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Non-verbal behavior is essential for embodied agents like social robots, virtual avatars, and digital humans. Existing behavior authoring
approaches including keyframe animation and motion capture are too expensive to use when there are numerous utterances requiring
gestures. Automatic generation methods show promising results, but their output quality is not satisfactory yet, and it is hard to modify
outputs as a gesture designer wants. We introduce a new gesture generation toolkit, named SGToolkit, which gives a higher quality
output than automatic methods and is more efficient than manual authoring. For the toolkit, we propose a neural generative model that
synthesizes gestures from speech and accommodates fine-level pose controls and coarse-level style controls from users. The user study
with 24 participants showed that the toolkit is favorable over manual authoring, and the generated gestures were also human-like and
appropriate to input speech. The SGToolkit is platform agnostic, and the code is available at https://github.com/ai4r/SGToolkit.
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1 INTRODUCTION

Recent advancements in artificial intelligence, graphics, and robotics are accelerating the realization of artificial
embodied agents like social robots, virtual avatars, and digital humans. The embodied artificial agent is one of the
promising interaction mediums beyond current voice-only assistants, and their non-verbal behavior is a key difference
from the existing mediums. When we interact with agents having a human form factor, we naturally expect them to
do social behaviors as humans do, which is often called “social affordance” [37]. This non-verbal behavior has been
proven to be effective in many human-human interaction and human-agent interaction studies [4, 5, 30, 36, 43]. Proper
gesticulation of agents helps to reveal agents’ intention [36], to make listeners concentrate [4], and to build a rapport
with humans [43].
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Let me have a
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this timing

Pose controls

Refined gestures

Style controls

Make the gesture
more dynamic

Refined gestures Now I'm happy

Fig. 1. An exemplary usage flow of the SGToolkit. A user first reviews the automatically generated gestures (a rough sketch), and
then adds pose and style controls until they are satisfied with the refined gestures.

It is not trivial to make plausible non-verbal behavior for the agents. Typical ways to realize social behaviors are
keyframe animation by artists or capturing human actors’ motion [31]. Both methods give high-quality motions but
there is a scalability issue due to their high production cost. Experienced animation artists are needed for the keyframe
animation, and the motion capture method requires expensive capturing devices and skilled actors. Thus, these gesture
authoring methods are mostly used in movies, structured games (not open-world games), small-sized interaction
applications where virtual characters’ or agents’ utterances are limited.

There is a need for a cheaper solution. The agents that interact with humans freely, like social robots, virtual
assistants, and characters in interactive games, have diverse utterances, so it is not feasible to create gestures for all the
utterances using the expensive aforementioned methods. The cheapest way to generate social behavior is automatic
generation; it does not require a human effort at the production time. For facial expressions, there are audio-driven
facial motion generation studies [18, 41] and a commercial toolkit is also available for the same purpose [16]. A body
gesture is another important nonverbal behavior, and an automatic generation of body gestures is more challenging
than a generation of facial motion due to the lack of large-scale gesture datasets. There are two automatic gesture
generation toolkits—Virtual Humans Toolkit [13] from USC and NAOqi [38] from SoftBank Robotics; however, both
toolkits are not widely used because they are dependant on a specific platform and heavily relies on pre-described
word–gesture association rules. Also, the gesture quality of the automatic gesture generation toolkits is not high enough,
showing repetitive and monotonic motion and unnatural transitions between gestures. Recent data-driven gesture
generation studies improved gesture qualities, but are still far behind human-level gestures [24]. Another limitation
of the data-driven gesture generation is that it cannot imply a designer’s intention. Even if generated gestures are as
natural as human gestures, they might not be what a designer wants.

In this paper, we propose SGToolkit, a novel gesture generation toolkit that enables designers or developers to create
quality gestures with less effort. The toolkit is designed to have higher gesture quality than automatic gesture generation
methods and lower production cost than a manual keyframe animation method. We first interviewed three experts in
potential fields, where the toolkit can be used, and elicited the requirements for the gesture generation toolkit (Section
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3). The key idea of the new gesture generation toolkit is combining automatic gesture generation and manual controls.
Figure 1 shows the workflow of the proposed toolkit. The toolkit first generates gestures from speech automatically, and
then users add control elements to refine the gestures. The toolkit provides fine-level pose control and coarse-level style
control elements. We describe how the controls are integrated into a neural generative model in Section 4, and how the
neural network was trained on a human gesture dataset in Section 5. Note that we focus on upper-body gestures which
include head, arm, and torso movements, and that both pose control input and synthesized output were represented
as 3D joint positions. Section 6 describes how the toolkit was developed after a preliminary user study with its first
prototype. And we evaluated the usability of the toolkit and the quality of the generated gestures (Section 7).

2 RELATEDWORKS

2.1 Gesture Generation Toolkits

There are two representative gesture authoring toolkits publicly available. One is the Virtual Humans Toolkit from
USC [13] which is for conversational virtual characters; it provides a complete set of toolkits including a dialogue
engine, a character animation engine [40], and a non-verbal behavior generator [26]. The non-verbal behavior generator
is based on a rule-based gesture generation method. Rules mapping from words to predefined unit gestures were
specified in a configuration file, and users can modify and expand the configuration. The other toolkit is the NAOqi
framework [38] for NAO and Pepper robots. NAOqi also uses a rule-based gesture generator similar to the Virtual
Humans Toolkit. Several unit gestures are embedded in the robots, and the robots make gestures according to words
currently speaking.

The existing toolkits have the common disadvantages that they are platform dependant (the SmartBody virtual
characters [40] for the Virtual Humans Toolkit and the robots from the SoftBank Robotics for the NAOqi framework)
and generated gestures are often repetitive and not matching to speech because both toolkits generate gestures only
from a limited modality of speech text. When input speech does not have words specified in the gesture generation rule,
the existing toolkits generate static or random motion, which is not relevant to speech, and, without considering speech
audio, it is not possible to synthesize gestures aligning to speech acoustically, for instance, beat gestures. In addition, the
previous toolkits were for automatic gesture generation, so there are no interactive authoring or controlling functions.
To our best knowledge, the proposed SGToolkit is the first interactive gesture generation toolkit supporting fine- and
coarse-level controls.

Other relevant studies are to build a markup language for gesture authoring [7, 21]. Although these studies introduced
useful tools for manual gesture creation, a bunch of unit gestures is still needed and a user should be aware of the unit
gestures to write down markup codes.

2.2 Automatic Gesture Generation Methods

There are lots of studies for automatic gesture generation for embodied conversational agents. The studies have improved
gesture generation quality by adapting advanced machine learning methods and considering multimodality. Automatic
gesture generation methods can be categorized into a rule-based approach [7, 21, 29] and a data-driven approach [15,
23, 27, 45]. The existing toolkits we introduced above use the rule-based approach because its implementation is
straightforward and it is easy to extend and reuse generation rules. Unlike the rule-based approach requiring human-
generated rules, the data-driven approach learns how to make gestures from a large corpus of human gestures; the
studies in this category are widely spanned according to motion representation (discrete unit gestures vs. continuous
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motion) and speech context considered (speech audio, speech content, interlocutor, etc.). Early studies focused on
building gesture generation rules automatically from human demonstrations [15, 19], and later, the researchers proposed
methods generating raw motion data not using predefined unit gestures [9, 10, 22, 45]. Also, the research has evolved
to use multimodal speech context to reflect speech information as much as possible [23, 44].

The model in the present paper is based on the data-driven method, and we added controllability on top of that. Both
speech audio and text are considered in the model.

2.3 Controllable Gesture Generation

Manipulating gesture motion can be done in two different ways. The first one is using post-processing for existing
gestures. EMOTE [8] introduced a computational method to manipulate speed, range, and path of character motion
based on Laban Movement Analysis [25]. Hartmann et al. [14] proposed a similar post-processing method for speech
gestures of virtual characters. While the two studies focused on manipulating overall motion statistics, Liao et al. [28]
inserted desired poses to an existing motion to generate a new motion; the inserted poses were blended into the existing
motion. These post-processing methods directly manipulate motions, so there is the advantage that the updated motion
is predictable. The disadvantage is that sophisticated motion blending functions are necessary and users should tweak
blending parameters manually to get realistic motion.

Another way to control gesture motion is inputting control intents to a generation model, and the model considers
the intents during motion generation processes. Alexanderson et al. [2] proposed a style-controllable gesture generation
model. Style control vectors were inputted to the neural network model, and it was demonstrated that the model
generates gestures following the inputted style intents. Also, speaker identities were used to generate stylized gestures
reflecting inter-person variability [1, 44]. A style embedding space was trained from a large corpus of gestures of
different speakers in [44]. A style disentanglement was studied in [1].

Our model adapted the later approach and extended it to control both details of gestures and rough styles, which
was not suggested before.

3 REQUIREMENTS FINDING INTERVIEW

To find out the requirements for a gesture authoring tool that enables an efficient authoring process and can create
human-like gestures, we conducted interviews with experts in three different domains related to gesture creation: video
games, massive open online courses (MOOC), and social robots. Interviewee 1 is a character motion researcher from
one of the world’s largest video game studios. Interviewee 2 is the CTO of a MOOC company. The company uses virtual
characters with gesture motions in its educational video materials. Interviewee 3 is a robotics researcher; his team
developed a new android robot and demonstrated the robot at exhibitions and performances.

We interviewed each interviewee for an hour. At the beginning of the interview, we presented four existing
gesture authoring methods: keyframe animation, motion capturing, rule-based automatic gesture generation (NAOqi
framework [38]), and deep learning-based automatic gesture generation [45]. We explained their concepts and showed
videos for actual gesture authoring processes and results. Next, we asked several open-ended questions. The questions
were 1) general opinions about the four methods, 2) requirements for a gesture authoring tool, and 3) appropriate
autonomy level of gesture creation (fully manual to fully automatic).

Since the experts’ domains were all different, we could get insights into a broad field. We list the requirements that
we extracted from the insights in the following. First, all the interviewees agreed that automatic gesture generation and
manual editing are both necessary. Interviewee 2 particularly favored automatic gesture generation because substantial
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effort was needed to create character motion for a large collection of educational materials. However, the interviewees
commented that manual motion editing is still needed. Interviewee 1 said editing the generated motions is required
because the quality of automatically generated gestures is not as good as what a designer can create manually. He noted
that automatically generated gestures could be used as rough sketches for designers. Interviewee 2 commented that
a virtual character should be able to make different gestures according to background contents (e.g., deictic gestures
indicating a paragraph on a blackboard the character is currently explaining). To accomplish this, the toolkit should
provide a way to set specific poses at specific time frames.

Second, the tool should control not only the motions but also more abstract things, such as emotion and styles.
Interviewee 3 said gestures do not always contain a concrete meaning; sometimes they express abstract feelings. He
said it would be great if the tool can create gestures based on emotions. Interviewee 2 noted that different gesture styles
are required based on the audience. For example, content for children needs a lot of gestures. In contrast, content for
company executives does not have many gestures.

Third, the tool should be versatile. We found that there is a need for creating co-speech gestures in various fields.
Accordingly, the gesture generation tool should be usable on various platforms, and the tool should consider non-
designers, such as educators (Interviewee 2).

To meet both requirements for automatic generation and manual editing, we decided to create the gesture authoring
toolkit that creates gestures automatically from speech and provides ways to modify the generated gestures. The tool
should satisfy the following requirements specifically.

• (Req.1) The toolkit should allow a user to alter the gesture motion by controlling one or more poses at specific
time frames.

• (Req.2) The toolkit should support modifying abstract aspects of gestures, such as style.
• (Req.3) The toolkit should output gestures in a general format and provide platform-independent APIs so that
users in different fields can use them.

4 CONTROLLABLE GESTURE GENERATION MODEL

We introduce a controllable gesture generation model that accommodates manual controls from a user on top of
automatic gesture generation results. The model is based on the previous state-of-the-art gesture generation model [44],
and we integrated two types of manual controls—fine-level human pose controls and coarse-level style controls—
to increase the quality of output gestures and controllability. In the following subsections, we describe the model
architecture and two control elements in detail.

4.1 Overall Architecture

We selected the speech gesture generation model proposed by Yoon et al. [44] as a base model, which aimed to generate
gestures automatically. The base model was designed to generate a sequence of human poses from speech text, speech
audio, and speaker identity; here, speaker identity was used to indicate different styles of gestures. The base model
consisted of three encoders for each input modality to understand speech context and a decoder to synthesize a
sequence of upper-body human poses. Each human pose 𝑝 at time 𝑖 was generated by the model 𝐺𝑏𝑎𝑠𝑒 as follows:
𝑝𝑖 = 𝐺𝑏𝑎𝑠𝑒 (𝑎𝑖 ,𝑤𝑖 , 𝑠𝑝𝑘) where 𝑎𝑖 , 𝑤𝑖 , and 𝑠𝑝𝑘 are the encoded feature vectors for speech audio, speech words, and
speaker identity, respectively. The encoders and the decoder were deep neural networks (CNN for audio and RNN for
words and poses), and the whole network was trained in an end-to-end fashion.
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𝑎1 𝑎2 𝑎3 𝑎𝑡 Speech audio features

𝑤1 𝑤2 𝑤3 𝑤𝑡 Speech text features

𝑐1
𝑝𝑜𝑠𝑒

𝑐2
𝑝𝑜𝑠𝑒

𝑐3
𝑝𝑜𝑠𝑒

… 𝑐𝑡
𝑝𝑜𝑠𝑒

Pose controls

𝑐1
𝑠𝑡𝑦𝑙𝑒

𝑐2
𝑠𝑡𝑦𝑙𝑒

𝑐3
𝑠𝑡𝑦𝑙𝑒

𝑐𝑡
𝑠𝑡𝑦𝑙𝑒

Style controls

↓ ↓ ↓ ↓

Gesture Generation Model

↓ ↓ ↓ ↓

Ƹ𝑝1 Ƹ𝑝2 Ƹ𝑝3 … Ƹ𝑝𝑡 Synthesized human poses

Fig. 2. Model architecture. The model generates a sequence of human poses from speech context and user-inputted controls. All the
speech feature vectors, controls, and output motion are in the same time resolution.

We revised the base model to accommodate pose and style controls. Both controls were represented as a collection of
control vectors (details will follow in the next subsections). The control vectors were concatenated as a conditioning
information to the speech feature vectors: 𝑝𝑖 = 𝐺 (𝑎𝑖 ,𝑤𝑖 , 𝑐

𝑝𝑜𝑠𝑒

𝑖
, 𝑐
𝑠𝑡𝑦𝑙𝑒

𝑖
) as shown in Figure 2. 𝑐𝑝𝑜𝑠𝑒

𝑖
and 𝑐𝑠𝑡𝑦𝑙𝑒

𝑖
are pose

and style controls and they are in the same time resolution to the speech features and output gestures. As the style
control is introduced, we removed the speaker identity in the base model because its purpose, generating stylized
gestures, is the same as the style control.

We fixed 𝑡 , the number of generated poses, in Figure 2 to 30 which is 2 s long (motion was in 15 fps throughout the
paper). This does not mean that the proposed toolkit is only able to generate gestures up to 2 s. The model concatenates
several generation results to make a long motion sequence as the base model did in the original paper. Please see
Appendix A.1 for the details.

4.2 Fine-level Human Pose Control

The pose controls are for specifying desired poses at certain time frames (Req.1). For example, you might want a deictic
gesture pointing to the lower-right corner as saying “... look at the first shelf on the right side ...” or bowing motion for
greeting words. These gestures are less likely to be generated by data-driven gesture generation models because of the
scarcity of deictic and iconic gestures and cultural biases in a training dataset. In the proposed model, a user inputs
desired poses or motion to the model, then the model generates plausible gestures while following the inputted pose
controls as much as possible.

The pose controls are defined as a sequence of desired poses concatenated with mask bits:

𝑐
𝑝𝑜𝑠𝑒

𝑖=1...𝑡 = (𝑝𝑖 ,𝑚𝑎𝑠𝑘
𝑝𝑜𝑠𝑒

𝑖
), (1)

𝑚𝑎𝑠𝑘
𝑝𝑜𝑠𝑒

𝑖
=


1, if 𝑝𝑖 is specified

0, otherwise
(2)
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where 𝑝 is a user-specified control pose in the same data representation as the output pose 𝑝 . The binary mask bits
indicate regions where control poses were specified. For example, if a user wants the virtual character to make a deictic
gesture pointing right at the 10th time frame, the user might set the 10th frame of 𝑝 to a pose pointing right. The
remaining frames should be uncontrolled. In this example,𝑚𝑎𝑠𝑘

𝑝𝑜𝑠𝑒

𝑖=10 = 1 and𝑚𝑎𝑠𝑘
𝑝𝑜𝑠𝑒

𝑖≠10 = 0. There is no restriction
on the number of controls and their continuity; users may input a single control pose or gesture motion in a varying
length. If there is no specified pose control, the model runs like a fully automatic gesture generator.

4.3 Coarse-level Style Control

The pose control is an effective element to generate particular gestures, but it could be too restrictive and requires
an effort to input control poses. Also, as the requirement mentions (Req.2), the tool has to be able to change abstract
factors of gestures. Therefore, we added the style control which is less restrictive and easier to input. The style control
is for manipulating overall motion statistics, namely speed, space, and handedness. Speed is for the temporal property of
gestures and space for the spatial property. We also used handedness as a means to show agents’ personalities. The
motion statistics speed and space were used as style parameters to represent emotional states in [8, 14], and handedness

were considered in [2].
We defined the style control as follows:

𝑐
𝑠𝑡𝑦𝑙𝑒

𝑖=1...𝑡 = (𝑠𝑝𝑒𝑒𝑑𝑖 , 𝑠𝑝𝑎𝑐𝑒𝑖 , ℎ𝑎𝑛𝑑𝑒𝑑𝑛𝑒𝑠𝑠𝑖 ,𝑚𝑎𝑠𝑘
𝑠𝑝𝑒𝑒𝑑

𝑖
,𝑚𝑎𝑠𝑘

𝑠𝑝𝑎𝑐𝑒

𝑖
,𝑚𝑎𝑠𝑘ℎ𝑎𝑛𝑑𝑒𝑑𝑛𝑒𝑠𝑠𝑖 ). (3)

𝑆𝑝𝑒𝑒𝑑 represents the average speed of all the joints, 𝑠𝑝𝑎𝑐𝑒 means the distance between the left and right hands, and
ℎ𝑎𝑛𝑑𝑒𝑑𝑛𝑒𝑠𝑠 represents the relative speed of the left and right hands. Similar to the pose control, we used binary mask
bits that indicate the use of style elements. More specifically, the style vectors were calculated at the training stage as
follows:

𝑠𝑝𝑒𝑒𝑑𝑖 =
1
𝑤

∑︁
𝑘∈J

𝑖+𝑤/2∑︁
𝑗=𝑖−𝑤/2

|𝑝𝑘𝑗 − 𝑝𝑘𝑗−1 |, (4)

𝑠𝑝𝑎𝑐𝑒𝑖 =
1
𝑤

𝑖+𝑤/2∑︁
𝑗=𝑖−𝑤/2

|𝑝𝑙𝑒 𝑓 𝑡𝑤𝑟𝑖𝑠𝑡

𝑗
− 𝑝

𝑟𝑖𝑔ℎ𝑡𝑤𝑟𝑖𝑠𝑡

𝑗
|, (5)

ℎ𝑎𝑛𝑑𝑒𝑑𝑛𝑒𝑠𝑠𝑖 =


𝑠𝑝𝑒𝑒𝑑𝐿/𝑠𝑝𝑒𝑒𝑑𝑅 − 1, if 𝑠𝑝𝑒𝑒𝑑𝑅 > 𝑠𝑝𝑒𝑒𝑑𝐿

1 − 𝑠𝑝𝑒𝑒𝑑𝑅/𝑠𝑝𝑒𝑒𝑑𝐿, otherwise,
(6)

where 𝑝 𝑗𝑜𝑖𝑛𝑡𝑛𝑎𝑚𝑒
𝑗

means the position of 𝑗𝑜𝑖𝑛𝑡𝑛𝑎𝑚𝑒 for 𝑗th time frame, 𝑠𝑝𝑒𝑒𝑑𝐿 = 1
𝑤

∑𝑖+𝑤/2
𝑗=𝑖−𝑤/2 |𝑝

𝑙𝑒 𝑓 𝑡𝑤𝑟𝑖𝑠𝑡

𝑗
− 𝑝

𝑙𝑒 𝑓 𝑡𝑤𝑟𝑖𝑠𝑡

𝑗−1 |,
and 𝑠𝑝𝑒𝑒𝑑𝑅 is defined similarly with 𝑝𝑟𝑖𝑔ℎ𝑡𝑤𝑟𝑖𝑠𝑡 . J is the set of the upper-body joints used in the paper. The motion
statistics were calculated on a region centered at 𝑖 with the fixed window size of𝑤 = 30 with a stride of 1. All the style
values were normalized with the mean and standard deviation on the training dataset and clamped to be in range [-3, 3].

This style control mechanism, concatenating desired style control signals to speech feature vectors, was originally
introduced by Alexander et al. [2]. In the original paper, one style element was used per model, so it was not possible to
manipulate multiple styles at the same time. In the present paper, we used three styles of speed, space, and handedness,
and integrated them into a single model.
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5 TRAINING AND VALIDATION

We trained the controllable gesture generation model on the TED dataset [44, 45] which contains 97 h of TED talk
videos and 3D human poses extracted automatically. We split the dataset into training (80%), validation (10%), and test
sets (10%). The test set was only used for the user study and qualitative result figures. We followed the same training
scheme in [44]. The speech context encoders and gesture generator in the model were trained from scratch except
using the pretrained word embeddings [3] for speech text understanding.

The key difference to the base model is the use of the pose and style controls. We simulated the controls, which are
supposed to be specified by human users at the test time, from the reference human motions in the training dataset.
For pose controls, a part of human motion 𝑝𝑖=1...𝑡 in a training sample was used. This subsequence is sampled to be in
a varying length between 1 and 𝑡 and its position is selected randomly to simulate diverse pose controls. The style
controls were also simulated from the style statistics of the reference motion data. During the training, we randomly
dropped all the controls to expose the model to the scenario of automatic gesture generation without pose and style
controls. One of three style elements was also dropped randomly to simulate diverse style combinations.

5.1 Objective Function

The model was trained by the following objective function:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼 · 𝐿𝐻𝑢𝑏𝑒𝑟 (𝑝, 𝑝) + 𝛽 · 𝐿𝐺𝐴𝑁 (𝑝) + 𝛾 · 𝐿𝑠𝑡𝑦𝑙𝑒 (𝑠, 𝑠) (7)

where 𝑠 = 𝑠𝑡𝑦𝑙𝑒 (𝑝) and 𝑠𝑡𝑦𝑙𝑒 (·) is the style calculation function (Eq. 4–6), which is differentiable. 𝐿𝐻𝑢𝑏𝑒𝑟 , a mixed form
of L1 and L2 losses, minimizes differences between the generated motion 𝑝 and reference human motion 𝑝 for the same
speech. 𝐿𝐺𝐴𝑁 is the adversarial loss [11] to assess how much the generated gestures look like real human motions. We
added 𝐿𝑠𝑡𝑦𝑙𝑒 that is defined as L1 loss between style vectors 𝑠 from 𝑝 and 𝑠 from 𝑝 . Although there is no explicit loss
term for pose controls, the model was trained to follow pose controls because copying inputted pose controls to output
poses is the easiest way to minimize 𝐿𝐻𝑢𝑏𝑒𝑟 . In other words, 𝐿𝐻𝑢𝑏𝑒𝑟 drives the model to work like an identity function
that passes pose controls into output poses for controlled regions. 𝐿𝑠𝑡𝑦𝑙𝑒 also helps the model to follow style controls in
the same way as the pose control.

The weights 𝛼 , 𝛽 , and 𝛾 were determined experimentally to 500, 5, and 0.05. The model was trained during 80 epochs
and it took about 8 h on an RTX 2080 Ti.

5.2 Qualitative Validation

Figure 3 shows the gesture generation results with and without controls for the same speech. The model was able to
generate gestures without any controls, which means the model could behave like an automatic gesture generator
(Figure 3(a)). When the pose or style controls were given, the model generated gestures well reflecting the controls.
Figure 3(b) shows the results when a motion or a pose was used as pose controls. We observed smooth motion transitions
before and after the pose control regions. Figure 3(c) shows the results for the different style parameters. Also, the model
worked as expected when both pose and style controls were applied as shown in Figure 3(d). We added a single-frame
pose control where two arms were stretched horizontally and set low speed around the pose control. This resulted in
gesture motion maintaining the control pose for some duration not raising or lowering arms owing to the style control
of speed=-1. Please see the supplementary video for more results.
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(a) Without controls

(b) With pose controls

(c) With style controls

(d) With pose and style controls

Speed: 2.5, Space: 2.0

Speed: -1.0, Space: -1.0

Speed: -1.0

Fig. 3. Gesture generation results (a) without controls, (b) with pose controls (two examples), (c) with style controls (two examples),
and (d) with pose and style controls for the same speech input. The regions where the controls are applied are highlighted (green for
pose controls and red for style controls). Speech audio, words, and motion are on the same time axis. Motion frames are sampled
equidistantly for visualization. More results on the supplementary video.

It was interesting that the generated gestures with pose controls (Figure 3(b)) are different from the gestures without
controls (Figure 3(a)) not only in the controlled regions but also in the non-controlled regions. For instance, the ending
poses in Figure 3(a) and (b) are all different even though there are no controls for the ending frames. This happens
because the generation model tries to generate the most suitable motions in both controlled and non-controlled regions.
In the first example in Figure 3(b), when the motion of raising an arm was used as pose controls, the model continues to
generate dynamic motion which is suitable to the previous gestures. Some users might dislike unexpected changes. In
that case, users can simply add pose controls with automatically generated poses to prevent changes.

9
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5.3 Numerical Evaluation

The trained model was evaluated using three numerical metrics (subjective evaluation will be followed in Section 7).
First, we evaluated overall gesture generation results using Fréchet Gesture Distance (FGD) which was introduced in [44]
to evaluate automatic gesture generation models. FGD compares the distributions of human gestures and synthesized
gestures on a latent feature space, for evaluating generation quality and diversity altogether. We also evaluated how
well the model complies to pose controls 𝑝 and style controls 𝑠 , which are named pose compliance score (PCS) and style
compliance score (SCS) in the present paper. PCS is defined as the absolute difference between the pose controls 𝑝 and
the synthesized poses 𝑝; SCS is defined similarly.

PCS = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ( |𝑝𝑖 − 𝑝𝑖 |) for 𝑖 ∈ [10, 15) (8)

SCS = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ( |𝑠𝑖 − 𝑠𝑖 |) for 𝑖 ∈ [1, 𝑡] (9)

Here, we assumed 5-frame pose controls in the middle of a sequence in PCS and entire style controls in SCS. Pose
controls can be inserted in any place in varying lengths, but we fixed the position and length of the pose control for the
reproducible and consistent evaluation. Since a gesticulation style does not change rapidly, we used style controls for
the entire frames (30 frames) in SCS.

We compared three models including the proposed one, a baseline model without pose and style controls, and a
model always generating the static mean pose. The baseline model is the same as the proposed model, except that
control elements of 𝑐𝑝𝑜𝑠𝑒 and 𝑐𝑠𝑡𝑦𝑙𝑒 are excluded in the model and its training. Table 1 shows the evaluation results.
We evaluated FGD for the scenarios where there are no controls (which means automatic gesture generation only from
speech text and audio) and where pose or style controls exist. First, we found better performance (lower FGD) when
pose or style controls were used in the proposed model. FGD is reduced to 0.194 with pose controls and to 0.228 with
style controls; both FGD is lower than the FGD of the baseline (0.368). These are expected results since adding controls
would drive the model to generate gestures similar to the reference motions. We would say that the proposed model
generates better gestures than the automatic generation method when a proper pose or style control is used. When we
consider only the scenario of no controls, the baseline showed a slightly lower FGD (0.368) than the proposed model
(0.447). As the proposed model is trained to meet multiple objectives of automatic generation and supporting pose
and style controls, the proposed model is degraded in FGD than the baseline which have fewer conditioning elements;
however, the increase in FGD is 0.079 which is small compared to the FGD of the static mean pose (26.768). Note that the
FGD values reported in this paper are not comparable with the values in [44] since the data representation is different.

The proposed model showed the PCS of 0.014 and the SCS of 0.249. The PCS of 0.014 is equivalent to the average
error of 0.96 degrees in joint angles; we believe angle differences less than 1 degree are small enough. The SCS of 0.249
is also small considering the style value range of [-3, 3]. To help understand how small these values are, we reported
PCS and SCS for the static mean pose (considered as a baseline performance) in Table 1 although the mean pose does
not care about the controls.

6 SGTOOLKIT

We developed SGToolkit, an interactive speech gesture authoring toolkit, by combining the controllable gesture
generation model with user interfaces for inputting controls, animating output gestures, etc. The development was
done through iterative prototyping. The first prototype was a stand-alone PC application. We conducted a preliminary
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Table 1. Numerical evaluation results for the proposed model, the baseline model without pose and style controls, and the static
mean pose. FGDs were reported for the scenarios with no controls, with pose controls, and with style controls. Lower is better for all
the metrics. We report the PCS and SCS for the static mean pose to help you understand their ranges (indicated with *), although the
mean pose does not consider the pose or style controls.

Model FGD↓ PCS↓ SCS↓

No controls w/ pose controls w/ style controls

Proposed 0.447 0.194 0.228 0.014 0.249
Baseline 0.368 – – – –
Static mean pose 26.768 – – 0.143* 1.236*

user study with the first prototype, and then re-designed the toolkit and implemented a web application with a few
improvements according to the suggestions raised during the preliminary user study.

6.1 The First Prototype

The first SGToolkit prototype was implemented using the PyQT framework as a stand-alone PC application (Figure
4). The user interface consisted of a speech text input box, timeline for audio and controls, pose control panel, style
control panel, and animation panel showing output gestures. The usage flow was that: 1) input speech text and run
gesture generation to get a rough sketch of the gestures, 2) add pose and style controls, and 3) run gesture generation
with the controls and repeat steps 2 and 3 as many as a user wants. The timeline displays speech audio signal, speech
words, pose controls, and style controls, so that users could add pose or style controls at the desired time position. Users
manually set the pose controls by moving the joint positions. For the style controls, a user changes style values using
sliders for four styles of speed, acceleration, space, and handedness (acceleration was excluded in the final prototype).
In addition to the style control sliders, we added style presets; there were two presets of happy (speed: 2.5, acceleration:

Speech Text

Timeline
(audio and controls)

Pose control Pose control preview Style control Output gestures

Fig. 4. The first SGToolkit prototype.

11



UIST ’21, October 10–14, 2021, Virtual Event, USA Youngwoo Yoon, Keunwoo Park, Minsu Jang, Jaehong Kim, and Geehyuk Lee

2.0) and sad (speed: -2.5), which were determined based on the studies on expressive gestures [6, 20]. When a user adds
controls, they could select a single frame by mouse clicking or a region of multiple frames by mouse dragging.

The gesture generation model required speech audio and text to generate gestures. When only speech text is available,
we synthesized speech audio using Google TTS [12]. A forced aligner [34] was also used to get timestamps of each
word.

It is cumbersome to craft desired poses manually, especially gestures—a sequence of poses. Thus, we added a camera-
based motion capturing (mocap) function to make it easy to input pose controls. By using the mocap function, users
could record their gesture motion and crop a region to input as pose controls. We integrated the existing human pose
estimation method [35, 39], which produces 3D human poses from RGB camera images, to the toolkit prototype.

6.2 Preliminary User Study

We conducted a user study with the first prototype. We recruited three graduate students from local universities and
asked them to try the toolkit to generate speech gestures. Two are experienced in character animations for 3+ years
and the other one has 3+ years of research experience in user interfaces. We prepared 10 sample sentences assuming a
scenario of a shopping mall guide robot. One example is “Welcome to the mall. Our mall is the largest shopping mall
with over 250 shops, 8 screen cineplexes, and plenty of gourmet cafes and restaurants.” The study took about an hour
for each participant and 14 USD was paid for each.

We collected think-aloud comments while using the toolkit and conducted post-experiment interviews. All the
participants commented that they liked the usage flow of getting a rough sketch by automatic gesture generation and
adding controls to modify the results, and they were mostly satisfied with the generated gestures. However, there were
several suggestions regarding user interfaces.

For the pose control interface, the participants wanted a more intuitive way of manipulating gestures. This prototype
let users control XY positions of joints with a 2D skeleton view and Z positions with a separate slider control, but the
participants wanted to move joints more freely in a 3D space. Also, the participants said it was a little bit tedious to set
the 3D position of each joint to set pose controls. The participants suggested a collection of pre-defined gestures that
are commonly used to make adding pose controls easy and fast. One participant commented that separated pose views
for pose controls and output gestures could be integrated. For the style control, the participants commented that the
checkboxes for activating style elements are unnecessary. Style controls could be activated when a user manipulates
the control sliders. In addition, there was a request for the undo and redo functions during manipulating controls, and
the camera-based mocap was not completely satisfactory in terms of accuracy.

We agreed to design more intuitive control interfaces for our final prototype. Also, we decided to drop the mocap
function due to its limited accuracy.

6.3 The Final Prototype

We re-designed the SGToolkit according to the comments above and implemented it in a server–client structure for
flexibility. We implemented the client as a web application for interoperability (running on modern web browsers
supporting HTML5). Figure 5 shows the internal components and web user interface. Users interact with web interfaces
over HTTP and the web front-end communicates with the python server via REST APIs to send speech and control
information and to get the generated results. We implemented only the web interface, but we followed conventional
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Gesture Generation
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Mocap

Motion
library

Forced
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HTTP

Users

DB

Web
frontendTTS

Speech Text

Speech timeline

Pose control track

Style control track

Pose control & 
Gesture animationStyle control

Motion library

Fig. 5. (left) SGToolkit components and (right) web user interface.

REST API designs so that other developers may implement other clients, for instance, gesture generation plugins for
Unity1 or Robot Operating System (ROS)2 (Req.3).

We introduced a motion library in this prototype. The motion library is a collection of unit gestures such as raising
hands, pointing right, and framing gestures. Users can select one of them as pose controls instead of manual pose
editing. We prepared 33 unit gestures listed in [19], and this motion library can be expanded as users add more motions.
There are options for unit gestures to adjust motion speed in three levels (1x, 2x, and 3x) and to flip left and right. The
unit gestures in the motion library were created using mocap and manual pose editing.

The panels of the pose controls and output gestures in the first prototype were merged into a single character
animation panel. For pose controls, users manually set the 3D coordinates of each joint via joint rotations or translations
with fixed bone lengths. We used a 3Dmannequin character fromMixamo3 and Babylon.js [32] for the gesture animation.

In the style control, we excluded acceleration which is largely overlapped with speed. And a history function was
implemented which stores the states of controls to support undo and redo. We also made inputted controls movable
along the timeline by mouse dragging.

7 USER STUDY

We conducted a user study to compare the SGToolkit to automatic gesture generation and keyframe animation. The
user study consisted of two sessions: 1) a gesture design session where participants create gestures and 2) a gesture
quality evaluation session to evaluate gestures created in the previous session and gestures created automatically. In
the gesture design session, the participants created gestures using the SGToolkit (named SGT condition) and using the
manual keyframe animation (MANUAL condition).

1https://unity.com
2https://www.ros.org
3https://www.mixamo.com
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As the SGToolkit aims to create quality gestures with less effort, we measured both quality and efficiency in this user
study. The quality and efficiency are in inverse proportion, and it is hard to measure both metrics objectively altogether.
Also, in a pilot test with a few subjects, we had difficulties measuring authoring time, which is related to efficiency,
because the participants tended not to end an authoring task when there is no time limit. To this end, we decided to
measure efficiency and maximum achievable quality by having two scenarios where the maximal authoring time was
fixed to 5 min (rushed) and 20 min (relaxed). We evaluated the two factors in separate scenarios. In the first rushed
scenario, we assessed how well a participant can design gestures in a short and limited time. In contrast, for the relaxed
scenario, participants had plenty of time to create gestures. The purpose of a long time was to let participants author
gestures with the highest quality. The time limits were decided after a pilot study. A participant was assigned either
one of the scenarios and authored gestures in the aforementioned conditions.

7.1 Gesture Design

Participants created gestures under the SGT and MANUAL conditions. For the MANUAL condition, we implemented a
keyframe animation method. When a user puts key poses to certain frames, the method fills motion in between the key
poses using cubic spline interpolation for each joint, as typical keyframe animation does. The same user interface was
used for both conditions to reduce the effects of user interfaces. Participants specified key poses in the same way as the
pose controls—moving or rotating joints–in SGT. The motion library, a collection of unit gestures, was also usable in
both conditions. In MANUAL, the mean pose was added as key poses at the first and last frames to prevent undesired
extrapolation artifacts. Note that participants created gestures from scratch without having a rough sketch and the
style controls were unavailable in the MANUAL condition.

7.1.1 Procedure. The overall procedures for the two scenarios were similar. First, an experimenter explained what
SGToolkit is and how to use it for 20 min. Then a participant created gestures for several sentences under two conditions.
Lastly, the participant completed a survey, followed by a short interview.

For the rushed scenario, a participant created gestures of 17–24 s of speech in a limited time of 5 min in a single trial.
Each participant had eight trials with different speeches. A participant created gestures under both SGT and MANUAL

conditions. One condition was used for the first four trials and the other condition for the next four trials. The order of
the SGT and MANUAL conditions were balanced to avoid the order effects. Balancing was performed by groups of four
trials rather than by individual trials. Half of the participants used SGT for the first four trials and MANUAL for the
next four trials; the other participants used MANUAL first and SGT later. We chose this counterbalancing strategy from
the concern that participants could be confused if they frequently switch the methods. The first two trials for each
condition (1st, 2nd, 6th, and 7th trials) were for practices, and their results were not used in the later gesture quality
evaluation. For the relaxed scenario, the lengths of speeches were 5–10 s, and a participant created gestures for two
speeches for each condition (four trials in total). Short sentences were used in this scenario to ensure the participants
have enough time to create gestures. The first trial of each condition (1st and 3rd trials) was for practice and its time
was limited to 5 min. For the second trial, a participant had 20 min to create gestures and could finish it early if they
were satisfied with the results or could not improve the gestures anymore. As a result, a participant in the rushed
scenario created gestures for two speeches for each condition and a participant in the relaxed scenario made gestures
for one speech for each condition, excluding practice trials.
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Fig. 6. Survey results of the gesture design session for rushed and relaxed scenarios. We asked participants whether they could author
gestures as intended and were the created gestures appropriate to the speech. A Likert scale with a seven-point response format
(strongly disagree – strongly agree) is used.

We shuffled the order of speeches while satisfying two rules. First, there were no duplicated speeches throughout a
participant’s trials to avoid learning effects by authoring gestures for the same speech multiple times. Second, a single
speech was included in both conditions to compare gesture quality between the conditions.

After the gesture design sessions, we asked participants whether they could author gestures as intended and were the
created gestures appropriate to the speech for each condition. Participants answered on a Likert scale with a seven-point
response format (strongly disagree – strongly agree). In the interview, an experimenter asked the pros and cons of the
SGT and MANUAL methods.

We recruited 12 participants from a university community for each scenario (24 participants in total) and prepared
12 speeches randomly sampled from the TED testset. The average ages of the participants for the rushed and relaxed
scenario were 23.33 and 26.75, respectively. Four female and eight male people participated in both scenarios. The study
was conducted remotely (due to COVID-19). The participants connected to a remote server that runs the SGToolkit. To
control the experiment environment, we required participants to use a PC or laptop with a keyboard, a mouse, and a
display larger than 13-inches. None of the participants had prior experience with gesture design. Although our toolkit
is for both experts and non-experts, we thought the toolkit would have a bigger impact on non-experts by enabling
easy and fast gesture authoring; thus, we conducted the user study with non-expert users.

7.1.2 Results. Figure 6 shows the survey results. In the rushed scenario, SGT showed higher intention rating (M=4.7)
and appropriateness rating (M=4.7) than MANUAL (M=3.1 for intention, M=3.3 for appropriateness). This indicates that
the proposed model helped the participants make gestures as intended. The participants also could create more suited
gestures to the speeches with the proposed model than without it. In contrast, when they had enough time to create
gestures (relaxed scenario), there were no significant differences between SGT and MANUAL in terms of intention and
appropriateness. For statistical analyses, we used the Friedman test because none of the metrics passed the Shapiro-Wilk
normality test. SGT and MANUAL showed a statistically significant difference for intention (𝜒2

𝐹
(1) = 9, 𝑝 < 0.05) and

appropriateness (𝜒2
𝐹
(1) = 8, 𝑝 < 0.05) assessments only in the rushed scenario.
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We learned that the SGToolkit has its benefits and limitations from the interviews. The participants said it was easy
to create gestures in the SGT condition because they only had to add new gestures to some parts of the generated
gestures. Moreover, automatically generated gestures acted as a guideline; the participants could get clues on what
gestures to create. Additionally, the participants thought small and continuous movements of the generated gestures
made the final output look more natural. They mentioned that it was hard to create those small movements without the
generative model. However, while the SGT condition showed a higher intention rating than MANUAL on average, a
few participants commented they had more control in the MANUAL condition because the generative model did not
fully adopt their pose and style controls. Also, a participant commented that starting from scratch in the MANUAL

condition was better because their imagination was not limited by a rough sketch.
We measured the completion time for the relaxed scenario. Only two participants used the whole 20 min in the

MANUAL condition; the others ended the gesture design task before the time limit. The average completion time (in s)
was shorter in SGT (M=760, SD=308) thanMANUAL (M=817, SD=276) but the difference was not statistically significant.
The reason for no significant difference in time might be due to unclear terminating conditions. The participants kept
trying to improve gesture quality as much as they could, so they might have used more time than needed for both
conditions. We let the participants end the task when they are satisfied with the results. However, each participant
had a different level of satisfaction, so this might have increased the deviation of the completion time. For the rushed
scenario, all the participants used the whole 5 min.

7.2 Subjective GestureQuality Evaluation

To assess the gesture quality of the SGToolkit, we conducted evaluation studies for the gestures generated from the
gesture design study. The gestures were evaluated by other subjects recruited from Prolific, a crowdsourcing platform.
We compared four conditions for the same speech: 1) reference human motion (REF ), 2) automatically generated gestures
(AUTO), 3) user-created gestures using the SGToolkit (SGT ), and 4) manually created gestures (MANUAL). REF was
used for us to know the referential quality of actual human gestures and AUTO was for the quality of the automatic
gesture generation without control inputs.

7.2.1 Evaluation Method. We followed the evaluation method used in the GENEA Challenge [24], where different
gesture generationmodels were compared. Video stimuli were rendered from gesture data by using the same visualization
pipeline and a virtual character. Each evaluation page presented the videos of four conditions for the same speech, and
a participant rated each video on a scale of 0–100. This evaluation method [17] was inspired by MUSHRA [42], which
is the standardized evaluation method for comparing audio qualities. We evaluated two different aspects of gestures
as the GENEA Challenge did. First, we evaluated human-likeness, how much the gesture motion is human-like. The
second one is the appropriateness, how well the gestures match speech acoustically and semantically. In human-likeness
studies, the videos were muted to assess only the quality of the motion regardless of speech. And human-likeness and
appropriateness were evaluated by different subjects to prevent participants from confusing evaluation criteria. There
were two evaluating factors of human-likeness and appropriateness and two sets of results from the rushed and relaxed
scenarios; thus, in total, we conducted four separate gesture quality assessment studies.

Each participant rated 8 pages (32 videos in total, the rushed scenario) or 12 pages (48 videos in total, the relaxed
scenario). We restricted the number of pages to 8 for the rushed scenario since the videos were longer than the ones in
the relaxed scenario. For the condition SGT andMANUAL in the rushed scenario, two gesture design results are available
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Fig. 7. Gesture quality assessment results for (left) human-likeness and (right) appropriateness measures. Box plots for the four
conditions are grouped by the scenario (rushed, relaxed, and both). Box notch represents a median value, and box boundaries represent
the 25th and 75th percentiles. Whiskers represent the 5th and 95th percentiles.

per speech, so we selected one randomly for each participant. The presentation order of sentences and conditions were
also randomized to reduce the order effect.

7.2.2 Participants. Thirty subjects participated in each study; in total, there were 120 participants (18 to 67 years old,
the average age is 35.9; 63 male, 56 female, 1 undisclosed). We restricted their current residency to English-speaking
countries to ensure participants had no problem in understanding speech content (although 10 self-reported that they
are non-native English speakers in the demographic survey). The median completion time was 21, 19, 16, and 16 min
for the study of human-likeness in the rushed scenario, appropriateness in rushed, human-likeness in relaxed, and
appropriateness in relaxed, respectively. Each participant was rewarded with 3.4 USD.

We used a similar attention check used in the GENEA challenge. We inserted attention checks in the two random
pages per participant. The attention check video contained a text description asking to rate the current video with a
certain number. The text shows up in the middle of the video, so the participants could not cheat by skimming video
thumbnails. Who failed in the attention check was immediately rejected and not counted in the result analysis. Eighteen
participants were rejected in total.

7.2.3 Results. We collected 4560 ratings in total, and Figure 7 visualizes the ratings using box plots for each condition
and scenario. For the human-likeness study, all the conditions showed similar ratings, but only MANUAL showed a
significantly lower rating than the others in the rushed scenario (𝑍=-3.07, -3.87, -4.91 for comparing to REF, AUTO,

SGT, 𝑝 < 0.001 for all). We found more significant differences between conditions in the appropriateness study. For
the rushed scenario, SGT showed significantly higher ratings than MANUAL (𝑍=6.83, 𝑝 < 0.001), but no significant
difference to AUTO condition (𝑍=0.72, 𝑝=0.47). For the relaxed scenario, SGT andMANUAL showed significantly higher
ratings than AUTO (Z=6.21, 6.52, 𝑝 < 0.001). When we consider appropriateness ratings from both scenarios, the best
to worst rating order was REF (median rating of 56), SGT (54), MANUAL (50), and AUTO (46). REF and SGT showed
significantly higher ratings than MANUAL and AUTO (𝑝 < 0.01 for all). All the significances mentioned above were
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tested by Wilcoxon signed-rank tests with Holm-Bonferroni correction for multiple comparisons. We used the alpha
value of 0.01 after the Holm-Bonferroni correction.

In order to see learning effects, we compared assessment scores of the gestures from the first and second trials (except
practice trials) in the rushed scenario. We could not find significant differences between two trials in both SGT (𝑍=0.19,
𝑝=0.84) and MANUAL (𝑍=-0.30, 𝑝=0.76) from Wilcoxon rank-sum tests.

8 DISCUSSION

We discuss the merits of the SGToolkit compared to the previous methods of keyframe animation and automatic gesture
generation.

SGToolkit vs. Manual keyframe animation. The SGToolkit aimed to provide a more efficient way to author
speech gestures than the manual keyframe animation by combining automatic generation and manual controls. We
conducted the user study in two scenarios where the participants had enough time to create gestures and where they
had a limited time. When the participants had enough time, the manual method showed the highest appropriateness
rating (median rating=57) according to the gesture quality evaluation. However, when the production time is limited, the
SGToolkit showed higher gesture quality than the manual method in terms of motion human-likeness (median ratings
of 60 and 49) and gesture appropriateness (median ratings of 52 and 40). This result indicates that users can create
gestures more efficiently using the SGToolkit. A few participants commented that they ran out of time because they
had to insert keyframes tightly in the manual method to make a realistic motion. They also commented that less effort
was required with the SGToolkit since it provides initial gestures and fills the non-controlled regions automatically. The
participants of the gesture design session for the rushed scenario reported that they could put their intention well with
the SGToolkit (M=4.7, SD=1.7) than the manual method (M=3.1, SD=1.6) and also reported that they think the output
gestures were more appropriate in the SGToolkit (M=4.7, SD=1.4) than the manual method (M=3.3, SD=1.5).

SGToolkit vs. Automatic generation. The SGToolkit provides a unique function of pose and style controls over
the automatic method. This control function was elicited from the expert interviews, and we integrated the control
vectors into the neural generative model. The numerical validation showed that the proposed model successfully
supports pose and style controls as well as maintaining automatic generation capability. The participants in the user
study agreed that they could control gestures as they intended by using the SGToolkit (M=5.1 out of 7; average of two
scenarios). Also, we found that the generated gestures using the SGToolkit (median rating=55) were more appropriate
than the automatic method (median rating=44) in the relaxed scenario. The SGToolkit did not outperform the automatic
method in the rushed scenario, but it still has benefits for containing a designer’s intention, which is an important
requirement but not possible only with the automatic generation model.

We discussed the merits of the SGToolkit over two existing methods. Although the SGToolkit showed similar
performance with AUTO in the rushed scenario and MANUAL in the relaxed scenario regarding the gesture quality, the
SGToolkit has another merit of practicality. In a real-world situation, it is difficult for users to estimate the amount
of gesture design work, and this makes the choice between existing AUTO and MANUAL methods difficult. With the
SGToolkit, the user could start with automatic generation and a few controls when authoring time is limited, and they
would add more controls on top of the previous authoring to refine gestures when a higher quality is required. We
expect the SGToolkit to be a practical and go-to toolkit for gesture design.

We discuss whether the proposed SGToolkit meets the three requirements elicited from the expert interviews.
(Req.1) The toolkit should allow a user to alter the gesture motion by controlling one or more poses at
specific time frames. We embedded a pose control in the neural generative model so that users can add a desired
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pose or gestures at a specific position. We validated qualitatively and quantitatively that the trained model can generate
human-like gestures as following pose constraints specified by users. The participants in the user study also confirmed
that they could put their intention as they wanted. When the production time was limited (the rushed scenario), the
SGToolkit showed better controllability than the keyframe animation method.
(Req.2) The toolkit should support modifying abstract aspects of gestures, such as style. To enable users to
control styles of gestures, we also integrated style controls in the model. With the style controls, users can adjust the
overall speed, gesture space, and handedness of the output gestures. This style control only requires three scalar values,
so it is handier to use than the pose controls which require a sequence of desired human poses. We also confirmed the
proposed style control is working well through the numerical analysis.
(Req.3) The toolkit should output gestures in a general format and provide platform-independent APIs so
that users in different fields can use them. The output gestures were represented as a sequence of 3D coordinates for
each joint, so that any embodied agent can play the generated gestures with simple data conversion. We demonstrated
playing gestures on Babylon.js (in the web client) and Blender (to render videos for the crowd-sourced gesture quality
evaluation). For the Blender animation, we converted 3D joint coordinates to joint rotations by using Blender APIs.
Users can export Blender animations to well-known animation formats such as BVHwhich can be used in other graphics
and robotics systems. In addition, the SGToolkit is divided into a server to run the gesture generation model and a client
to interact with users, and the server and client communicate by using REST APIs. Users can develop other clients
dedicated to a specific platform easily.

Finally, we discuss the limitations of the SGToolkit. First, a few participants reported that output gestures are not
perfectly the same as pose controls. The difference was small but noticeable. This happens especially when unrealistic
poses were inputted as pose controls. We would add optional post-processing which blends the output gestures and
the pose controls for users who want precise controls. Second, the toolkit lacks facial and hand motion. Extending the
current model to synthesize facial, arm, and hand motion altogether might be a solution, but it is not feasible without a
proper dataset. Another solution is to generate the motions one by one and integrate them into an embodied agent.
Facial motion is independent to some extent of gestures, so it is possible to integrate facial motions and gestures. For
hands, because hands (hand orientation and finger motion) are correlated to arm gestures, we would not synthesize
them independently. Instead, a recent study tried inferring hand motion from arm gestures and they showed promising
results [33]. A possible future direction is to integrate a hand motion generator as well as a facial motion generator into
the SGToolkit for completeness and convenience for users.

9 CONCLUSION

In this paper, we presented the SGToolkit, an open-sourced and platform-agnostic toolkit to author speech gestures.
From the requirements elicited from expert interviews, we designed a generative neural model that can generate speech
gestures automatically and also accommodates users’ intent described as pose and style controls. Thus, the proposed
toolkit has both merits of automatic gesture generation and manual authoring. Users could author gestures easily
by having a rough sketch automatically generated and add controls as they want on top of the sketch. Usability and
gesture qualities were evaluated through a user study and a crowd-sourced assessment. The results showed that the
SGToolkit gives unique advantages over both the manual authoring and previous automatic generation method. The
public availability of the toolkit would be beneficial to designers, developers, and researchers related to embodied
conversational agents.
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A IMPLEMENTATION DETAILS

A.1 Generating Gestures for a Long Speech

The model outputs a sequence of 30 poses for a single run. This length is fixed at both training and test time. For a long
sequence generation, we ran the model several times for different chunks of speech. The sliding chunks span 60 frames
and they overlap 30 frames. This sliding window strategy is the same as the previous study [44]. Also, we used the last
30 frames of the last chunk as pose controls in the gesture generation for the next chunk to make smooth transitions
between consecutive chunks. Please refer to the codes for details.

A.2 Training Details

Each pose was represented as a collection of 10 upper-body joints of nose, head-top, neck, spine, R/L shoulders, R/L
elbows, and R/L wrists. We used this representation in the paper for better understanding; however, in the actual
implementation, we used directional vectors of adjacent joints for faster and stable training. Speech words were
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Fig. 8. Validation curves for the gesture generation model used in the SGToolkit. The curves show PCS, SCS, and FGD trends during
80 epochs of training. The y-axis is in log scale.

represented as one-hot vectors indicating a word position in the dictionary which was built on the training set of the
TED dataset.

The model was trained for 80 epochs using the ADAM optimizer with the learning rate of 0.0005. The mini-batch
size was 128. Figure 8 shows the validation curves showing FGD, PCS, SCS on the validation dataset during 80 training
epochs.
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