leads to exposure bias 
– where the model is biased to perform well only in states it has seen 
during training. During test-time, the model may choose an action 
outside of this sequence (either by making an error or choosing 
another optimal action), which causes the model to perform poorly 
afterwards. 

6.2.3 Efect of UI Element Detection Performance. All systems were 
fed UI element detections as input, and errors in the upstream model 
also afected the performance of the hierarchy prediction. 

To estimate the upper-bound performance of systems that rely on 
the RCNN output, we included the RCNN Oracle which constructs 
an output using the best possible between the detector output and 
the ground truth hierarchy. Even with access to the ground truth, it 
does not achieve perfect accuracy – possibly a result of missing or 
inaccurate detections. This suggests that a better object detection 
model could further improve UI hierarchy prediction. 

As an example, we ran Screen Recognition’s heuristics on both 
its default object detector and our RCNN model’s output. Compared 
to our system’s RCNN model, Screen Recognition’s object detector 
is optimized for the AMP dataset (e.g., tuned per-class confdence 
threshold) which results in better performance. 

6.2.4 Performance on Complex Screens. Finally, we analyzed the 
performance of screen parsing system on screens of diferent com-
plexity. Figure 5 shows the overall F1 score for each system run 

F1
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0.75
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# of Elements
0-16 16-32 32-48 48-64 64+

RCNN Oracle Screen Recognition
Screen Recognition + RCNN Screen Parser Static
Screen Parser Dynamic

Screen Complexity vs Performance (AMP)

F1

0

0.25

0.5

0.75

1

# of Elements
0-16 16-32 32-48 48-64 64+

Screen Complexity vs Performance (RICO)

Figure 5: Analysis of each system’s performance on screens 
of varying complexity. Screens with a higher number of el-
ements introduce challenges for both UI element detection 
(screens with large # of elements generally have smaller and 
more dense elements) and UI hierarchy prediction. 

on splits of the test data containing a screens with a specifed # 
of elements. Performance is highest for screens up to 32 elements 
and degrades following that threshold. One major factor is lower 
object detection accuracy with smaller objects (screens with more 
elements tend to have smaller elements), since the performance of 
the RCNN Oracle also drops past that point. Interestingly, Screen 
Recognition’s performance remains relatively constant, which sug-
gests that many of the local patterns targeted by heuristics are 
not as afected by screen complexity. We also note that although 
both Screen Parser systems were only trained on screens with up 
to 64 elements, they still perform competitively for more complex 
screens. 

Examples of failure cases (some of which result from these fac-
tors) are shown in Figure 6. 
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Incorrect Grouping Missing Grouping
Object Detection 

Errors

Figure 6: Examples of some errors by our screen parsing 
model. We identifed three types of errors that can oc-
cur: (i) object detection errors, (ii) incorrect groupings, and 
(iii) missing groupings. Object detection errors can lead to 
missing elements or misaligned bounding boxes, which our 
model relies on to infer grouping. Incorrect groupings can 
assign irrelevant text labels to icons. Missing groupings can 
result in errors in downstream applications, such as a non-
optimal navigation order for screen readers. 

7 EXAMPLE APPLICATIONS 
In this section, we present a suite of example applications imple-
mented using our screen parsing model. These applications show 
the versatility of our approach and how the UI hierarchy predicted 
by our model can be used to facilitate many existing tasks. 

7.1 UI Similarity Search 
Many recent eforts in modeling UIs have focused on representing 
them as fxed-length embedding vectors. These vectors can be 
trained to encode diferent properties of UI screens (e.g., layout, 
content, and style) and support down-stream tasks. For example, 
a common application of embedding models is measuring screen 
similarity, which is represented by distance in embedding space. 
We believe the performance of such models can be improved by 
incorporating structural information, an important property of UIs. 

Our implementation is trained to model the structural relation-
ships between on-screen elements, and we show that its internal 
representations are useful for this purpose. To generate an embed-
ding of a UI, we feed it into our model and pool the last hidden 
state of the encoder. This includes information about the position, 
type, and structure of on-screen elements. Figure 7 shows the 2-
D projection [27] of randomly-sampled screens embedded using 
this technique. This set includes several variations of app screens, 
including (i) scaling, (ii) language, (iii) theme, and (iv) dynamic 
content. Our model is largely invariant to these changes, since 
their structure is the same, just rendered under diferent conditions. 
The properties of our embedding could be useful for some UI un-
derstanding applications, such as app crawling and information 
extraction where screens are characterized more by their seman-
tics than appearance. We provide examples of UIs retrieved by our 

Scaling Language

Dynamic ContentTheme

Figure 7: The intermediate representation of our parsing 
model can be used to produce a screen embedding, which de-
scribes hierarchical structure of an app. We embedded a set 
of app screens using our model and visualize them in a 2-D 
projection. We show that display settings such as (i) scaling, 
(ii) language, (iii) theme, and (iv) small dynamic changes re-
sult in minimal variation, which may be useful for some 
downstream tasks that rely on characterizing screens by se-
mantic structure rather than aesthetic appearance. 

similarity search application in the appendix to illustrate the types 
of information our embedding captures. 

7.2 Accessibility Enhancement 
Screen readers help blind and visually impaired users access appli-
cations by reading out content highlighted by a cursor. Knowledge 
of UI element location (i.e., spatial information) and hierarchy is 
important for screen readers to compute the correct order to move 
the cursor through the screen (e.g., elements in the same group 
should be ordered consecutively), and for accessible apps, this in-
formation is found in an app’s accessibility metadata. Recent work 
[41] has successfully generated missing metadata for inaccessible 
apps by running an object detection model on the UI screenshot. 
Their approach to generating hierarchical data relies on manually 
defned heuristics that detect and group localized patterns between 
elements (e.g., a container with a text element inside it might be 
grouped as a button). However, these approaches may sometimes 
fail because they do not have access to global information that is 
necessary for resolving ambiguities. 

In contrast, our implementation generates a UI hierarchy with a 
global view of the input, so it can overcome some of the limitations 
of heuristic-based approaches. We used the predicted UI hierarchy 
to group together the children of intermediate nodes of height 1 that 
contained at most one text label and used the X-Y cut algorithm 
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Missing
Groupings

Corrected 
Groupings

Poor Navigation 
Experience

Raw 
Detections

Screen 
Recognition

Screen Parser 

Figure 8: Recent approaches use object-detection ap-
proaches to generate accessibility metadata for inaccessible 
apps. Our model can be used to improve or augment the 
heuristic-based approach used by these systems to infer 
navigation order. Original detections from the object detec-
tor are shown in blue, and grouped elements are shown in 
orange. Element boxes are annotated using their navigation 
ordering [28], where the number represents how many 
swipes are needed to access the element when using a 
screen reader. While both results contain errors, in this 
case, Screen Parser correctly groups more elements, which 
decreases the number of swipes needed to access elements. 

[28] to determine navigation order. Figure 8 shows an example 
where the grouping output from the screen parser model is more 
accurate than the one produced by Screen Recognition heuristics. 
Note that this is not always the case. More examples are available 
in the appendix. 

7.3 Generating UI Code from a Screenshot 
Producing code from screenshots or mock-ups can greatly acceler-
ate application prototyping development. A simple approach for 
code generation is (i) to frst extract the location and type of UI 
elements using an object-detection model, (ii) then generate code 
that places the appropriate UI controls at the detected locations. 
While this approach may result in interfaces that are visually simi-
lar to the input, it is undesirable for several reasons. Code generated 
using this approach often uses absolute positioning constraints to 
instantiate UI controls, which prevents it from adapting to new 
screen sizes and makes it less useful for developers to work of of. 

Some systems [29] use heuristics to detect a limited subset of 
containers (e.g., lists), while others [5] augment visually detected el-
ements with hierarchical data extracted from the window manager. 
To generate high quality, responsive code, structural understanding 
of a UI is an important step. 

We built an example application that uses our implementation 
to generate SwiftUI code from a app screenshot. We employed a 
technique used by compilers to generate code from abstract syntax 
trees (AST) known as the visitor pattern. First a screenshot is fed 

into our system, which produces a UI hierarchy. We performed a 
depth-frst traversal of the UI hierarchy using a visitor function that 
generates code based on the current state (current node and stack). 
Specifcally, the visitor function emits a SwiftUI control (e.g., Text, 
Toggle, Button) at every leaf node and emits a SwiftUI container 
(e.g., VStack, HStack) at every intermediate node 2. We manually 
created a mapping between nodes types in the screen parser tree 
and SwiftUI views and automatically required parameters such as 
label text using OCR. Elements containing graphics, such as image 
views or icons, are represented by an image patch cropped from 
the original screenshot, which are automatically included as assets. 
When generating code for small form-factors such as smartwatches, 
we replace horizontal containers with vertical ones due to limited 
space. Finally, our system uses a simple heuristic to determine 
whether the app uses a light or dark theme, and sets a preferred 
color scheme. 

The resulting code describes the original UI using only relative 
constraints (even if the original UI was not), allowing it to act re-
sponsively to changes in screen size or device type (Figure 9). The 
generated code does not contain appearance and style informa-
tion (e.g., text size, element color), which is sometimes necessary 
to render a similar-looking screen. Nevertheless, prior work [6] 
has shown that such output can be a useful starting point for UI 
development, and we believe future work can improve upon our 
approach by detecting these properties. 

8 LIMITATIONS AND FUTURE WORK 
In this paper, we presented the problem of screen parsing and im-
plemented a baseline implementation that shows how structured 
information can be predicted from a UI’s visual appearance. Specif-
ically, our implementation predicts the presentation model from 
a UI’s screenshot, for which we had a large dataset of examples 
(i.e., view hierarchies) to facilitate machine learning. Some of our 
system’s constraints (e.g., can only produce directed trees) were 
purposefully introduced by us in service of our chosen target model. 

We see multiple opportunities to improve our particular imple-
mentation. From our evaluation, we found that certain components, 
such as the UI Element Detector, can limit the performance of others 
that rely on it. The performance of our system can also be improved 
by modeling changes e.g., incorporating visual information (e.g., 
dominant color or visual embedding of an element) in our hier-
archy prediction and improving our group labeling model. Some 
down-stream applications have diferent notions of performance. 
For example, when computing screen reader navigation, lower-level 
groupings (i.e., close to leaf nodes) matters more. To more accu-
rately assess our system’s performance, we plan to evaluate it in 
the context of down-stream tasks. Our current model generates its 
output entirely from visual input (i.e., app screenshot), which mini-
mizes its dependencies. Nevertheless, we also believe there is an 
opportunity to take advantage partial or incomplete view hierarchy, 
which our model can use in conjunction with visual information to 
improve performance [5]. 

More broadly, we hope to apply screen parsing to extract other 
types of structured semantics from UI screenshots (including those 

2Information about SwiftUI controls and containers are available in the SwiftUI docu-
mentation: https://developer.apple.com/documentation/swiftui/views-and-controls 
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Original
Screenshot Phone Watch Tablet

a)

b)

c)

Figure 9: By mapping nodes in the UI hierarchy to declara-
tive view-creation methods, we can generate code for a UI 
from its screenshot. Generating code from the hierarchy 
rather than the layout ensures that it is responsive across 
screen sizes, and we show the same output code rendered on 
diferent device form factors. Our example application may 
produce some errors due to missing style information (a, c) 
or inaccurate OCR (b). 

on other platforms such as web and desktop UIs), including those 
that describe data fow, interaction, and tasks. We expect that for 
some of these, we will be able to re-use much of our current archi-
tecture. Others might require adding or moving constraints (e.g., 
predicting more general types of graphs that may include cycles). 
Furthermore, some types of models (e.g., task models) might not 
be possible to infer from a single screenshot and would instead 
require a sequence of screens. Regardless, we expect the utility 
of automated UI systems to increase as they gain the ability to 
parse reason about structured semantics from UIs. We believe a 
promising application of screen parsing lies in tasks that require 
higher-level semantics such as task automation and programming-
by-demonstration [24], which often require accessibility metadata 
to work. 

9 CONCLUSION 
In this paper, we introduced the problem of screen parsing, the 
prediction of structured UI models from visual information. In a 
comparison to three related problems, we show that our problem 
formulation and model is more suited to the unique properties of 
user interfaces. We described the architecture and training proce-
dure for our reference implementation, which predicts an app’s 

presentation model as a UI hierarchy with high accuracy, surpass-
ing baseline algorithms and training procedures. In addition, we 
showed that the properties of our system allow it to simultaneously 
support a diverse array of down-stream applications: (i) UI similar-
ity search, (ii) accessibility enhancement, and (iii) code generation 
from UI screenshots. More broadly, we believe our formulation of 
screen parsing will allow automated systems to better reason about 
the underlying structure and purpose of UIs, facilitating more ad-
vanced and complex interactions. 
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if len (node. c hildr en) == 0: 

# at a leaf node, go back up 

optimal. add ( PopAction ()) 

else : 
for child in node. children: 

if child. isLeaf: 

optimal. add ( ArcAction (child)) 

else: 
optimal. add ( EmitAction ()) 

if dynamicTraining: 

model. train (optimal) 

if model. high estSco ring in optimal: 

action 

else : 
model. prediction 

action = randomChoice (optimal) 

else: # static training 

action = getCanonicalAction (optimal) 
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A MODEL HYPERPARAMETERS 
All models were trained with early stopping that stopped training 
when validation loss did not improve for 10 epochs. We imple-
mented our models using PyTorch [31] and PyTorch Lightning 
[10]. 
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Model 
Faster-RCNN 

Screen Parser 

Group Labeler 

Hyperparameter 
optimizer 
lr (base) 
lr (max) 
optimizer 
lr 
weight decay 
dropout 
hidden size 
hidden layers 
optimizer 
lr 
weight decay 
hidden size 
hidden layers 

Value 
SGD 
0.01 
0.1 
Adam 
1e-4 
1e-5 
0.25 
256 
4 
Adam 
1e-4 
1e-4 
256 
1 

B ORACLE PSEUDOCODE 

C UI RETRIEVAL EXAMPLES 
Figure 10 shows examples of UIs retrieved using our UI Similarity 
Search example application. We embedded a set of query UIs and 
used them to retrieve similar UIs from a subset of our AMP dataset. 

D ACCESSIBILITY ENHANCEMENT 
EXAMPLES 

Figure 11 shows examples of accessibility metadata generated by 
our system and Screen Recognition, a baseline that we compared 
with. Both systems occasionally produce minor errors (e.g., group-
ing elements that do not belong together) but signifcantly improve 
the navigation experience. 
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Query UI Retrieved UIs

a)

b)

c)

d)

e)

1) 2) 3) 4)

Figure 10: Example output of our UI Similarity Search example applications. We use several query UIs to fnd similar UIs in 
a subset of the AMP dataset. Retrieved UIs are ordered by their similarity to the query UI in embedding space. Many of the 
retrieved screens are from other apps with similar structural layout. 
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Raw 
Detections

Screen 
Recognition Screen Parser 

Figure 11: Examples of accessibility metadata generated for 
raw detections by Screen Recognition heuristics and our 
screen parser model. Each element is annotated with the 
number of swipes needed to reach it using a screen reader. El-
ements groups are shown in orange. The last row of screen-
shots contain an email address, which is redacted. 
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