
Screen Parsing: Towards Reverse Engineering of UI Models from
Screenshots

Jason Wu∗ Xiaoyi Zhang
HCI Institute, Carnegie Mellon University Apple

Pittsburgh, PA Cupertino, CA
jsonwu@cmu.edu xiaoyiz@apple.com

Jefrey Nichols Jefrey P. Bigham
Apple Apple

Cupertino, CA Cupertino, CA
jwnichols@apple.com jbigham@apple.com

UI Element
Detection

UI Hierarchy
Prediction

Group LabelingInput Screenshot

(i) (ii) (iii)

Figure 1: An overview of our implementation of screen parsing. To infer the structure of an app screen, our system (i) detects
the location and type of UI elements from a screenshot, (ii) predicts a graph structure that describes the relationships between
UI elements, and (iii) classifes groups of UI elements.

ABSTRACT
Automated understanding of user interfaces (UIs) from their pixels
can improve accessibility, enable task automation, and facilitate
interface design without relying on developers to comprehensively
provide metadata. A frst step is to infer what UI elements exist on
a screen, but current approaches are limited in how they infer how
those elements are semantically grouped into structured interface
defnitions. In this paper, we motivate the problem of screen parsing,
the task of predicting UI elements and their relationships from a

∗This work was done while Jason Wu was an intern at Apple.

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST ’21, October 10–14, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8635-7/21/10.
https://doi.org/10.1145/3472749.3474763

screenshot. We describe our implementation of screen parsing and
provide an efective training procedure that optimizes its perfor-
mance. In an evaluation comparing the accuracy of the generated
output, we fnd that our implementation signifcantly outperforms
current systems (up to 23%). Finally, we show three example appli-
cations that are facilitated by screen parsing: (i) UI similarity search,
(ii) accessibility enhancement, and (iii) code generation from UI
screenshots.

KEYWORDS
user interface modeling, ui semantics, hierarchy prediction

ACM Reference Format:
Jason Wu, Xiaoyi Zhang, Jefrey Nichols, and Jefrey P. Bigham. 2021. Screen
Parsing: Towards Reverse Engineering of UI Models from Screenshots. In
The 34th Annual ACM Symposium on User Interface Software and Technology
(UIST ’21), October 10–14, 2021, Virtual Event, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3472749.3474763

470

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3472749.3474763
https://doi.org/10.1145/3472749.3474763
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3472749.3474763&domain=pdf&date_stamp=2021-10-12

UIST ’21, October 10–14, 2021, Virtual Event, USA Wu, et al.

1 INTRODUCTION
User interfaces are, unsurprisingly, designed for consumption by
human beings, and it can be difcult for automated systems to
understand what functionality is present in a user interface, how
the diferent components of the interface work together, and how it
can be operated to accomplish some goal. This is particularly true if
the automated system does not have access to any meta-data about
the user interface, such as view hierarchies or accessibility tags, or
if this information is missing or incompletely defned, as is often
the case. Automated user interface understanding systems could
ofer many benefts. For example, a screen reader (e.g., VoiceOver
and TalkBack) could facilitate access to user interfaces for blind and
visually impaired users when the underlying app does not provide
appropriate meta-data [41], and task automation agents (e.g., Siri
Shortcuts and IFTTT) could allow users to automate repetitive or
complex tasks with their devices more efciently. These benefts
are gated on how well these systems can understand and interact
with the underlying applications. Many of today’s systems rely
on the availability of UI meta-data and fail when this information
is unavailable. To overcome this recent eforts have focused on
predicting the presence of an app’s on-screen elements solely from
its visual appearance.

Structure is a core property of UIs that is refected both in how
they are constructed and how they are used. However, many current
approaches to visual modeling of UIs ignore or fail to centralize
this aspect. In this paper, we present a new approach called screen
parsing, which applies techniques used in NLP for natural language
parsing to produce machine-learned models that predict the UI
hierarchy of an app from its screenshot. Our approach involves
(i) a Faster-RCNN model for detecting the set of elements on a
screen, (ii) a stack-based transition parser model for predicting the
hierarchy of how those elements relate to each other, and (iii) a Deep
Averaging Network model that classifes element groupings. We
describe the details and training procedure of our implementation
of screen parsing, and conduct an evaluation in which we compare
the performance of our system against baseline approaches. Using
a set of 5 metrics, we show that our implementation performs up
to 23% better than baseline systems depending on the performance
metric used. Finally, we show three example applications enabled
by our implementation of screen parsing.

More broadly, we believe that systems can beneft from perceiv-
ing UI screens as humans do – not as a set of elements, but as a
coordinated and organized presentation of content. Structural un-
derstanding is an important step that can help systems reason about
relationships between interaction controls and content. Our model
implementation is trained to predict one type of relation (links in
the view hierarchy), but we believe screen parsing and our mod-
eling approach can be extended to others as well (e.g., navigation
order).
To summarize, this paper makes the following contributions:

• A problem defnition of screen parsing which is useful for a
wide range of UI modeling applications.

• A description of our implementation of screen parsing and
its training procedure.

• A comprehensive evaluation of our implementation with
baseline comparison.

• Three implemented examples of how our model can be used
to facilitate downstream applications such as (i) UI simi-
larity, (ii) accessibility metadata generation, and (iii) code
generation.

2 RELATED WORK

2.1 Reverse Engineering UIs
Many approaches to visual UI modeling focus on “reverse engineer-
ing" hidden attributes and potentially modifying them at runtime.
Reverse-engineering methods often focus on extracting semantic
attributes from visible information presented by the app (i.e., pixel
information), which allows them to support a broader array of
use-cases.

An important use-case is facilitating non-visual access to apps for
people with disabilities. Outspoken [34] was of one the frst screen
readers that supported GUIs, which required it to describe both text
and graphical elements of the screen. To process icons and other
pictorial elements, the system maintained a database of graphical
elements (paired with a verbal description) and matched on-screen
elements to descriptions of similar items. Today, the ecosystem of
UI toolkits is much larger and permits much greater functionality,
including allowing developers to embed icon and image descriptions
in an app’s metadata, yet many apps are still inaccessible because
they do not include this data. To support inaccessible apps, recent
screen reader technology [7, 41] uses deep convolutional neural
networks to generate element descriptions and other accessibility
metadata.

Reverse engineering methods can also be used to extend existing
GUI applications. A common approach to interface with applica-
tions without an application programming interface (API) is to
defne “macros" that automate sequences of key-strokes and mouse
movements. To acquire interaction targets, many automation toolk-
its provide functions for searching the screen for pixel values and
returning their coordinates [2]. Sikuli [39] and PAX [5] are systems
that improve the localization of targets by supporting more ad-
vanced matching techniques (e.g., bitmap matching and heuristics)
and combining hierarchical information extracted from an external
source, such as the system window manager. Elements localized us-
ing pixel-based methods can also be used to modify apps at runtime
[9], and previous work has investigated the beneft of hierarchy
prediction (using heuristics) for this use-case.

Finally, reverse-engineering approaches have been applied to
generate code from UI mockups or screenshots. A subset of these
approaches have focused on translating hand-drawn wireframes to
GUI code. These tools [1, 23] are useful for designers who wish to
quickly sketch and prototype possible UI layouts. A more complex
version of this task is generating code from complete UI screenshots,
as it requires that the system handle the stylistic and structural
variation present in real-world app screens. REMAUI [29] is a sys-
tem that uses heuristics to combine OCR detection results and
cropped patches from the original screenshot to generate working
UI code. Pix2Code [4] is an end-to-end code generation model that
uses a CNN encoder to encode a screenshot and a RNN decoder
to generate code. UI2Code uses a similar architecture to generate
a “GUI Skeleton" from a screenshot [6] that describes the relative
positioning of UI elements.

471

Screen Parsing: Towards Reverse Engineering of UI Models from Screenshots UIST ’21, October 10–14, 2021, Virtual Event, USA

2.2 Defning and Extracting UI Models
While reverse-engineering systems can efectively predict a subset
of a screen’s attributes, automated systems aimed at deeper and
more complex interactions with UIs must support higher-level,
semantic understanding of UIs. We reviewed literature related to
model-based user interface (MBUI) development, which here we use
as a conceptual framework for describing how UIs are constructed,
presented, and used.

MBUI development refers to a development process that (i) frst
defnes high-level models for an interface, then (ii) produces code
that conforms to that model [14]. Models, among other things,
detail what data the UI will display and how it will be used, and
are a helpful tool for organizing the creation of UI applications.
Puerta [32] describes an example of how this process is applied
and categorizes common types of models (e.g., data model, domain
model, presentation model). Because a well-designed model can
describe all or nearly all aspects of an interface, it is often possible
to automatically generate code from model specifcations [12, 30].

Similarly, it may be useful for automated systems to extract or
infer models from a fnished application, as doing so would reveal
semantics. In this paper, we present an system that predicts the UI
hierarchy (closely related to the presentation model) of an app from
its screenshot. More broadly, our formulation of screen parsing as
visual inference of structured relationships is useful for extracting
UI models, which are often structured relationships among items.

2.3 Structured Prediction from Visual
Information

To provide additional background about our work and opportunities
for UI modeling, we review some machine learning approaches that
can be used to predict structure from visual information.

Many approaches to structured prediction have their roots in nat-
ural language processing (NLP). Early work on scene segmentation
used stochastic grammars to analyze layouts (known as geomet-
ric parsing [35]) or construct hierarchical representations from
proposal regions (i.e., image patches) [37, 42]. However, it can be
difcult to defne or induce a grammar that explicitly describes
all primitives and relationships and work well with continuous
attributes. Moreover, many grammars are designed to work with
sequential input (common in language) rather than spatial input
(common in vision). Socher et al. propose a more general architec-
ture that learns to recursively join related items in both images and
text using a neural network model [36].

More recent work in the computer vision literature has focused
on visual scene understanding through scene graphs. Scene graphs
represent relationships between objects detected in an image and
are described as a collection of relationship triplets (<subject, pred-
icate, object>) [20]. Approaches to scene graph detection vary –
some models frst perform object detection then consider all possi-
ble pairs [40], while others directly generate a set of likely relation-
ships [38].

As we will discuss later, screen parsing is closely related to these
structured visual understanding tasks and is targeted towards as-
pects UI modeling. The design of our model is also based on many
of the same core ideas, which we implement in service of our task
defnition.

Tab Bar

List View

Root

Nav Bar

Nodes in the
output are
grounded to
UI elements

The output is
abstractive

The graph is
complete,

connecting all
input elements

Figure 2: We show an example of an input screen (Left) and
the corresponding screen parse (Right). The graph contains
all of the visible elements on the screen (the output is com-
plete), groups them together to form higher-level structures
(abstractive), and nodes can be used to reference UI elements
(the output is grounded).

3 SCREEN PARSING

3.1 Problem Formulation
We defne the problem of screen parsing, which we use to refer to
the prediction of structured UI models from visual information. As
a review, we use UI models to refer to high-level abstractions of
UI semantics e.g., logic, presentation, and associated tasks [14]. A
screen parsing model takes a UI screenshot as input and produces a
graph representation of a model as output. The connections in the
graph can be used to express a variety of semantic and syntactic
concepts. For example, one might use an edge to represent interac-
tion fow (e.g., the “Username" text feld should be flled out before
tapping on the “Login" button).

In this paper, we focus on generating an app’s UI hierarchy (i.e.,
presentation model) which is a specifcation of how UI elements
are grouped and rendered on the screen [32]. Figure 2 shows an
example of a screen and corresponding UI hierarchy graph. The
properties of UI hierarchies introduces some constraints on the
types of valid outputs.

• Complete – the output is a single tree that spans all of the
detected UI elements.

• Grounded – Nodes in the output reference specifc UI ele-
ments in the screen.

• Abstractive – The output can group elements together (po-
tentially more than once) to form higher-level structures.

Moreover, all UI hierarchies can be described as directed trees, which
we constrain our system to generating.

3.2 Comparison to Related Problems
Screen parsing is closely related to and, in many ways, motivated
by other problems in the UI modeling and computer vision. Specif-
cally, we select three similar tasks for comparison: (i) UI Element

472

UIST ’21, October 10–14, 2021, Virtual Event, USA Wu, et al.

Table 1: This table shows the requirements of several down-
stream applications and support for them among our im-
plementation and related approaches. Screen parsing’s prob-
lem formulation allows it to be applied more widely.

Requirements Complete Grounded Abstractive

Applications
Structural Similarity N N Y
Screen Reader N Y N
Code Generation Y N N

Approaches
Scene Graph Y Y N
GUI Skeleton N N Y
Heuristics Y Y N
Our Implementation Y Y Y

Detection, (ii) GUI Skeleton Generation, and (iii) Scene Graph Gen-
eration. All of these approaches generate semantic output from a
visual representation of a screen (i.e., screenshot). However, there
are important diferences that make screen parsing applicable to a
wider range of down-stream applications (Table 1).

3.2.1 UI Element Detection. UI Element Detection is a specifc
application of object detection, which extract a set of class-labeled
bounding boxes from an image. When trained and applied to UI
screens, the prediction output corresponds to the set of UI elements
on the screen, which is useful on its own or as a “frst-pass" step
for further processing. The main diference from screen parsing is
that UI Element results in a fat structure, which prevents it from
representing relationships between elements. Heuristics can be
applied to detect and group elements; however there is no guarantee
that all elements will be connected.

3.2.2 GUI Skeleton Generation. The GUI Skeleton is an artifact
produced by the UI2Code system that describes the types of widgets
in a screen and their hierarchical structure [6]. Similar to our model
implementation, UI2Code is trained to produce trees processed
from view hierarchies.

It is important to note that an app’s GUI Skeleton is diferent its
UI hierarchy (the target output of our model). Namely, it doesn’t
support we what refer to as element grounding, the ability to match
items in its output to its input. For example, an app’s GUI Skeleton
might indicate that the screen contains a list container with three
buttons, but it is unable to indicate which three buttons (on a screen
with many buttons) belong to the list. Thus, the GUI Skeleton
cannot be used to support certain applications, such as screen reader
navigation.

3.2.3 Scene Graph Generation. Screen Graph Generation (SGG) is
a visual scene understanding problem that models the relationships
between visible objects using scene graphs. Like our model, SGG
models are designed to process an input image and generate a
graph whose nodes are detected objects in the scene and edges are
semantic relationships between those objects.

Scene graphs are often constructed to describe real-world vi-
sual scenes [21]. Unlike UIs, which are typically constructed using
nested views stemming from a single root node, visual scenes can

contain multiple entities, represented as independent sub-graphs.
We purposefully constrained our model to produce a single con-
nected tree to refect this property of UIs.

Most edges in a scene graph correspond to direct relationships
between detected objects, and SGG models often consider pairwise
relationships rather than hierarchical ones. Because of this, a strong
and frequently-used baseline for SGG is computing the prior prob-
abilities of relationships between object classes (ignoring position)
on the training set [40]. Edges between leaf nodes are relatively
rare among UI hierarchies, as most elements are indirectly joined
by container elements.

4 IMPLEMENTATION
Our implementation of screen parsing uses separate models to (i)
detect elements from a screenshot, (ii) group them together in a
graph structure, and (iii) predict labels for the element groups.

4.1 UI Element Detection
We used a standard object detection model to extract the set of UI
elements in a screen and their parameters. Specifcally, we trained
a Faster-RCNN [33] model with a ResNet-50 [16] backbone on our
UI screen dataset. Before feeding an image to the element detection
model, we resized images to 256x256 and normalized each input
channel to have a mean of 0 and standard deviation of 0.5. We
frst run our detection model on an input screenshot and keep all
detections that have a confdence of at least 0.7. We then apply
non-max suppression to remove overlapping detections with lower
confdence (IoU threshold of 0.5).

4.2 UI Hierarchy Prediction
After a set of detections is obtained from the Element Detection
model, the next step is to predict their hierarchical relationship. A
natural way of representing this is using a graph structure, where
elements are linked to one another with parent-child relationships.
Intuitively, the problem can be thought of as generating a com-
plete graph (i.e., the UI hierarchy) given the leaf nodes (i.e., visible
elements). We draw inspiration from the NLP literature on text
parsing, where such graph structures are often used to defne re-
lationships between words in a sentence. Specifcally, we build a
top-down transition-based parser [25], which is able to construct
any UI hierarchy1, and ofers fast and efcient decoding.

Like other transition-based parsers, our model incrementally
produces a graph structure through a sequence of actions, and is
most closely related to the approach detailed in similar dependency
parsers used in NLP [25]. Our model uses three data structures to
perform parsing: the input bufer (l) that holds the set of visible UI
elements, the stack (σ) that allows the model to traverse the graph,
and the set of visited nodes (α). The actions that we support are:

• Arc – A directed edge is created between the node on top of
σ (parent) and the node in l − α with the highest attention
score (child). The child is pushed onto σ and added to α .

• Emit – An intermediate node (represented as a zero-vector)
is created and pushed onto σ .

• Pop – σ is popped (i.e., the top element is removed).
1Some parsing algorithms are designed to handle only a subset of parse trees known
as projective trees, which makes them difcult to apply to view hierarchies.

473

Screen Parsing: Towards Reverse Engineering of UI Models from Screenshots UIST ’21, October 10–14, 2021, Virtual Event, USA

Figure 3 provides an example of how these actions are used to
parse a screen.

4.2.1 Model Architecture. Our model architecture (Figure 3) con-
sists of a LSTM-based encoder and decoder. Our chosen encoder
model, the LSTM [17], is a type of recurrent neural network efec-
tive at encoding long sequences. LSTMs are designed with special
gated memory cells that enable it to perform computations useful
for our task, such as counting and recognizing hierarchy [15]. The
input of the model is the list of UI elements in a screen, sorted using
y-position as the primary key and x-position as the secondary key.
Each element represented as the concatenation of its position and
a one-hot class vector for the UI element type (e.g., Text, Slider,
Picture, etc...). The fnal hidden state is used as the initial state of
the decoder.

4.2.2 Decoding. At every decoding timestep, the LSTM is fed the (i)
last hidden state (ht) and (ii) the element at the top of σ . The LSTM
returns (i) an output vector (ot +1) and (ii) an updated hidden state
(ht +1). The output ot +1 is fed through a linear layer that produces
the logits for the emit and pop actions. The output ot +1 is also
used to compute the scaled dot-product attention between all of
the encoded UI elements {s0, s1, ..., sN }. Finally, an action vector is

i iconstructed by concatenating the emit (ue) and pop (up) activations
with the attention scores.

ej
T hii u = √ (1)j n

i i p(ai |a0, a1, ..., ai−1, P) = so f tmax(concat(ue ,up ,u i)) (2)
n is the size of the hidden state, P represents the input and a0, a1, ...an
represent the previously selected actions. This process is repeated
until all leaf nodes are added to α , which guarantees that the gen-
erated graph is complete. Finally, as a heuristic to prevent repeated
Emit and Pop actions, we set the probability of the Emit action to 0
if the last 10 actions does not contain an Attend.

The output of the model is additionally smoothed to remove
extraneous intermediate nodes.

4.3 Group Labeling

Table 2: Table of group labels considered for each dataset,
along with number of occurrences.

AMP RICO

Tab Bar Button (63170) List Item (56186)
Table (23693) Toolbar (29068)
Tab Bar (19602) Card (6091)
Collection (19420) Drawer (5756)
Button (9779) Multi-Tab (3189)
Segmented Control (2988) Bottom Navigation (236)

To label the intermediate nodes in a tree, we train a separate clas-
sifer. We frst inspect each dataset to determine the most common
labels assigned to “containers" and select 7 classes (including an
“Other" class) based on frequency and relevance to our task (Table
2).

Our Group Labeling classifer is based of the Deep Averaging
Network (DAN) architecture used for sentence classifcation [18].
To classify a given node, we retrieve a list of all of its descen-
dant elements. Each element in the list is embedded using using
a feed-forward layer, and all of the embeddings are pooled using
the sum operation. The pooled representation is fed into a MLP
that predicts its label. Because some containers appear much more
frequently than others, we use a weighted loss function for training
(class-weighted cross entropy), and the F1-macro metric to measure
validation and test performance. Our best group labeling models
achieved F1-macro scores of 0.61 and 0.76, on AMP and RICO (our
two training datasets).

This approach to classifying element groups is a simple one that
does not model the joint probability of multiple element groups
(e.g., the probability of one group’s label conditioned on another’s).
We will improve this aspect of our system in future work.

5 TRAINING
In this section, we primarily describe the training procedure for our
system’s primary component – the UI Hierarchy model. We frst
describe how we extracted and processed a dataset for this purpose.
Then, we describe an efective approach for training parsing models
that is especially relevant to UI Hierarchy modeling.

5.1 Datasets
We trained our models on two mobile UI datasets: (i) AMP, an
internal dataset of 130,000 iOS screens, and (ii) RICO, a publicly
available dataset of 80,000 Android screens [8]. Each dataset con-
tains screenshots, annotated screens, and their view hierarchies.
Both datasets collected by crowdworkers who installed and ex-
plored popular apps across 20+ categories (in some cases excluding
certain ones such as games, AR, and multimedia) on the iOS and
Android app stores. More information is available in the original
papers [8, 41]. Before training, three splits are created for each
dataset: training (70%), validation (15%), and testing (15%). When
training our system, we only train on screens with less than 64
elements (to make training more efcient), but we do not apply this
constraint to our test set.

5.1.1 Node Correspondence. The frst step is to match up visible
elements with a corresponding node in the view hierarchy. We ran
our trained UI Element detector on screenshots, which produced a
list of detections above a confdence threshold (0.7). We employed
a best-cost matching algorithm [22] to compute the best match
between the set of element detections and the set of bounding
boxes found in the view hierarchy. The matching score between
two bounding boxes are defned as the intersection-over-union
(IoU) score, and pairs with low scores (IoU < 0.5) are ignored.

5.1.2 Extracting Hierarchical Information. We found that many
of the screens in our dataset had missing or mostly incomplete
view hierarchies (i.e., most of the visible elements did not have
a corresponding element in the view hierarchy). For example, in
the AMP dataset, we found that around 40,000 screens had view
hierarchies that were suitable for ground truths. To train and eval-
uate our model on a higher-quality subset, fltered both datasets.
The AMP dataset was fltered by selecting screens where at least

474

11 01 -=-- ,--.
I I 1------,------------------------~ I

fw:lcome to Notes!
I I I I

I I

C, apturedocuments,pho1os,maps,
ndmorefora r cherNotes

EifflRifibP'Sbi• ;;;lOUSl wur lir,oPr j

LJU-UU
•

r:- J'//1.

UIST ’21, October 10–14, 2021, Virtual Event, USA Wu, et al.

UI Element Embedding

h

s0 s1 s2 …

…

LSTM
Decoder

EMIT

LSTM
Decoder

ATTEND

LSTM
Decoder

POP

…

Stack Encoder

[ROOT] [ROOT] [ROOT]

s3

LSTM
Decoder

ATTEND

[ROOT]
[CONTAINER] [CONTAINER]

s2
[CONTAINER]

Intermediate
Tree

s2 s2 s2 s3

…

Current
Stack

EMIT s2 POP …

LSTM
Encoder

LSTM
Encoder

LSTM
Encoder

LSTM
Encoder

Figure 3: Our UI Hierarchy prediction model is a stack-based transition parser. A Bi-directional LSTM encoder is fed a set of
embedded UI elements and query tokens. The fnal hidden state is used to initialize a LSTM decoder network. The decoder
produces a sequence of actions that describe the UI hierarchy using a continuously updated state (stack, bufer, and visited
set).

80% of annotated nodes had a corresponding element in the view
hierarchy. The RICO dataset was fltered using scores from the node
correspondence step – only screens where the average match score
was greater than 0.8.

5.1.3 Graph Smoothing. Because the view hierarchy is an artifact
of the UI rendering system, it contains some irrelevant nodes and
edges that represent class inheritance and singleton containers. We
preprocessed view hierarchy graphs using a smoothing algorithm
that removed nodes which (i) only had one child and (ii) did not
correspond to a visible element.

5.2 Training Algorithm
A standard approach to training transition-based parsers is defn-
ing an “oracle" function that produces a sequence of actions for
every view hierarchy. An example of an oracle function for graph-
structured data is running a depth-frst search and recording the
order nodes were entered and exited (Figure 4). We compared two
diferent approaches to oracle training for our element grouping
model.

The frst approach we compared is the static oracle, which is
a simple and common implementation that traverses the graph
deterministically (i.e., produces exactly one sequence of actions for
every graph). For screen parsing, this requires defning an ordering
function that sets a deterministic order by which children are pro-
cessed (e.g., children are ordered top-down, left-to-right). During
training, the parser is trained to maximize the likelihood of the
static oracle’s “gold" action at every timestep.

The second approach is a dynamic oracle, which provides a set
of optimal actions at every state for the model to learn instead of a
single action. During training, if the model’s top-choice action is
optimal then it is executed, and otherwise an optimal action from
the oracle’s output is randomly selected and executed. While other

Static Oracle
Sequences

Dynamic Oracle
Sequences

8, 6, POP, POP, EMIT, EMIT, 7, POP, 5, POP, … 8, 6, POP, POP, EMIT, EMIT, 7, POP, 5, POP, …

EMIT, EMIT, 0, POP, 13, POP, EMIT, 1, POP, 3, POP …

EMIT, EMIT, 7, POP, 5, POP, POP, EMIT, 2, POP, 4 …
EMIT, EMIT, 1, POP, 3, POP, POP, EMIT, 2, POP, 4 …
EMIT, EMIT, 2, POP, 4, POP, POP, EMIT, 5, POP, 7, …

EMIT, EMIT, 13, POP, EMIT, 11, POP, 12, POP, POP, …
EMIT, EMIT, EMIT, 11, POP, 12, POP, POP, 2, POP, …
EMIT, EMIT, EMIT, 12, POP, 11, POP, 13, POP, 0, …

8, 6, POP, POP, EMIT, EMIT, EMIT, 11, POP, 12, …
8, 6, POP, POP, EMIT, EMIT, 11, POP, 10, POP …

Explores left
subtree first

Explores right
subtree first

Explores center
subtree first

…

Figure 4: We explored two oracle-based training procedures
for UI hierarchy prediction. For a given ground-truth UI
hierarchy (top), a static oracle (left) only produces one se-
quence of optimal actions, while a dynamic oracle (right)
produces all optimal sequences.

475

--

Screen Parsing: Towards Reverse Engineering of UI Models from Screenshots UIST ’21, October 10–14, 2021, Virtual Event, USA

options are available [3, 13], we found that training to maximize
the average likelihood of the set of optimal actions [26] led to the
best results: Õ1

p(zg |pt) = p(zдi |pt) (3)
|zg | zдi ∈zg

6 EVALUATION
We compared our fnal system (Screen Parser Dynamic) to (i) a base-
line system [41] and (ii) a baseline training procedure [25], and we
show that our implementation signifcantly improves performance.

Screen Recognition is a heuristic-based system used to generate
accessibility metadata from pixel data, and it is similar to heuristic-
based approaches employed by other UI reverse-engineering work
[29]. Similar to our system, Screen Recognition frst runs an ob-
ject detection model on a screenshot, which returns a set of ele-
ment detections. These detections are then processed using a set of
manually-defned heuristics that check for features such as nesting,
text grouping, tab grouping, and picture subtitles.

We also used a baseline training procedure to train our system
(Screen Parser Static), and we show that our chosen approach sig-
nifcantly outperforms standard training methods for NLP parsers.

To summarize, we compared the following systems in our evalu-
ation:

• RCNN Oracle - This is not a system; it represents the best
possible matching between the RCNN detections and the
ground truth hierarchy. This gives a rough bound for the
best-case parsing performance given the accuracy of the UI
element detector.

• Screen Recognition - The complete Screen Recognition with
its original UI element detector and heuristics.

• Screen Recognition + RCNN - The Screen Recognition heuris-
tics run on the output of our RCNN-based UI element detec-
tor. When run on the RICO dataset, we used an RCNN model
trained on the RICO dataset and mapped the the labels from
the RICO label set to the AMP equivalent (the heuristics
were designed for AMP).

• Screen Parser Static - The Screen Parser system where the
UI Hierarchy model is trained using a static oracle (standard
training procedure).

• Screen Parser Dynamic - The Screen Parser system where
the UI Hierarchy model is trained using a dynamic oracle
(improved training procedure).

6.1 Performance Metrics
To compare prediction outputs to ground truth view hierarchies,
we frst used our node correspondence algorithm (Section 5.1.1)
to label the nodes in each graph with corresponding identifers.
Container nodes are matched using a similar method, where the
score is the IoU of their descendant nodes.

We computed three types of metrics that measure diferent per-
formance aspects relevant to down-stream tasks.

6.1.1 Edge-based metrics. Popular approaches to evaluating natu-
ral language parsers (e.g., constituency parsing) are based on mea-
suring the number of correctly predicted edges (e.g., constituents)
[19]. We decomposed both the ground truth and prediction graph
into sets of edges and computed two metrics: (i) the overall F1

score and (ii) the F1 score for only edges that are attached to leaf
nodes. The F1 score of the leaves can be more relevant for some
downstream applications which use lower-level element groupings.

The F1 score is bounded from 0 to 1 and a higher score indicates
better performance. If the prediction doesn’t contain any matched
nodes (possibly due to inaccurate element detection), the F1 scores
for the overall tree and leaves are set to 0.

6.1.2 Distance-based metrics. While edge-based metrics are simple
to compute, they can unfairly penalize some types of mistakes (e.g.,
correct grouping but wrong parent). Graph Edit Distance (GED)
is a measurement of graph similarity that considers the minimum
number of “edits" needed to make a graph isomorphic to another.

kÕ
GED(д1, д2) = min c(ei) (4)

(e1, ...,ek)∈P(д1,д2) i=1

P(д1, д2) refers to the set of possible edit paths between д1 and д2.
We consider GED that allows 4 edit operations all with cost of 1:
the insertion and deletion of nodes and edges. Exact computation
of GED is computationally expensive (NP-complete), so we use an
inexact algorithm that approximates an upper bound of the true
distance [11].

Because a lower GED indicates better performance, we set the
GED to the number of edges in the ground truth tree if the predic-
tion doesn’t contain any matched nodes.

6.1.3 Group-based metrics. Finally, we considered group-based
metrics that target the grouping of elements rather than their struc-
ture. This metric is more relevant for some downstream tasks such
as screen segmentation that aim to partition the screen.

This metric is computed as the mean of each container’s (e.g.,
intermediate node) IoU score with the ground truth. Similar to
edge-based metrics, the container match (CM) score is bounded
between 0 and 1, where a score of 1 indicates that all groups were
correctly matched. For trees without any matched modes, we set
the score to 0.

6.2 Results
Table 3 shows the results of our performance evaluation using our
set of metrics. Our results show that our fnal system, Screen Parser
Dynamic outperforms all baselines in all performance metrics. In
this section, we provide more detailed comparison with baselines
and further analyze factors that impact performance.

6.2.1 Comparison with Screen Recognition. Both Screen Parser
models outperform Screen Recognition on both datasets. One rea-
son is that Screen Recognition and most other heuristics-based
approach are not abstractive, which prevents them from producing
“deep" trees. Performance on edges containing leaf nodes (i.e., shal-
lower relations) is generally much better; Compared to overall F1
score, Screen Recognition had a 25% higher F1 Leaves score.

More importantly, Screen Recognition was not designed to pro-
duce output similar to app view hierarchies; instead, it was designed
to support common groupings required by screen reader navigation.
In addition to the set of performance metrics described here, we
recommend holistically evaluating systems in downstream tasks.

476

■
■
■

■
■

UIST ’21, October 10–14, 2021, Virtual Event, USA Wu, et al.

Table 3: We evaluated screen parsing performance using 4 metrics: F1 score (F1), F1 score of edges with leaf nodes (F1 Leaves),
graph edit distance (GED), and container match cost (CM). Higher is better for all metrics except GED. More details are de-
scribed in the performance metrics section. Note that the RCNN Oracle is not a system – it is the best possible matching
between the RCNN detections and the ground truth.

AMP RICO

F1↑ F1 Leaves↑ GED↓ CM↑ F1↑ F1 Leaves↑ GED↓ CM↑

RCNN Oracle 0.76±0.22 0.75±0.22 16.6±20.9 0.79±0.19 0.89±0.14 0.89±0.14 8.8±15.9 0.93±0.07

Screen Recognition 0.40±0.20 0.52±0.26 23.5±20.7 0.63±0.23 0.39±0.19 0.47±0.26 23.8±21.4 0.43±0.19
Screen Recognition + RCNN 0.34±0.19 0.44±0.24 25.5±21.1 0.54±0.21 0.41±0.23 0.44±0.28 17.8±19.7 0.48±0.23
Screen Parser Static 0.53±0.23 0.62±0.22 26.1±24.6 0.59±0.16 0.61±0.27 0.59±0.27 15.2±16.2 0.69±0.24
Screen Parser Dynamic 0.60±0.23 0.67±0.23 20.2±20.9 0.63±0.16 0.66±0.28 0.64±0.28 13.2±15.5 0.74±0.24

6.2.2 Efect of Improved Training Procedure. Based on our results,
Screen Parser Dynamic performs up to 23% better than Screen
Parser Static. Since both static and dynamic versions of our model
was trained to maximize the likelihood of the same data, we can
conclude that the dynamic oracle training technique is efective in
increasing screen parsing performance.

Recall that the main diference between the two training pro-
cedures is that the static oracle only produces one sequence of
optimal actions (i.e., the canonical action sequence) while the dy-
namic oracle produces all optimal sequences (Figure 4). This is
especially relevant for UI hierarchies, where the tree structure can
be several levels high, leading to exponentially more possible opti-
mal sequences. This is in contrast to natural language parse trees,
which are typically limited by the relatively short length of sen-
tences.

While the canonical action sequence provably correct (i.e., con-
tains all correct element relationships) [13], it leads to exposure bias
– where the model is biased to perform well only in states it has seen
during training. During test-time, the model may choose an action
outside of this sequence (either by making an error or choosing
another optimal action), which causes the model to perform poorly
afterwards.

6.2.3 Efect of UI Element Detection Performance. All systems were
fed UI element detections as input, and errors in the upstream model
also afected the performance of the hierarchy prediction.

To estimate the upper-bound performance of systems that rely on
the RCNN output, we included the RCNN Oracle which constructs
an output using the best possible between the detector output and
the ground truth hierarchy. Even with access to the ground truth, it
does not achieve perfect accuracy – possibly a result of missing or
inaccurate detections. This suggests that a better object detection
model could further improve UI hierarchy prediction.

As an example, we ran Screen Recognition’s heuristics on both
its default object detector and our RCNN model’s output. Compared
to our system’s RCNN model, Screen Recognition’s object detector
is optimized for the AMP dataset (e.g., tuned per-class confdence
threshold) which results in better performance.

6.2.4 Performance on Complex Screens. Finally, we analyzed the
performance of screen parsing system on screens of diferent com-
plexity. Figure 5 shows the overall F1 score for each system run

F1
0

0.25

0.5

0.75

1

of Elements
0-16 16-32 32-48 48-64 64+

RCNN Oracle Screen Recognition
Screen Recognition + RCNN Screen Parser Static
Screen Parser Dynamic

Screen Complexity vs Performance (AMP)

F1

0

0.25

0.5

0.75

1

of Elements
0-16 16-32 32-48 48-64 64+

Screen Complexity vs Performance (RICO)

Figure 5: Analysis of each system’s performance on screens
of varying complexity. Screens with a higher number of el-
ements introduce challenges for both UI element detection
(screens with large # of elements generally have smaller and
more dense elements) and UI hierarchy prediction.

on splits of the test data containing a screens with a specifed #
of elements. Performance is highest for screens up to 32 elements
and degrades following that threshold. One major factor is lower
object detection accuracy with smaller objects (screens with more
elements tend to have smaller elements), since the performance of
the RCNN Oracle also drops past that point. Interestingly, Screen
Recognition’s performance remains relatively constant, which sug-
gests that many of the local patterns targeted by heuristics are
not as afected by screen complexity. We also note that although
both Screen Parser systems were only trained on screens with up
to 64 elements, they still perform competitively for more complex
screens.

Examples of failure cases (some of which result from these fac-
tors) are shown in Figure 6.

477

= C:::::J

I '..,._
9 :1a,. I .., .. .,.,,,,,

I~ ~

I
I
I
I
I
I
I
I
I
I

10~~~~ ,
[!] [!J [!2l el ~

14

u

10

10

Welcome to
Apple Podcasts

@~.:.:--'
o ~ ~.-~·"···

0 ~-~~~- ~;-::,-:,

' \

¢1 L1:' -"'·"·
(II :- -•·· •. -.......
0 :~~:,_·:;";:..:-··"

Screen Parsing: Towards Reverse Engineering of UI Models from Screenshots UIST ’21, October 10–14, 2021, Virtual Event, USA

Incorrect Grouping Missing Grouping
Object Detection

Errors

Figure 6: Examples of some errors by our screen parsing
model. We identifed three types of errors that can oc-
cur: (i) object detection errors, (ii) incorrect groupings, and
(iii) missing groupings. Object detection errors can lead to
missing elements or misaligned bounding boxes, which our
model relies on to infer grouping. Incorrect groupings can
assign irrelevant text labels to icons. Missing groupings can
result in errors in downstream applications, such as a non-
optimal navigation order for screen readers.

7 EXAMPLE APPLICATIONS
In this section, we present a suite of example applications imple-
mented using our screen parsing model. These applications show
the versatility of our approach and how the UI hierarchy predicted
by our model can be used to facilitate many existing tasks.

7.1 UI Similarity Search
Many recent eforts in modeling UIs have focused on representing
them as fxed-length embedding vectors. These vectors can be
trained to encode diferent properties of UI screens (e.g., layout,
content, and style) and support down-stream tasks. For example,
a common application of embedding models is measuring screen
similarity, which is represented by distance in embedding space.
We believe the performance of such models can be improved by
incorporating structural information, an important property of UIs.

Our implementation is trained to model the structural relation-
ships between on-screen elements, and we show that its internal
representations are useful for this purpose. To generate an embed-
ding of a UI, we feed it into our model and pool the last hidden
state of the encoder. This includes information about the position,
type, and structure of on-screen elements. Figure 7 shows the 2-
D projection [27] of randomly-sampled screens embedded using
this technique. This set includes several variations of app screens,
including (i) scaling, (ii) language, (iii) theme, and (iv) dynamic
content. Our model is largely invariant to these changes, since
their structure is the same, just rendered under diferent conditions.
The properties of our embedding could be useful for some UI un-
derstanding applications, such as app crawling and information
extraction where screens are characterized more by their seman-
tics than appearance. We provide examples of UIs retrieved by our

Scaling Language

Dynamic ContentTheme

Figure 7: The intermediate representation of our parsing
model can be used to produce a screen embedding, which de-
scribes hierarchical structure of an app. We embedded a set
of app screens using our model and visualize them in a 2-D
projection. We show that display settings such as (i) scaling,
(ii) language, (iii) theme, and (iv) small dynamic changes re-
sult in minimal variation, which may be useful for some
downstream tasks that rely on characterizing screens by se-
mantic structure rather than aesthetic appearance.

similarity search application in the appendix to illustrate the types
of information our embedding captures.

7.2 Accessibility Enhancement
Screen readers help blind and visually impaired users access appli-
cations by reading out content highlighted by a cursor. Knowledge
of UI element location (i.e., spatial information) and hierarchy is
important for screen readers to compute the correct order to move
the cursor through the screen (e.g., elements in the same group
should be ordered consecutively), and for accessible apps, this in-
formation is found in an app’s accessibility metadata. Recent work
[41] has successfully generated missing metadata for inaccessible
apps by running an object detection model on the UI screenshot.
Their approach to generating hierarchical data relies on manually
defned heuristics that detect and group localized patterns between
elements (e.g., a container with a text element inside it might be
grouped as a button). However, these approaches may sometimes
fail because they do not have access to global information that is
necessary for resolving ambiguities.

In contrast, our implementation generates a UI hierarchy with a
global view of the input, so it can overcome some of the limitations
of heuristic-based approaches. We used the predicted UI hierarchy
to group together the children of intermediate nodes of height 1 that
contained at most one text label and used the X-Y cut algorithm

478

~
BEi

C
!Chat Using Messagesj
I"" -~-.,-•-"·1
~

~ ~

11\J ~
Rer;ommendiia A[Mei

II ~ :::~"~: ~ I
-~ A, g

' ' ' ' Cha(Using Me~sages
S<Of14«' 1~::,""':.""""-'"'

L ~ ... ~ .. ,~~ I

' .
'

' : ll)l;,ro .. riiiiil•o}il•i II ,,_ M_,!.~.
~·"'- ··-···J

1!J !!J · ~

UIST ’21, October 10–14, 2021, Virtual Event, USA Wu, et al.

Missing
Groupings

Corrected
Groupings

Poor Navigation
Experience

Raw
Detections

Screen
Recognition

Screen Parser

Figure 8: Recent approaches use object-detection ap-
proaches to generate accessibility metadata for inaccessible
apps. Our model can be used to improve or augment the
heuristic-based approach used by these systems to infer
navigation order. Original detections from the object detec-
tor are shown in blue, and grouped elements are shown in
orange. Element boxes are annotated using their navigation
ordering [28], where the number represents how many
swipes are needed to access the element when using a
screen reader. While both results contain errors, in this
case, Screen Parser correctly groups more elements, which
decreases the number of swipes needed to access elements.

[28] to determine navigation order. Figure 8 shows an example
where the grouping output from the screen parser model is more
accurate than the one produced by Screen Recognition heuristics.
Note that this is not always the case. More examples are available
in the appendix.

7.3 Generating UI Code from a Screenshot
Producing code from screenshots or mock-ups can greatly acceler-
ate application prototyping development. A simple approach for
code generation is (i) to frst extract the location and type of UI
elements using an object-detection model, (ii) then generate code
that places the appropriate UI controls at the detected locations.
While this approach may result in interfaces that are visually simi-
lar to the input, it is undesirable for several reasons. Code generated
using this approach often uses absolute positioning constraints to
instantiate UI controls, which prevents it from adapting to new
screen sizes and makes it less useful for developers to work of of.

Some systems [29] use heuristics to detect a limited subset of
containers (e.g., lists), while others [5] augment visually detected el-
ements with hierarchical data extracted from the window manager.
To generate high quality, responsive code, structural understanding
of a UI is an important step.

We built an example application that uses our implementation
to generate SwiftUI code from a app screenshot. We employed a
technique used by compilers to generate code from abstract syntax
trees (AST) known as the visitor pattern. First a screenshot is fed

into our system, which produces a UI hierarchy. We performed a
depth-frst traversal of the UI hierarchy using a visitor function that
generates code based on the current state (current node and stack).
Specifcally, the visitor function emits a SwiftUI control (e.g., Text,
Toggle, Button) at every leaf node and emits a SwiftUI container
(e.g., VStack, HStack) at every intermediate node 2. We manually
created a mapping between nodes types in the screen parser tree
and SwiftUI views and automatically required parameters such as
label text using OCR. Elements containing graphics, such as image
views or icons, are represented by an image patch cropped from
the original screenshot, which are automatically included as assets.
When generating code for small form-factors such as smartwatches,
we replace horizontal containers with vertical ones due to limited
space. Finally, our system uses a simple heuristic to determine
whether the app uses a light or dark theme, and sets a preferred
color scheme.

The resulting code describes the original UI using only relative
constraints (even if the original UI was not), allowing it to act re-
sponsively to changes in screen size or device type (Figure 9). The
generated code does not contain appearance and style informa-
tion (e.g., text size, element color), which is sometimes necessary
to render a similar-looking screen. Nevertheless, prior work [6]
has shown that such output can be a useful starting point for UI
development, and we believe future work can improve upon our
approach by detecting these properties.

8 LIMITATIONS AND FUTURE WORK
In this paper, we presented the problem of screen parsing and im-
plemented a baseline implementation that shows how structured
information can be predicted from a UI’s visual appearance. Specif-
ically, our implementation predicts the presentation model from
a UI’s screenshot, for which we had a large dataset of examples
(i.e., view hierarchies) to facilitate machine learning. Some of our
system’s constraints (e.g., can only produce directed trees) were
purposefully introduced by us in service of our chosen target model.

We see multiple opportunities to improve our particular imple-
mentation. From our evaluation, we found that certain components,
such as the UI Element Detector, can limit the performance of others
that rely on it. The performance of our system can also be improved
by modeling changes e.g., incorporating visual information (e.g.,
dominant color or visual embedding of an element) in our hier-
archy prediction and improving our group labeling model. Some
down-stream applications have diferent notions of performance.
For example, when computing screen reader navigation, lower-level
groupings (i.e., close to leaf nodes) matters more. To more accu-
rately assess our system’s performance, we plan to evaluate it in
the context of down-stream tasks. Our current model generates its
output entirely from visual input (i.e., app screenshot), which mini-
mizes its dependencies. Nevertheless, we also believe there is an
opportunity to take advantage partial or incomplete view hierarchy,
which our model can use in conjunction with visual information to
improve performance [5].

More broadly, we hope to apply screen parsing to extract other
types of structured semantics from UI screenshots (including those

2Information about SwiftUI controls and containers are available in the SwiftUI docu-
mentation: https://developer.apple.com/documentation/swiftui/views-and-controls

479

https://developer.apple.com/documentation/swiftui/views-and-controls

...
~-~~~--=~ ., -­
Ill! =·-­
ISi :::

■

■

■
Ill

le
i1S,j

Screen Parsing: Towards Reverse Engineering of UI Models from Screenshots UIST ’21, October 10–14, 2021, Virtual Event, USA

Original
Screenshot Phone Watch Tablet

a)

b)

c)

Figure 9: By mapping nodes in the UI hierarchy to declara-
tive view-creation methods, we can generate code for a UI
from its screenshot. Generating code from the hierarchy
rather than the layout ensures that it is responsive across
screen sizes, and we show the same output code rendered on
diferent device form factors. Our example application may
produce some errors due to missing style information (a, c)
or inaccurate OCR (b).

on other platforms such as web and desktop UIs), including those
that describe data fow, interaction, and tasks. We expect that for
some of these, we will be able to re-use much of our current archi-
tecture. Others might require adding or moving constraints (e.g.,
predicting more general types of graphs that may include cycles).
Furthermore, some types of models (e.g., task models) might not
be possible to infer from a single screenshot and would instead
require a sequence of screens. Regardless, we expect the utility
of automated UI systems to increase as they gain the ability to
parse reason about structured semantics from UIs. We believe a
promising application of screen parsing lies in tasks that require
higher-level semantics such as task automation and programming-
by-demonstration [24], which often require accessibility metadata
to work.

9 CONCLUSION
In this paper, we introduced the problem of screen parsing, the
prediction of structured UI models from visual information. In a
comparison to three related problems, we show that our problem
formulation and model is more suited to the unique properties of
user interfaces. We described the architecture and training proce-
dure for our reference implementation, which predicts an app’s

presentation model as a UI hierarchy with high accuracy, surpass-
ing baseline algorithms and training procedures. In addition, we
showed that the properties of our system allow it to simultaneously
support a diverse array of down-stream applications: (i) UI similar-
ity search, (ii) accessibility enhancement, and (iii) code generation
from UI screenshots. More broadly, we believe our formulation of
screen parsing will allow automated systems to better reason about
the underlying structure and purpose of UIs, facilitating more ad-
vanced and complex interactions.

ACKNOWLEDGMENTS
We thank our reviewers for their feedback which helped improve
this paper. This research was funded in part by a NSF GRFP Fellow-
ship.

REFERENCES
[1] Airbnb. 2017. Sketching Interfaces. https://airbnb.design/sketching-interfaces/
[2] AutoIt. 2021. Function PixelSearch. https://www.autoitscript.com/autoit3/docs/

functions/PixelSearch.htm
[3] Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and Noah A Smith. 2016. Train-

ing with exploration improves a greedy stack-LSTM parser. arXiv preprint
arXiv:1603.03793 (2016).

[4] Tony Beltramelli. 2018. pix2code: Generating code from a graphical user inter-
face screenshot. In Proceedings of the ACM SIGCHI Symposium on Engineering
Interactive Computing Systems. 1–6.

[5] Tsung-Hsiang Chang, Tom Yeh, and Rob Miller. 2011. Associating the visual
representation of user interfaces with their internal structures and metadata. In
Proceedings of the 24th annual ACM symposium on User interface software and
technology. 245–256.

[6] Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu. 2018.
From UI design image to GUI skeleton: a neural machine translator to bootstrap
mobile GUI implementation. In Proceedings of the 40th International Conference
on Software Engineering. 665–676.

[7] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhut, Guo-
qiang Li, and Jinshui Wang. 2020. Unblind your apps: Predicting natural-language
labels for mobile GUI components by deep learning. In 2020 IEEE/ACM 42nd In-
ternational Conference on Software Engineering (ICSE). IEEE, 322–334.

[8] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jefrey Nichols, and Ranjitha Kumar. 2017. Rico: A mobile app dataset
for building data-driven design applications. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology. 845–854.

[9] Morgan Dixon and James Fogarty. 2010. Prefab: implementing advanced behav-
iors using pixel-based reverse engineering of interface structure. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. 1525–1534.

[10] WA Falcon and .al. 2019. PyTorch Lightning. GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning 3 (2019).

[11] Andreas Fischer, Kaspar Riesen, and Horst Bunke. 2017. Improved quadratic
time approximation of graph edit distance by combining Hausdorf matching
and greedy assignment. Pattern Recognition Letters 87 (2017), 55–62.

[12] Krzysztof Gajos and Daniel S Weld. 2004. SUPPLE: automatically generating user
interfaces. In Proceedings of the 9th international conference on Intelligent user
interfaces. 93–100.

[13] Yoav Goldberg and Joakim Nivre. 2012. A dynamic oracle for arc-eager depen-
dency parsing. In Proceedings of COLING 2012. 959–976.

[14] W3C Working Group. 2014. Introduction to Model-Based User Interfaces. https:
//www.w3.org/TR/mbui-intro/

[15] Michael Hahn. 2020. Theoretical limitations of self-attention in neural sequence
models. Transactions of the Association for Computational Linguistics 8 (2020),
156–171.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[17] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735–1780.

[18] Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III. 2015.
Deep unordered composition rivals syntactic methods for text classifcation.
In Proceedings of the 53rd annual meeting of the association for computational
linguistics and the 7th international joint conference on natural language processing
(volume 1: Long papers). 1681–1691.

[19] Dan Jurafsky and James H. Martin. 2020. Speech & language processing 3rd ed.
draft.

480

https://airbnb.design/sketching-interfaces/
https://www.autoitscript.com/autoit3/docs/functions/PixelSearch.htm
https://www.autoitscript.com/autoit3/docs/functions/PixelSearch.htm
https://www.w3.org/TR/mbui-intro/
https://www.w3.org/TR/mbui-intro/
https://github.com/PyTorchLightning/pytorch-lightning

for examp le in dataset:

node = examp le. rootN ode

while not examp le. isTerminalNode (node):

optimal = set()
if len (node. c hildr en) == 0:

at a leaf node, go back up

optimal. add (PopAction ())

else :
for child in node. children:

if child. isLeaf:

optimal. add (ArcAction (child))

else:
optimal. add (EmitAction ())

if dynamicTraining:

model. train (optimal)

if model. high estSco ring in optimal:

action

else :
model. prediction

action = randomChoice (optimal)

else: # static training

action = getCanonicalAction (optimal)

model. train (action)

node = node. nodeAfterAction (action)

UIST ’21, October 10–14, 2021, Virtual Event, USA

[20] Boris Knyazev, Harm de Vries, Cătălina Cangea, Graham W Taylor, Aaron
Courville, and Eugene Belilovsky. 2020. Graph density-aware losses for novel
compositions in scene graph generation. arXiv preprint arXiv:2005.08230 (2020).

[21] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua
Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al.
2017. Visual genome: Connecting language and vision using crowdsourced dense
image annotations. International journal of computer vision 123, 1 (2017), 32–73.

[22] Harold W Kuhn. 1955. The Hungarian method for the assignment problem. Naval
research logistics quarterly 2, 1-2 (1955), 83–97.

[23] James A Landay. 1996. SILK: sketching interfaces like krazy. In Conference
companion on Human factors in computing systems. 398–399.

[24] Toby Jia-Jun Li, Amos Azaria, and Brad A Myers. 2017. SUGILITE: creating
multimodal smartphone automation by demonstration. In Proceedings of the 2017
CHI conference on human factors in computing systems. 6038–6049.

[25] Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng, Graham Neubig, and Eduard
Hovy. 2018. Stack-pointer networks for dependency parsing. arXiv preprint
arXiv:1805.01087 (2018).

[26] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar
Paluri, Yixuan Li, Ashwin Bharambe, and Laurens Van Der Maaten. 2018. Explor-
ing the limits of weakly supervised pretraining. In Proceedings of the European
Conference on Computer Vision (ECCV). 181–196.

[27] Leland McInnes, John Healy, and James Melville. 2018. Umap: Uniform man-
ifold approximation and projection for dimension reduction. arXiv preprint
arXiv:1802.03426 (2018).

[28] J-L Meunier. 2005. Optimized xy-cut for determining a page reading order. In
Eighth International Conference on Document Analysis and Recognition (ICDAR’05).
IEEE, 347–351.

[29] Tuan Anh Nguyen and Christoph Csallner. 2015. Reverse engineering mobile
application user interfaces with remaui (t). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 248–259.

[30] Jefrey Nichols, Brad A Myers, Michael Higgins, Joseph Hughes, Thomas K Harris,
Roni Rosenfeld, and Mathilde Pignol. 2002. Generating remote control interfaces
for complex appliances. In Proceedings of the 15th annual ACM symposium on
User interface software and technology. 161–170.

[31] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic diferentiation in pytorch. (2017).

[32] Angel R Puerta. 1997. A model-based interface development environment. IEEE
Software 14, 4 (1997), 40–47.

[33] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. arXiv preprint
arXiv:1506.01497 (2015).

[34] Richard S. Schwerdtfeger. 1991. Making the GUI Talk. ftp://service.boulder.ibm.
com/sns/sr-os2/sr2doc/guitalk.txt

[35] Michael Shilman, Percy Liang, and Paul Viola. 2005. Learning nongenerative
grammatical models for document analysis. In Tenth IEEE International Conference
on Computer Vision (ICCV’05) Volume 1, Vol. 2. IEEE, 962–969.

[36] Richard Socher, Clif Chiung-Yu Lin, Andrew Y Ng, and Christopher D Manning.
2011. Parsing natural scenes and natural language with recursive neural networks.
In ICML.

[37] Zhuowen Tu, Xiangrong Chen, Alan L Yuille, and Song-Chun Zhu. 2005. Image
parsing: Unifying segmentation, detection, and recognition. International Journal
of computer vision 63, 2 (2005), 113–140.

[38] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi Parikh. 2018. Graph
r-cnn for scene graph generation. In Proceedings of the European conference on
computer vision (ECCV). 670–685.

[39] Tom Yeh, Tsung-Hsiang Chang, and Robert C Miller. 2009. Sikuli: using GUI
screenshots for search and automation. In Proceedings of the 22nd annual ACM
symposium on User interface software and technology. 183–192.

[40] Rowan Zellers, Mark Yatskar, Sam Thomson, and Yejin Choi. 2018. Neural motifs:
Scene graph parsing with global context. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 5831–5840.

[41] Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin, Samuel White, Kyle Murray,
Lisa Yu, Qi Shan, Jefrey Nichols, Jason Wu, Chris Fleizach, et al. 2021. Screen
Recognition: Creating Accessibility Metadata for Mobile Applications from Pixels.
arXiv preprint arXiv:2101.04893 (2021).

[42] Song-Chun Zhu and David Mumford. 2007. A stochastic grammar of images. Now
Publishers Inc.

A MODEL HYPERPARAMETERS
All models were trained with early stopping that stopped training
when validation loss did not improve for 10 epochs. We imple-
mented our models using PyTorch [31] and PyTorch Lightning
[10].

Wu, et al.

Model
Faster-RCNN

Screen Parser

Group Labeler

Hyperparameter
optimizer
lr (base)
lr (max)
optimizer
lr
weight decay
dropout
hidden size
hidden layers
optimizer
lr
weight decay
hidden size
hidden layers

Value
SGD
0.01
0.1
Adam
1e-4
1e-5
0.25
256
4
Adam
1e-4
1e-4
256
1

B ORACLE PSEUDOCODE

C UI RETRIEVAL EXAMPLES
Figure 10 shows examples of UIs retrieved using our UI Similarity
Search example application. We embedded a set of query UIs and
used them to retrieve similar UIs from a subset of our AMP dataset.

D ACCESSIBILITY ENHANCEMENT
EXAMPLES

Figure 11 shows examples of accessibility metadata generated by
our system and Screen Recognition, a baseline that we compared
with. Both systems occasionally produce minor errors (e.g., group-
ing elements that do not belong together) but signifcantly improve
the navigation experience.

481

ftp://service.boulder.ibm.com/sns/sr-os2/sr2doc/guitalk.txt
ftp://service.boulder.ibm.com/sns/sr-os2/sr2doc/guitalk.txt

iNDi t

o s d 1 ghj • I

=

==-- -

"' ¥=--==
"' ::=::-::.--·
* ;§='=.:.-- =

Screen Parsing: Towards Reverse Engineering of UI Models from Screenshots UIST ’21, October 10–14, 2021, Virtual Event, USA

Query UI Retrieved UIs

a)

b)

c)

d)

e)

1) 2) 3) 4)

Figure 10: Example output of our UI Similarity Search example applications. We use several query UIs to fnd similar UIs in
a subset of the AMP dataset. Retrieved UIs are ordered by their similarity to the query UI in embedding space. Many of the
retrieved screens are from other apps with similar structural layout.

482

llll"1 ""'""" !!= 1!11

l!iiKliiiiil

IZI ~

l!lil ~
ICil ~

~

1~~
Iii] -

,1
,1

Cl

- - ""'

□ limp userstudy:J -
l!!!I ~

1:= □ 1 ,r
1~ ~ ,1
I ~

•• . ;Pm;,cP(>@

E• r'.-11 L" I
I

~ e.. I ... __

,

r

Welcome to
Apple TV

f;ka

~ l.'!J ~

I
~

I
ll,,a

•

i,;;

I" ~

UIST ’21, October 10–14, 2021, Virtual Event, USA Wu, et al.

Raw
Detections

Screen
Recognition Screen Parser

Figure 11: Examples of accessibility metadata generated for
raw detections by Screen Recognition heuristics and our
screen parser model. Each element is annotated with the
number of swipes needed to reach it using a screen reader. El-
ements groups are shown in orange. The last row of screen-
shots contain an email address, which is redacted.

483

	Abstract
	1 Introduction
	2 Related Work
	2.1 Reverse Engineering UIs
	2.2 Defining and Extracting UI Models
	2.3 Structured Prediction from Visual Information

	3 Screen Parsing
	3.1 Problem Formulation
	3.2 Comparison to Related Problems

	4 Implementation
	4.1 UI Element Detection
	4.2 UI Hierarchy Prediction
	4.3 Group Labeling

	5 Training
	5.1 Datasets
	5.2 Training Algorithm

	6 Evaluation
	6.1 Performance Metrics
	6.2 Results

	7 Example Applications
	7.1 UI Similarity Search
	7.2 Accessibility Enhancement
	7.3 Generating UI Code from a Screenshot

	8 Limitations and Future Work
	9 Conclusion
	Acknowledgments
	References
	A Model Hyperparameters
	B Oracle Pseudocode
	C UI Retrieval Examples
	D Accessibility Enhancement Examples

