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ABSTRACT 
Trusscillator is an end-to-end system that allows non-engineers 
to create human-scale human-powered devices that perform os-
cillatory movements, such as playground equipment, workout de-
vices, and interactive kinetic installations. While recent research 
has been focusing on generating mechanisms that produce specifc 
movement-path, without considering the required energy for the 
motion (kinematic approach), Trusscillator supports users in de-
signing mechanisms that recycle energy in the system in the form 
of oscillating mechanisms (dynamic approach), specifcally with the 
help of coil-springs. The presented system features a novel set of 
tools tailored for designing the dynamic experience of the motion. 
These tools allow designers to focus on user experience-specifc 
aspects, such as motion range, tempo, and efort while abstract-
ing away the underlying technicalities of eigenfrequencies, spring 
constants, and energy. Since the forces involved in the resulting 
devices can be high, Trusscillator helps users to fabricate from steel 
by picking out appropriate steal springs, generating part lists, and 
producing stencils and welding jigs that help weld with precision. 
To validate our system, we designed, built, and tested a series of 
unique playground equipment featuring 2-4 degrees of movement. 

personal fabrication, dynamics, mechanical oscillation, welding 
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KEYWORDS 

1 INTRODUCTION 
The related work in personal fabrication [3] ofers numerous exam-
ples of so-called kinematic systems [29] that allow users to design 
and fabricate mechanisms that perform user-specifed movement 
patterns. Examples include the 3D-printed pantograph from Meta-
material Mechanisms [17], the 5m-tall dinosaur from TrussFormer 
[23], and the animated cheetah created from Computational Design 
of Mechanical Characters [9] reproduced in Figure 2a. 

In this paper, we want to extend this line of work towards ma-
chines that are human-powered, such as playground equipment, 
workout devices, and certain types of kinetic installations. “Human-
powered” means that these devices need to be operated with the 
limited power that a human or, in some cases, a child can produce. 

Unfortunately, when it comes to designing devices for which 
limited power plays a central role, the aforementioned systems for 
designing kinematic machines are of little help. Without support 
from a specialized software system, human-powered devices con-
tinue to be designed using time-consuming design cycles that iterate 
back-and-forth between guesswork and physical prototyping (see 
Section 4: “Expert interviews” ). 

We present Trusscillator, a software system that enables users 
to create human-scale, human-powered machines, such as the play-
ground equipment shown in Figure 1. Trusscillator achieves this 
by allowing users to add springs to their designs. As illustrated 

1https://www.dkfndout.com/us/animals-and-nature/cats/inside-cheetah 
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Figure 1: (a) Trusscillator is an integrated system that allows users to design human-scale, human-powered machines. Here 
designers are using it to design a dinosaur-inspired playground device. Trusscillator’s user interface allows designers to inter-
actively construct a steel truss structure, add coil springs, and specify the requirements in terms of motion range, speed, and 
physical efort. Trusscillator responds by adjusting the coil springs and adding mass so as to produce the desired behavior. (b) 
The resulting interactive dinosaur sculpture designed for two children challenges the riders to synchronize their movement 
to causes the sculpture’s head to wiggle. (c) Given the scale of the involved forces, the structures created by Trusscillator are 
made from steel. Trusscillator supports steel truss fabrication by generating stencils that (d) show where to attach temporary 
connectors, (e) that hold steel rods in place, for (f) welding. 

Figure 2: (a) The cheetah mechanism created using [9] is only resembling the movement pattern of a real one, without consid-
ering the forces involved during motion. (b) Energy conservation makes a real-life cheetah’s1 gallop efcient: (c) the elastic 
tendons store and release energy in every step. 
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Figure 3: (a) The initial design of the brachiosaurus playground object is created using rigid truss primitives. (b) Designers 
adjust the shape and lower the height for safety reasons. (c) Using the spring tool, designers enable parts of the model to move. 
The newly created moving part of the model gets briefy highlighted in blue. 

by Figure 2b, springs have the ability to transform movement (ki-
netic energy) into compression (potential energy) and transform 
that back into movement. Consequently, springs help to keep these 
devices in motion with little efort and thus allow even larger ma-
chines to be human-powered. The resulting devices do not bear a 
lot of similarities with kinematic machines, such as the kinematic 
cheetah from Figure 2a, but instead bear more resemblance with 
an actual cheetah, which also uses springs (called tendons) to run 
efciently [30] (Figure 2c). These systems concerned with energy 
and motion are typically referred to as dynamic systems [33]. 

To allow designers to create human-powered movement, Truss-
cillator ofers a novel set of tools, specifcally designed for dynamic 
experiences (Figure 1a). These tools allow designers to focus on user 
experience-specifc aspects, such as motion range, tempo, and efort 
while abstracting away the underlying technicalities of eigenfre-
quencies, spring constants, masses, and energy use. Since the forces 
involved in the resulting devices can be high, devices designed 
using Trusscillator are made from steel (Figure 1c-f). Trusscillator 
helps users to fabricate these devices not only by picking out appro-
priate springs but also by producing stencils and placing temporary 
connectors that help welding the resulting large-scale structures. 

2 WALKTHROUGH 
To demonstrate Trusscillator’s workfow, we present a scenario in 
which two designers of playground equipment are designing the 
dinosaur-inspired device shown in Figure 1. The two designers, 
tasked to design a model for the playground associated with a nat-
ural history museum, are ideating around an interactive sculpture 
of a brachiosaurus. 

2.1 A brachiosaurus swing for two 
As shown in Figure 3a, the playground designers start by creating 
a rigid dinosaur sculpture by stacking truss-primitives, specifcally 
tetrahedra, and octahedra (building on TrussFab [22]). They place a 
ragdoll fgure onto the model, which inserts a matching seat for a 
child. (b) Given that Trusscillator will fabricate the model from steel, 
Trusscillator allows building models of any height. However, one of 

the designers is worried about safety issues resulting from the seat 
being located high up, so they place the dinosaur into “imaginary 
water”, i.e., they remove its legs by delete truss elements. 

As illustrated by Figure 3c, the two designers now turn the static 
structure into a very basic swing: they select the spring tool and use 
it to transform the three shown rods into coil springs. Trusscillator 
responds by placing hinges at the adequate points below the seat 
and acknowledges this by briefy highlighting the now movable 
part (in blue). The dinosaur’s neck is not a hinging component and 
the sculpture has become a simple interactive device. A child can 
now bob back and forth, causing the dinosaur’s neck to wiggle. 

As illustrated by Figure 4a, Trusscillator displays the properties 
of this basic swing using what we call the motion bar : an average 
6-year-old should be capable of making it rock roughly by the ampli-
tude indicated by the middle curved blue bar labeled “6”. Designers 
can play back a simulation of the child rocking by clicking on this 
bar. 

Note that these properties are not coincidental: Trusscillator 
computed the swing the moment it was created and has picked a 
spring that is “just right”, i.e., neither so soft as to that a 12-years-old 
could max out, nor so rigid as to that a 3-year-old would be unable 
to move it. 

The designers decide to further fne-tune the experience. As 
discussed, the movement of a 12-year-old is ok per se (dark blue bar), 
but they are concerned that the dinosaur head would reach down 
far enough to hit someone. As shown in Figure 4b, the designers 
reduce the device’s amplitude by grabbing the handle attached 
to the motion bar and drag it inwards. Trusscillator responds by 
re-running its optimization engine and replaces the springs in the 
model with springs that produce motion in the request range (Figure 
4c). 

The reduction in amplitude has now caused the ride to oscil-
late faster (0.6s period, indicated on hover). As shown in Figure 
5a, Trusscillator considers this uncomfortable and displays a no-
tifcation (in the shape of a metronome, together with the word 
“fast”). The designers click the notifcation to switch it to comfort-
able. Trusscillator responds by re-running its optimization to fnd 
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Figure 4: (a) Trusscillator initiates the model with a valid spring confguration. The resulting oscillating motion is summarized 
in form of a motion-bar above the user, calculated for multiple age groups. (b) When designers enlarge the motion space by 
dragging the scale handle, (c) Trusscillator fnds a combination of softer springs that will produce the requested amplitude. 

Figure 5: (a) When designers changing the tempo widget from slow to comfortable Trusscillator runs its optimization and 
(b) adds additional weight to the tip of the head to reduce the resonant frequency and tunes the springs again to maintain 
amplitude. 

a frequency in the range that is considered a pleasant rocking pe-
riod (0.8-1.2s), which it achieves by making yet another adjustment 
to the springs, as well as by adding a weight to the head of the 
dinosaur as shown in Figure 5b. 

At this point, designers notice a third concern: the efort widget 
suggests “laborious” (Figure 6a). This means the device requires 
more than 8 cycles to reach maximum amplitude, bearing the risk 
of children losing interest before getting it into full swing. One 
of the designers proposes clicking the efort widget to reduce the 
efort (see section 5.5), but the other designer sees the opportunity 
to add another level of excitement and challenge to the design by 
bringing in a second child. As illustrated by Figure 6b, they add a 
second seat and yet another spring . 

This update changes the widget from laborious to just right for 
both children, as they now both contribute power. More importantly, 
the resulting device has now created an additional challenge—a 
social challenge: First, it requires the frst child to recruit another 
child as confederate to produce in order to successfully get the 
device to reach peak amplitude. Second, it requires the two children 
to synchronize their movement (or to decide to play against each 

other). Trusscillator allows for this by running its optimization 
procedure to tune the two seats to similar eigenfrequencies. To 
get a sense of what the resulting synchronization will feel like, 
the designers invoke simulations of the resulting movement (by 
clicking on the motion bars for each of the three age groups). 

The designers are excited about this new perspective and move 
on to a physical prototype. They hit the export and fabricate button 
and proceed to fabricate their device. 

2.2 Fabrication pipeline 
Trusscillator now exports the designed structures for fabrication 
from steel rods, steel spheres, and steel springs, which users assem-
ble using a power drill, an angle grinder, and an electric welding 
device. 

The main challenge in assembling welded structures is to get 
all elements properly aligned prior to welding, as they cannot be 
adjusted anymore once a piece is welded. Trusscillator achieves 
this by supporting users in frst creating a provisional assembly; 
only when everything is in place do users start to weld. 
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Figure 6: (a) Reducing the efort would require cutting on the weight of the structure, which designers can’t do. (b) Instead, 
they add one more seating position. The fnal design comprises three spring-coupled inverted pendula, the head, middle seat, 
and tail. (c) Children induce resonance by synchronizing their motion. 

Figure 7: (a) Trusscillator exports this node in the 3D model (b) in the form of custom stencils. (c) Users mark one spot on the 
sphere, then attach the stencil at that point using a magnet, allowing them to mark the remaining incidence points. (d) Users 
then set up a stand-up drill with a round ring as a jig, and drill the spheres. 

As a frst step, Trusscillator producing a list with the lengths of 
required steel tubes, the number of steel balls to be purchased, and 
a list of the steel springs to be purchased (from a commercial spring 
catalog [13]). 

Based on these elements, the fabrication process continues as 
illustrated by Figure 1c-f: (c) Trusscillator generates stencils for 
marking the connection points on the nodes-spheres. (d) Using 
the temporary connection system (e) users set up the provisional 
structure, and (f) fnally weld the entire structure. Trusscillator 
supports this process as follows. 

Trusscillator generates stencils as illustrated by Figure 7. (a) 
To minimizes the resulting gap between rod and sphere, thus maxi-
mizing the quality of the welded connections, Trusscillator helps 
users arrange rods and spheres so that rods hit spheres at a right 
angle. (b) To show users where on sphere connect with rods, Truss-
cillator generates custom stencils that mark the so-called incidence 
points. Stencils form star-like shapes and Trusscillator exports them 
in SVG format. Users print and cut stencils manually using scissors 
or they send the SVG to a knife cutter or laser cutter. (c) Users 

attach a stencil to a sphere using a magnet and wrap the arms 
around the sphere such that each arm marks one incidence point. 
The stencils also help the assembly by displaying node IDs and edge 
IDs. Users transfer this information onto the spheres by marking 
the incidence points through small holes in the stencil. (d) Now 
users drill 6mm holes at the marked incidence points where the 
temporary connectors hook into. 

Temporary connectors: Holding and welding the pieces in 
place is a challenging task, even for experienced welders. To over-
come this difculty, Trusscillator ofers a system that helps pre-
assemble the structure, allowing users to position all rods at the 
right places and at right angles with respect to the spheres before 
welding starts. For this purpose, we designed a thin metal connec-
tor piece that on one side hooks into the holes of the node-sphere, 
while its other side forms a cantilever spring that fts tightly into 
the metal tubes and resists slipping out, as shown in Figure 8a. For 
a secure connection, two of these metal pieces are inserted in every 
hole with opposite hook orientation, so none of them will be able 
to escape the hole when the tube holds them together (Figure 8b-c). 
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Figure 8: Trusscillator ofers a temporary connector system to help position the edges for welding. 

Figure 9: (a) Spring-telescope fabricated using two ftting tubes. (b) Slit opening on a sphere for inserting the telescope. (c) 
Revolute-joint connection. (d) Assembled chair model with a springy backrest. 

This way they are holding the structure temporarily but frmly 
together for welding (Figure 8d). These connector pieces can be 
produced in a local metalworking shop using CNC machinery. They 
are considered as consumable material that stays locked inside the 
structure after welding. 

This workfow of creating drilling stencils and using custom 
temporary connectors is our contribution to ease the otherwise 
hard to weld truss structures. 

Spring telescopes and revolute hinges: To embed the of-the-
shelf springs into the structure, users now create simple telescope 
elements by ftting two matching tubes into each other, as shown 
in Figure 9a. The metal discs at the two ends encompass the springs 
and prevent their buckling. These discs are then welded on the rods 
at a predefned position, to hold the spring in the right position. 

As illustrated by Figure 9b, users mount spring telescopes into 
the structure by cutting a slit into a steel sphere. The corresponding 
holes for the axle-screw are also contained by the stencils. 

In Figure 9c, users now create revolute-joints by drilling large 
holes into the node-spheres where an entire tube edge can pierce 
through and form an axle. To ft two hinging parts together Truss-
cillator slightly insets the nodes of one part (here the backrest of 
the chair), so they can ft between the two outer nodes of the struc-
ture. Figure 9d shows the fnished assembly of a chair model with 
a springy backrest. 

We note that for safety reasons the motion range of the telescopes 
has to be constrained to prevent the structure from over-actuation, 
for example by adults. This can be achieved by adding mechanical 

stoppers, such as rubberized bumpers, or strings that preven
than expected motion (e.g., the blue straps in Figure 11), h
this feature is currently not automated by the software. 

t larger 
owever, 

2.3 Design space 
We have used Trusscillator to design a wide range of devices. The 
samples are shown in Figure 10 including swings featuring 1D (b, 
e, j, m), and 2D motion (a, c, f, g), as well as kinetic installations (h, 
k) and balancing workout equipment (i). 

While some of the devices feature collinear/coplanar spring ar-
rangements (such as the brachiosaurus from our walkthrough), 
others create 2D motion paths, such as the “bird swing” shown in 
Figure 11 

We created most of these models following the workfow we 
presented in the walkthrough section, i.e., we started by making a 
static shape and then added movement later (“shape-driven” design). 
However, other designs we created using a workfow that starts 
out with an already moving structure. As illustrated by Figure 12, 
Trusscillator supports this by ofering predefned moving elements, 
such as a hinged tetrahedron. 

3 CONTRIBUTION, BENEFITS, AND 
LIMITATIONS 

Our main contribution is an end-to-end system that allows non-
engineers to create human-scale human-powered devices that 
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Figure 10: Some of the designs we created using Trusscillator. 

Figure 11: (a) This “bird-swing” structure was designed to allow children to swing in two-dimensional space and also to be able 
to infuence each other’s experience. (b) The physically built prototype in action. 
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Figure 12: Building a model based on primitives containing 
springs speeds up the design process. Here, the chair model 
is constructed using a tetrahedron with one spring and two 
hinges in only three steps. 

perform oscillatory movements, such as playground equipment, 
workout devices, and interactive kinetic installations. 

Trusscillator consists of a custom software system that allows 
users to design trusses and add movement in the form of coil springs 
and hinges, as well as a series of novel hardware tools that support 
the fabrication of the resulting steel structures, such as the drilling 
stencils and a temporary connector system that supports welding. 

Trusscillator allows designers to consider not only the shape 
of a model, but also the experience it aims to produce, such as the 
right amplitude, an enjoyable oscillation frequency, and the efort 
it requires to be set in motion. 

We identifed the basic requirements for our software by inter-
viewing professional playground designers, and we have validated 
our system by (1) designing 15 novel pieces of playground equip-
ment, workout devices, and interactive kinetic installations, two 
of which we manufactured end-to-end, and by (2) conducting a 
technical evaluation of the technical aspects (simulation times and 
accuracy) of our approach. 

Before devices designed using Trusscillator can be deployed, 
additional safety checks, such as height, size of triangles, safety 
stoppers, covering exposed springs, etc. need to be considered, 
according to the applicable regulatory requirements, such as DIN 
EN 1176 [10]. 

4 EXPERT INTERVIEWS 
Before we started designing Trusscillator, we conducted semi-
structured interviews with 3 professionals playground designers 
(P1-P3, all male between 40-55 years) recruited through purposive 
sampling. They had 20, 6, and 12 years of feld experience respec-
tively in a registered company. Our objective was to learn about 
the opportunities and challenges that playground designers face, 
so we could address these using Trusscillator. 

Before the interview session, we briefed the participants on the 
concept that we were interested in and the general workfows we 
wanted to support. Questions for the interview included the existing 
design workfows that the participants followed, in particular, their 
strategies of ensuring the users’ safety, engagement, and tailoring 
their solutions to ft the needs of specifc age groups. The interviews 
lasted between 90-120 minutes. All interviews were audio-recorded 
with the participants’ informed consent. We analyzed the interview 
transcripts using thematic analysis. 

All three participants started by explaining their current 
workfow. They design using conventional CAD software (Revit, 
SketchUp, Fusion360), after which they validated and adjusted their 
designs against various safety standards and fabrication require-
ments. All three participants pointed out the absence of tools that 
would support the design of an experience. 

P2 explained: “When creating equipment based on springs, we 
choose from a small ballpark of well-tested [very stif] springs. We 
just assume that they’ll work OK when we try it out. In case [they 
do] not, then we need to order a new set of springs. As a result, 
many of the spring-based toys at playgrounds are very hard to 
move, i.e., very restricted in their motion”. 

P1 gave us insights about the standards and norms that need to 
be taken into account. He also explained that diferent age groups 
fall into diferent safety categories. However, all equipment has to 
be designed safe for all age groups: “We like to create exciting toys. 
Having a certain level of danger is not inherently bad, as long as 
[the children] are made aware of that danger by design. This is how 
they learn to assess risk.” 

P3 saw potential in enabling a do-it-yourself approach: “Such 
tools could enable developing countries to build cheap playgrounds, 
that are not only fun, but the software could ensure that safety 
standards are also satisfed.” 

Our key insight was that current design tools tend to focus the 
on appearance, safety, and fabrication-related aspects. In contrast, 
participants expressed their desire to support not just the necessary 
technicalities in the design, but for designing the experience as well. 
This formed the basis for our main objective for the design of the 
Trusscillator system. 

After the frst development phase, we did follow up with the 
participants to show them the resulting software in the form of a 
video presentation. They were very excited about the result and 
expressed their appreciation for pushing forward this aspect of 
playground prototyping, that was non-existent before. 

5 ALGORITHMS AND IMPLEMENTATION 
The Trusscillator system is implemented in the form of three main 
modules: (1) interactive editor frontend, (2) simulation server, and 
the (3) exporter for fabrication. In order to allow our readers to 
replicate our results, we reproduce the underlying implementation 
and algorithms as follows. 

5.1 Interactive editor frontend 
Trusscillator builds on the editor components of TrussFab [22] and 
TrussFormer [23], which provide the core functionality to create, 
save, load, and export static and kinematic structures. Both the 
editors as well as, Trusscillator’s frontend as well, are implemented 
as a plugin for Sketchup Version 17 using the Ruby programming 
language. 

In particular, Trusscillator’s frontend extends Sketchup with UI 
elements that specifcally refer to oscillating devices: (1) the motion-
bar that users can drag to scale the motion range or click to play 
back the corresponding simulation sequence, (2) the tempo and 
efort widgets, and (3) the tools that add springs and hinges to the 
design. 
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To assist the users in placing the springs at the appropriate posi-
tion, the Trusscillator frontend allows invoking a rigidity detection, 
which we implemented based on Zhang et al. [46]. Using this ap-
proach, Trusscillator informs users whenever a new moving part 
has been enabled, or warns users when a placed spring is rigidly 
confned. 

While the frontend takes care of modeling tasks and user ad-
justments, the oscillation characteristics and spring solutions are 
provided by the simulation server. 

5.2 Simulation server 
We implemented the simulation server in the Julia [6] programming 
language combined with the packages DiferentialEquations.jl [35] 
and NetworkDynamics.jl [25]. The Julia language is geared towards 
numerical computing and aims to combine the execution speed 
of low-level programming languages with the expressiveness of 
high-level languages. 

In the context of Trusscillator, we get two key advantages from 
this stack: (1) The abstraction of Julia and DiferentialEquations.jl 
enables us to choose from a large library of solvers and choose 
the best performance/accuracy trade-of. (2) With the Just-in-time-
compilation capabilities of Julia we generate efcient machine code 
for every given model without the need of introducing a separate 
compilation step, as it would have been necessary for similar sys-
tems like Modelica [11]. 

Trusscillator simulates dynamics by formulating a continuous-
time system of diferential equations that represents the given 
structure. The system uses highly optimized solvers to obtain a 
time-domain solution of the motion. We prefer this approach over 
a discrete-time model (as commonly found in real-time physically-
based simulations) since it allows us to use variable step solvers 
that can adjust their step size dynamically to ensure that the result 
stays within specifed tolerances. Furthermore, diferential equa-
tion solvers are more robust against instabilities, such as the ones 
caused by fast oscillations, and better suited for modeling systems 
where maintaining energy conservation constraints is key. 

Using this approach, we have implemented a custom simulation 
package that can simulate the dynamics of arbitrary spring-damper-
rod networks. 

Figure 13: Trusscillator’s high-level architecture. 

As illustrated by Figure 13, Trusscillator’s simulator and opti-
mizer package runs as a stand-alone server and communicates via 
HTTP with the UI and the Sketchup Plugin. Sketchup transfers 
the model, encoded as a JSON string, to the simulation server. It 
contains the graph representation of the structure, including the 
lengths, spring and user positions, and the state of the requested 
behavior. For running a simulation, the server derives a system of 

equation from this structure by mapping the input graph structure 
onto simulation components, such that the entire model can be 
expressed in the following form: du = f (u, p, t), where u is thedt 
state vector of the system, p is the parameter vector, and t the 
time, as follows from [35]. This representation treats all the nodes 
essentially as ball-joint connections with point masses. For any 
arbitrary structure, the state of the system is uniquely defned by 
the positions and velocities of individual nodes. 

With NetworkDynamics.jl, we provide a graph structure and 
specify the respective functions for every component separately, 
serving as a lightweight layer that separates concerns. Here, we 
specify four components: nodes, spring-dampers, rigid edges, and 
fxtures. These components are mapped one-to-one from the model 
created in the editor. 

Node component is assigned to every node and together they 
defne the state of the structure. They compute their movement 
from the forces of adjacent edges, their mass, and their actuation. 
Every node has a state vector that contributes to the global system 
state. It is defned by u = [rx , ry , rz , vx , vy , vz ], where r® is the 
3D-displacement vector and v® is the velocity vector. 

According to the formula above, we need to provide a function 
that returns the derivative of the state vector u, given any state 
vector (for reference, the derivative of displacement yields veloc-
ity, and the derivative of velocity yields acceleration). Computing 
the velocities is trivial, as they are already part of the function’s 
input vector u. For obtaining the accelerations, we evaluate the 
term Í −−−→ −−→ 

edдe ∈E Fedдe Fact −−−−−−→ a® = + + aдr avity
mass mass 

where E is the set of the adjacent edges with their corresponding 
force vectors F®edдe (see rigid edge components on how we obtain 
these values). To account for gravity, we also add a global gravita-
tional acceleration force. Furthermore, we add an actuation force 
F®act , in case the node has a ragdoll placed onto (see section 5.3). 

Thus, the result that we return back to the solver is 
du[vx , vy , vz , ax , ay , az ] = dt . 

Spring-damper components return the reaction force of a 
spring component, as given by Hooke’s law and viscous-damping. 
They take the state vectors of the two nodes they connect and calcu-
late a resulting force vector to both nodes as an output. We calculate 
the overall force by taking the sum of the spring force and damping: 
Fedдe = k · (x − l) − d · v , where k is the spring constant, l is the 
uncompressed length of the spring, d is the damping coefcient, 
x is the distance between the two connecting nodes and v is the 
scalar velocity along the edge vector. The latter two are directly 
calculated from the connecting nodes’ state vector. The resulting 
scalar is applied along the edge direction and presented as Fedge to 
the nodes. 

Rigid edges are modeled as very stif (essentially not movable) 
dampers, analogous to the damping term of the spring-damper 
component. They enforce a constant distance between the nodes. 

Fixtures are anchor points of the structure, indicated by pods 
in the editor. From the perspective of the simulation, these simply 
expose a state vector with constant positions and without any 
velocity to the edges. 
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Finally, to run the simulation, we need to provide valid initial 
conditions i.e., a start assignment of the system’s state vector to start 
the simulation (using the solver TRBDF2). For this, we obtain the 
positions of each node directly from the client and set all velocities 
to zero. 

5.3 Simulating human actuation 
By default, Trusscillator simulates the structure behavior for three 
age groups: 3, 6, and 12 years old (unless the user specifes oth-
erwise). For approximating how children will interact with the 
structure, Trusscillator applies a periodic actuation force at the 
ragdoll’s position. While an exact behavior would be hard to pre-
dict, Trusscillator assumes that the net power that a child exerts 
over time is roughly constant. Trusscillator assumes a 3-year-old 
to weigh 15 kg and output 30 Watts, a 6-year-old to weigh 25 kg 
and output 45 Watts, and a 12-year-old to weigh 40 kg and output 
75 Watts, based on data from [34] and [19]. 

The actuation force is then applied in the direction of the actual 
velocity vector. To make sure that this force acts naturally on the 
system, respecting its natural frequency, we apply this force only 
during the acceleration phase of the movement. This behavior 
roughly mimics how humans push a swing back and forth. The 
value of this force is then calculated from the formula of power 

Pconst Fact = , to respect the constant net power input over time. 
| ®v |

To initialize the motion of the structure, Trusscillator simply applies 
a short push to set the structure in its natural oscillation. 

5.4 Equilibrium instantiation 
If the system would simply apply spring lengths from the catalog or 
use the edge length, the structure would immediately deform under 
its own weight and, therefore, deviate from the user’s design intent. 
Trusscillator enables the creation of structures in their equilibrium 
positions without exposing its users to implementation details of 
uncompressed spring lengths or their static compression at rest. 
To achieve this abstraction, Trusscillator calculates, how much a 
spring needs to be pre-compressed, to ensure that they hold up the 
weight of the structure. 

Trusscillator determines the level of pre-compression for static 
equilibrium by checking how the structure behaves without any 
adjustment. It runs a short-time simulation (e.g., 0.1s) and measures 
the resulting velocity along the spring vectors. Then it adjusts the 
springs’ uncompressed lengths in proportion to this velocity to 
counter the initial movement. Trusscillator repeats this step until 
the process converges and the structure stops moving. 

The resulting spring lengths are provided for the fabrication 
process, as well as, passed on to the simulation. Making the springs 
hold up the structure ensures that no unwanted initial potential 
energy gets introduced at the beginning of the simulation and 
actuates the structure beyond our model. 

5.5 Trusscillator translates amplitude, 
frequency, and efort into mass, spring, 
damper confguration 

The main objective behind Trusscillator is to allow users not only to 
design and build large-scale human-powered structures but also to 

help them to get the physical properties “right”. The key idea here 
is to shield users from the underlying physics perspective (where 
devices are considered mass-spring-damper systems, see below) and 
to instead, let the users interact in user experience-related dimen-
sions they are familiar with, i.e., range of motion (aka amplitude), 
frequency of the oscillation (aka tempo), and the time/energy re-
quired to swing up the device (aka efort), as illustrated in Figure 
14a. For these input dimensions, Trusscillator determines spring 
constant and mass confguration to satisfy the user’s design in-
tent. The relationship between the mechanical properties and the 
experience attributes is illustrated in Figure 14b. 

Figure 14: (a) The mechanical properties (mass, stifness) of 
the structure are defning the motion experience (amplitude, 
tempo, efort). (b) The correlation between the mechanical 
properties and the experience attributes is a multi-variable, 
co-dependant parameter space. 

Trusscillator acquires the attributes of the oscillation by run-
ning a simulation sequence. During the simulation, the human-
mimicking force starts to actuate the device and the amplitude is 
increasing as the energy is being accumulated in the system, as 
shown in Figure 15a. Consequently, the velocity of the movement 
also keeps increasing. However, proportionally to the velocity, vis-
cous damping starts to increase (Fdamp = d · v), and this force 
is counteracting the movement. With the velocity increase, the 
damping action is dissipating more and more energy into heat; up 
until the point when the amplitude and velocity are so high that all 
the input energy of the user is being consumed by damping. The 
orange line in Figure 15b indicates this time point when the oscillat-
ing system has reached the energy equilibrium and the amplitude 
remains stable. 

To exemplify this process, we take the simple bobbing saddle 
model from Figure 14a, ft with a catalog spring with the stifness 
of k = 3376N/m, and damping d = 50 Ns/m, as shown in Figure 
15a, and run the simulation for a 12-year-old user (40kg, 75W). 
Trusscillator then obtains the following information: 

Amplitude: Trusscillator takes the largest amplitude from the 
simulated movement coordinates by fnding out the maximum 
distance between any two points in the time-series for the node of 
interest. For the example above, it shows that the tip of the child’s 
head will move about a 1m arc. 

Efort: The time required to reach the energy equilibrium (ramp-
up time) is what Trusscillator takes to estimate the efort required 
to swing up the device. Specifcally, we take the amplitude mea-
surements and compare at which point in time the occurrence of 
the largest amplitude drops below a 15% margin from the largest 

1083



Trusscillator: a System for Fabricating Human-Scale Human-Powered Oscillating Devices UIST ’21, October 10–14, 2021, Virtual Event, USA 

Figure 15: (a) Trusscillator simulates the model (b) until the time point when it reaches an energy equilibrium. (c) The time 
until the velocities don’t increase anymore is considered for determining the efort. (d) The peak of the frequency spectrum 
determines the tempo metric. 

amplitude. The diagram in Figure 15c shows the velocity increase 
has stabilized after around 3.5s. Trusscillator interprets this efort 
as easy (up until 5s ramp-up time). From 5s to 10s it is considered 
just-right and above 10s is laborious, based on our observation of 
common swinging behavior. This information is then displayed in 
the efort widget to the user. 

Tempo/Frequency: Trusscillator analyzes this 3D velocity data 
from Figure 15c using Fast Fourier Transform (Figure 15d) and 
searches for the global maximum. In this example, the structure os-
cillates with the dominant frequency of 1Hz. This result is then clas-
sifed as comfortable (0.5-1.5 Hz) based on input from [21]. Higher 
frequencies are classifed as shaky, lower is slow. This information 
is displayed to the user in the tempo widget. 

5.6 Optimization 
To change the motion experience, Trusscillator has access to modify 
the two mechanical properties, namely mass (by adding weights to 
the structure) and stifness (by choosing a spring from a catalog). 
We assume damping to be fxed as an inherent property of the 
material of the coil springs. This results in a challenging limitation 
for tuning the experience, where not all the criteria can be satisfed 
at all times. For this reason, Trusscillator utilizes a sampling-based 
optimization approach. 

Figure 16 illustrates Trusscillator’s optimization procedure, 
which is loosely inspired by the simulated annealing strategy. First, 
the algorithm searches for a viable baseline confguration. It as-
sumes one global spring constant for all springs in the structure. It 
covers the range between 3kN/m and 20kN/m spring in intervals 
determined by the preset resolution (e.g., 10). After each simulation, 
we evaluate the simulation runs with the target metrics that we 
want to optimize and assign a distance to every sample using the 
distance function. We store the best (i.e., closest result) and proceed 
with optimizing the springs with a higher resolution one by one. We 
proceed analogously to the global sampling, only this time we don’t 
consider the full spectrum of springs but only a window around 
the currently best assignment (e.g., ± 2kN/m), and every sample is 

being simulated with a range of additional masses. To avoid combi-
natorial explosion, we only place one mass in every local search 
step and place it at the highest point on one adjacent rigid group 
(heuristically assuming that this has the largest efect on the result). 
After every sampling round, we store the best parameter assign-
ment and resume it for the next spring. After all the springs have 
been processed, we return the best matching parameter assignment 
of the last round. 

This algorithm returns in O(n) sampling steps, where n is the 
number of springs, assuming that sufcient computing resources to 
run all simulations for a given sample in parallel are available. Par-
allelizing the simulations within one sampling round and reducing 
the dependencies of consecutive steps is key for reducing response 
times and enabling interactivity. 

Figure 16: Spring optimization procedure. 

For determining whether a design matches the expectation of 
what the user chooses, we defne a distance metric that can be cal-
culated from the simulation result: 

Í 
3 · ∆Ac + ∆fc + ∆ec + σ (F ), 

c ∈ C 
where C is the set of children, and ∆Ac , ∆fc , ∆ec are the nor-
malized diferences of amplitude, frequency, and efort between 
target and measured data for the respective child. We emphasize 
the amplitude constraint with an additional weighting factor, as 
it is critical for the mechanical function of the structure. The last 
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term σ (F ), which denotes the statistical variance over the mea-
sured frequencies among the children. It incentivizes structures 
that are suitable for achieving resonance and therefore diferences 
in frequencies are low. 

The corresponding algorithm works as follows: 

Algorithm 1 Spring optimization 
best_parameter_vector = nothing 
sampling_resolution = get_number_of_workers() 
available_additional_masses = [0, 5, 15] 
global_sampling = sample_all_springs(model, 
range(1kN/m, 20kN/m, length=sampling_resolution)) 
best_parameter_vector = 
select_best_guess(global_sampling) 
for spring in springs 

spring_constant = get_spring_constant(spring, 
best_parameter_vector) 

local_samples = sample_spring_and_masses(model, 
spring, range(spring_constant - 2kN, 
spring_constant + 2kN, length= sampling_resolution), 
available_additional_masses) 

best_parameter_vector = 
select_best_guess(local_samples) 
end 
return best_parameter_vector 

For optimization, we only consider the oldest specifed age group 
(here 12 years), as that age group exhibits the most extreme behavior, 
especially in terms of amplitude. 

Before returning the information back to the client, Trusscil-
lator takes the closest matching springs from an online vendor 
catalog [13], confgures the structure with that spring, and runs the 
simulation for all age groups. 

5.7 Exporting stencils 
Trusscillator renders the stencils using the parametric modeling 
tool OpenSCAD [28]. The key challenge behind this stencil design is 
that the longer an “arm” is, the larger the potential error caused by 
a user shearing the material while wrapping it around the sphere. 
We minimize this efect by choosing a star-like topology, where one 
incidence point acts as center based on which all other incidence 
points are being referred to. This prevents errors from propagating, 
as would be the case with designs that daisy-chain incidence points. 
Our algorithm picks the center point so as to minimize the distances 
to the other incidence points. 

6 RELATED WORK 
Trusscillator builds on previous work from the domains of mech-
anism design, springs and compliant mechanisms, dynamics-
oriented systems in personal fabrication, and professional tools 
for physics simulation. 

6.1 Software tools for mechanism design 
Since the emergence of 3D printers, researchers in the HCI and 
computer graphics community have been looking into creating ex-
pert systems for helping everyday users in performing mechanical 

engineering tasks. One of these non-trivial engineering tasks is 
creating mechanisms, that have been researched in many favors. 
ChaCra [31] is an interactive design system for rapid character 
crafting. Thomaszewski et al. [41] looked into generating pleasing 
motion paths for animated kinematic characters. Bend-it [45] is a 
system for creating wire-bendable kinetic characters. Roibot [24] 
augments passive everyday objects by adding motorized actuation 
to them. Ion et al. [17] proposed an interactive editor for creating 
mechanical metamaterial mechanisms. TrussFab [22] is an end-to-
end system for creating large-scale static truss structures, while 
TrussFormer [23] also helps to animate these truss structures embed-
ding linear actuators into them. All these tools are providing great 
help in automating specifc engineering tasks of mechanism design; 
however, they concern very little about the energy consumption 
and dynamic properties of a mechanism. 

Several software tools help the design of linkage-based mech-
anisms, such as Mechanism Perfboard [20], LinkEdit [5], or Link-
ageDesigner [26]. Some of these tools also allow users to explore 
certain dynamic aspects of the mechanisms, however, they are not 
(yet) suitable for simulating spring-based mechanisms. 

6.2 Springs and compliant mechanisms 
Springs, in their static and kinematic nature, have already been ex-
plored by the personal fabrication community. For example, Ondulé 
[15] helps novices to design parameterizable deformation behav-
iors in 3D-printable models using helical springs and embedded 
joints. Schumacher et al. [38] have proposed a system for modify-
ing the underlying microstructure of 3D printed objects in order 
to adjust their elasticity. Systems like [45] and [32] are focusing 
on compliant mechanisms that utilize the elasticity of the material 
to create motion. Roumen et al. [37] have proposed SpringFit, a 
system for users of laser-cutters to make their models cross-device 
compatible by replacing the problematic press ft-based mounts 
and joints with cantilever-spring-based mounts and joints. Ion et 
al. in [18] uses preloaded springs to mechanically transmit signals 
in digital metamaterials. Takahashi et al. [40] have created a sys-
tem for creating statically balanced planar spring mechanisms. The 
bistable nature of compliant mechanisms has been explored by 
Zhang et al. [46]. While all these works are focusing on springs and 
elastic behavior, they are mostly concerned about the shape, static 
balance, and static force the spring provides. Trusscillator expands 
these approaches to the dynamic domain and explores springs in 
motion. 

6.3 Dynamics oriented systems in personal 
fabrication 

Predicting the dynamic behavior of mechanisms has also been 
researched in the HCI and computer graphics community. Some 
interactive design tools also leverage physics simulation, such as 
SketchChair [38] and Umetani et al. [43]. While the aforementioned 
examples are still mostly concerned about statics, other tools also 
help to explore the motion. For example, Spin-it [4] enables 3D 
printing arbitrary spinning tops by optimizing the internal rota-
tional dynamic properties, while Pteromys [42] helps to optimize 
the aerodynamics of free-fight glider paper airplanes. Chang et 
al. [7] have been developing haptic kirigami swatches that helps 
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Figure 17: (a) The measurement points indicated on the real and virtual model. (b) Frequency response comparison of the push 
and pull experiments. 

designing specialized springs that provide a well-defned resistance 
profle for haptic buttons and switches. Chen et al. [8] proposed a 
system for accurate simulation of dynamic, elastic objects at inter-
active rates. Similarly, Real2Sim [14] is a system that estimates the 
material’s visco-elastic parameters retrieved from dynamic motion 
data. Hoshyari et al. [16] have created a workfow for reducing 
unwanted secondary oscillations in expressive robotic characters. 
Tang et al. [36] presented a harmonic balance approach for design-
ing compliant mechanical systems with nonlinear periodic motions. 
All these projects are dealing with predicting dynamic motion and 
helping users in their design. Trusscillator extends this line of work 
to human-powered oscillating devices. 

6.4 Professional tools for simulating dynamic 
physical systems 

Physics simulation has become one of the most important enabling 
technologies for engineering physical artifacts. For example, com-
mercial software like Fusion360 [2] readily ofers fnite element 
simulation capabilities for engineers. Some interactive editors uti-
lize powerful frame-based simulation, such as Algoryx Momentum 
[1] or Vortex Studio [44]. These systems are great for real-time simu-
lation of complex physical phenomena; however, repeatability and 
precision of the results is not always guarantied. 

On the other hand, continuous-time cross-domain analytic 
solvers ofer high accuracy and repeatability through a closed rep-
resentation of the system. Examples of such systems are Modelica 
[11] and Mathworks’ Simscape [27]. They are very powerful in 
simulating cross-domain physical processes; however, their use 
often requires a deep understanding of the simulated system and 
the actual language as well. Trusscillator bridges this gap by inter-
facing a custom system formulation with a high-level UI tailored 
for designing spring-based oscillating mechanisms. 

7 VALIDATION 
To validate Trusscillator’s functionality, we designed 15 models 
(Figure 10), including the two models that were fabricated physi-
cally, i.e., the “brachiosaurus” from Figure 1, the “bird swing” from 
Figure 11. Trusscillator allowed a team of two to design, cut, drill, 
assemble, weld, and paint each model in 2-3 days. 

7.1 Simulation accuracy 
We conducted a technical evaluation assessing the accuracy of 
Trusscillator’s simulation, in which we compared the frequency 
response measured for our “brachiosaurus” device with the fre-
quency response predicted by our simulation. We chose this evalu-
ation to determine whether our simulation approach is suitable for 
representing the real world prototype across the entire frequency 
spectrum. 

Figure 17 (left) shows the evaluation setup. Three IMU loggers 
(G-Sensor Logger [12]) were placed on the three moving parts of the 
dinosaur swing, recording 60 data points per second. We measure 
the "step response" of the mechanism in response to pushing the 
dinosaur head node upwards and then rapidly releasing it, as well 
as the response to pulling the “chin” downwards and releasing it. 
We also measured the peak force applied to the system using a 
SAUTER HP-5K digital force sensor and this same value was also 
applied in the simulation environment. 

Results: Figure 17b shows frequency spectra measured and sim-
ulated. We applied FFT on the acceleration data obtained from the 
IMU on the real model (green line), and on the simulation data 
of the respective node (orange line). As shown in Figure 17b the 
simulation data resembles the real-world observations closely. 

The slight diferences between our demo model and the sim-
ulated data can be interpreted by the imprecision in fabrication, 
increased friction, and slack in the joints, that causes additional 
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Table 1: Simulation benchmark results 

Model 

chair 
bird-swing 

brachiosaurus 

# nodes 

8 
26 
32 

# edges 

18 
76 
103 

# springs 

1 
3 
6 

Simulation time 

74 ms 
797 ms 
179 ms 

Optimization time 

929 ms 
5544 ms 
7770 ms 

shocks and loss of energy. These parameters can be empirically 
adjusted and implemented in the software; however, they are highly 
dependent on the actual material used, fabrication quality, lubrica-
tion, etc. Another source of error are the simplifcations that the 
simulation assumes, such as lumping of masses on the nodes or 
nonlinearities in the damping and spring forces. 

7.2 Performance of the simulator 
Simulating the oscillating behavior is the computationally most 
expensive component of Trusscillator’s system. To validate that 
the system can provide interactive design iteration cycles even for 
complex models, we benchmarked the simulation steps on three 
models: a simple chair with one spring in its backrest (Figure 9c), 
the bird-swing (Figure 11), and the brachiosaurus (Figure 1). 

We ran the simulation on a DELL XPS 15 9600 with Intel Core 
i7-10750H 2.6 GHz CPU (2020 edition) running on Ubuntu 20.04. 
The output of the simulation is a common query used in our editor: 
30 fps for 5s, resulting in 150 frames. We computed response times 
by performing 10 consecutive runs and averaging response times. 

As shown in Table 1, all the simulations run under 1 second— 
appropriate for a turn-taking interaction. 

We note that execution speed is sensitive to multiple factors, such 
as, required accuracy, number of spring combinations, number of re-
fnements, frequency of the movement, actuation power and more. 
This is the main reason why the optimization is currently slower 
than the simulation time multiplied by the spring count (slowest 
simulation governs the time for one sampling round). Note that 
the times reported here, are for a full optimization round, where 
consecutive user interaction could also be reduced to a subset of the 
springs and samples. We see further potential for speed ups by not 
simulating every node position individually, but combining rigid 
parts of the structure and simulating them as a single entity (de-
tected by the rigid group detection algorithm mentioned in section 
5.1). 

8 CONCLUSION 
We presented Trusscillator, an end-to-end system that enables 
novice users to design and build human-scale human-powered 
machines. As we learned in our expert interviews, such devices are 
usually subject to long design and prototyping cycles. Trusscillator 
speeds up this process by encapsulating large parts of the required 
domain knowledge from designing structurally stable mechanisms, 
through tuning and verifying their dynamic behavior, to building 
processes and tools. 

Zooming out, we think of Trusscillator as a tool that pushes re-
search on large-scale personal fabrication in two ways. First, it goes 
the next logistical step from systems supporting static construction 
to kinematic construction to now dynamic construction. Second, it 

provides a computer-assisted system for the personal fabrication of 
welded steel structures, thereby laying the groundwork for scaling 
this line of research to bigger structures and larger forces. 

As future work, we plan to introduce dampers into large-scale 
personal fabrication, allowing users to design large-scale mass-
spring-damper systems. 
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