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Generative adversarial networks (GANs) nowadays are capable of producing images of incredible realism. One
concern raised is whether the state-of-the-art GAN’s learned distribution still suffers from mode collapse, and
what to do if so. Existing diversity tests of samples from GANs are usually conducted qualitatively on a small
scale, and/or depends on the access to original training data as well as the trained model parameters. This
paper explores to diagnose GAN intra-mode collapse and calibrate that, in a novel black-box setting: no access
to training data, nor the trained model parameters, is assumed. The new setting is practically demanded, yet
rarely explored and significantly more challenging. As a first stab, we devise a set of statistical tools based on
sampling, that can visualize, quantify, and rectify intra-mode collapse. We demonstrate the effectiveness of our
proposed diagnosis and calibration techniques, via extensive simulations and experiments, on unconditional
GAN image generation (e.g., face and vehicle). Our study reveals that the intra-mode collapse is still a prevailing
problem in state-of-the-art GANs and the mode collapse is diagnosable and calibratable in black-box settings.
Our codes are available at: https://github.com/VITA-Group/BlackBoxGANCollapse.
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1 INTRODUCTION
Generative adversarial networks (GANs) [7, 26, 28, 33, 34, 36–39, 44, 62, 65, 71–73] have demon-
strated unprecedented power for image generation. However, GANs suffer from generation bias
and/or loss of diversity. The underlying reasons could be compound, ranging from the data imbal-
ance to the training difficulty, and more:
• First, the training data for GANs, e.g., for the most-studied unconditional/unsupervised gener-
ation tasks [36, 37], could possess various subject or attribute imbalances [61]. Consequently,
GANs trained with them might be further biased towards the denser areas, similarly to the
classifier bias towards the majority class in imbalanced classification.
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• More intrinsically, even when the training data “looks” balanced, training GANs is much more
unstable and uncontrollable than training classifiers. One common hurdle of GANs is the
loss of diversity due to mode collapse [27], wherein the generator concentrates a probability
mass on only a few modes of the true distribution. It is often considered as a training artifact.
Another widely reported issue, covariate shift [51], could be viewed as a nuanced version of
mode collapse.

1.1 Diversity Evaluation of GANs
There are several popular metrics for evaluation, e.g., Inception Score (IS) [50], Fréchet Inception
Distance (FID) [30], MODE [16] and birthday paradox test [9]. However, they are not always
sensitive to mode collapses; see Section 2.1 for more discussions.

Recently, two classification-basedmetrics [12, 51] have been proposed for quantitatively assessing
the mode distribution learned by GANs by comparing the learned distribution of attributes or
objects in the generated images with the target distribution in the training set. However, Santurkar et
al. [51] hinges on a classifier trained on the original (and manually balanced) GAN training set, with
class labels known, available, and well-defined (e.g., object classes in CIFAR-10, or facial attributes
in CelebA); Bau et al. [12] relies on an instance segmentation model trained on images with 336
object classes. They mainly focus on detecting the mode collapse measured at class level but do not
directly address the mode collapse within a class.
Mode collapse refers to the limited sample variety in the generator’s learned distribution. As

discussed by Huang et al. [32], inter-mode collapse occurs when some modes (e.g., digit classes in
MNIST) are never produced from the generated samples; while intra-mode collapse occurs when
all modes (e.g., classes) can be found in the generated samples but with limited variations (e.g., a
digit with few writing styles). Both types of mode collapses are commonly observed in GANs, and
the above classification-based metrics, by definition, can only detect the inter-mode collapse. Also,
they cannot be easily extended to images subjects where classes are not well defined and/or not
enumerable (e.g., the identity of generated faces/vehicles, or in other open set problems).
Beyond the above progress, many open questions persist, including but not limited to: do

state-of-the-art GANs still suffer from intra-mode collapse? Can we detect it with minimal as-
sumptions or efforts? Moreover, whether there is an “easy and quick” remedy to alleviate it? –
Addressing them motivates our work.

1.2 Black-Box Diagnosis & Calibration
Many approaches have been proposed to alleviate mode collapse, ranging from better optimization
objectives [7, 44] to customized building blocks [20, 22, 40, 41]. However, they require either
specialized GAN architectures and/or tedious (re-)training, or at least access to training data
and/or model parameters. Whether it is for diagnosing (detecting or evaluating) mode collapse, or
calibrating (alleviating or fixing) it, all the above methods require the original training data and/or
the trained model parameters. We refer to those methods as white-box approaches.

In contrast, the main goal of this work is to significantly extend the applicability of such diagnosis
and calibration to an almost unexplored black-box setting: we assume neither access to the original
training data, nor the model parameters, nor the class labels of the original data (which might be
inaccessible or even not well defined, as above explained). To our best knowledge, no existing approach
is immediately available to address this new challenge. Instead, we find such black-box setting
desired by practitioners due to the following reasons: (i) the training data might be protected or no
longer available since it contains sensitive information (e.g., human faces or person images); (ii)
the GAN model might be provided as a black box and cannot be modified (e.g., as commercial IPs,
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executables, or APIs); (iii) the practitioners want to adjust the generated distribution of any GAN
without expensive re-training, to enable fast turn-around and also save training resources.

Assume, for just one example, a GAN model is protected by IP and provided to users as an
executable (or cloud API) only. The black-box diagnosis and calibration are helpful for both the
users and the provider. For the users, they could effectively discover whether the provided API
displays any unexpected generation deficiency or bias, despite having no access to the weights
nor data. For the provider, they could identify a collapse and quickly fix it, by adding merely light-
weight “wrapping” (e.g., output post-processing) to the model, instead of costly (even infeasible)
re-training.

1.3 Our Contributions
As a first stab at this new challenge, we propose hypothesis testing methods to analyze the clustering
density pattern of generated samples. To characterize point patterns over a given area of interest,
we incorporate statistical tools in spatial analysis and the Monte Carlo method to provide both
qualitative and quantitative measures of mode collapse. Then, for the first time, we explore two
black-box approaches to calibrate the GAN’s learned distribution and to rectify the detected mode
collapse, via Gaussian mixture models and importance sampling, respectively. It is crucial to notice
that neither the proposed diagnosis nor the calibrations touch the original training data, access the
model parameters, or re-train the model in any way: they are all based on sampling from the “black
box”.
We demonstrate the application of our new toolkit in analyzing the intra-mode collapse in

unconditional image generation tasks, such as face and vehicle images. Instead of measuring a
“global” class distribution, our method focuses on addressing “local” high-density regions. Therefore,
it is specialized at detecting the intra-mode collapse, and is complementary to [51] and [12]. We
find the intra-mode collapse remains a prevailing problem in state-of-the-art GANs [15, 36–38]. We
analyze several possible causes and demonstrate our calibration approaches can notably alleviate
the issue.

Although beyond our discussion scope, we point out that our proposed diagnosis and calibration
on intra-mode collapse can contribute to understanding the privacy [21, 67, 68, 78] and fairness [31,
59, 66] issues in generative models. First, the collapsed mode in GAN’s learned distribution, i.e.,
images of repeated identity, could focus on some training data, especially when the data is highly
imbalanced, thus causing privacy breach if the training data is protected. Second, the collapsed
mode shows the generative model’s bias towards some specific identities. Many existing works
using generated synthetic images together with or instead of real images for training, with their
purposes ranging from semi-supervised learning [50] to small data augmentation [14, 42, 76]. As a
potential consequence, training with the generated data might incur biased classifier predictions.

2 RELATEDWORKS
2.1 Privacy and Fairness Concerns in GANs
2.1.1 Privacy. The privacy breach risk of GANs lies in generating data that are more likely to be
substantially similar to existing training samples, as a consequence of potential overfitting. Xie et
al. [69] argues that the density of the learned distribution could overly concentrate on the training
data points, which is alarming when the training data is private or sensitive. The authors proposed
to train a differential private GAN (DPGAN) by gradient noise injection and then to clip. Webster et
al. [63] studies GAN’s overfitting issue by analyzing the statistics of reconstruction errors on both
training and validation images, by optimizing the latent code to find the nearest neighbor in the
generation manifold. Their empirical study finds out that standard GAN evaluation metrics often
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fail to capture memorization for deep generators, making overfitting undetectable for pure GANs
and causing privacy leak risks.

2.1.2 Fairness. Amini et al. [6] propose an debiasing VAE (DB-VAE) algorithm, on mitigating
generation bias, but it needs a large dataset to learn its latent structure. Xu et al. [70] develops
FairGAN for fair data generation, which achieves statistical parity with regard to a protected
attribute, using an auxiliary discriminator to ensure no correlation between protected/unprotected
attributes, as well as between the utility task and the protected attribute. Sattigeri et al. [52] also
aimed to generate debiased, fair data to protected attributes in allocative decision making, with a
pair of auxiliary losses introduced to encourage demographic parity. Unlike those existing works,
we seek to analyze and gain insights into the fairness issue in current state-of-the-art GANs (rather
than specifically crafted ones), where currently no fairness constraint has not been, or is non-trivial
to be enforced.

2.2 Evaluation of Mode Collapse in GANs
GANs are often observed to suffer from the mode collapse problem [50, 56], where only a small
subset of distribution modes are characterized by the generator. The problem is especially prevalent
for high-resolution image generation, where the training samples are low-density w.r.t. the high-
dimensional feature space. Salimans et al. [50] presented the popular metric of Inception Score (IS)
to measure the individual sample quality. IS does not directly reflect the population-level generation
quality, e.g., the overfitting, and loss of diversity. It also requires pre-trained perceptual models on
ImageNet or other specific datasets [11]. Heusel et al. [30] proposed the Fréchet Inception Distance
(FID), which models the distribution of image features as multivariate Gaussian distribution and
computes the distance between the distribution of real and fakes images. Unlike IS, FID can detect
intra-class mode dropping. However, as pointed out by Borji et al. [13], the multivariate Gaussian
distribution assumption does not hold well on real images, limiting FID’s trustworthiness. Besides
IS and FID, Che et al. [16] developed an assessment for both visual quality and variety of samples,
known as MODE score, and later shown to be similar to IS [79]. Arora et al. [8, 9] proposed a test
based upon the birthday paradox for estimating the support size of the generated distribution.
Although the test can detect severe cases of mode collapse, it falls short in measuring how well a
generator captures the true data distribution. It also heavily relies on human annotation, thus hard
to scale up to larger-scale evaluation. Santurkar et al. [51] and Bau et al. [12] are the closet existing
works to to our proposed diagnosis. Both approaches took a classification-based perspective and
regarded the loss of diversity as a form of covariate shift. Unfortunately, as discussed above, their
approaches are “white box” and depend on the exposure of original training data. Also, their
approaches cannot be extended to subjects without well-defined class labels.

2.3 Model Calibration for GANs
There aremany efforts addressing themode collapse problem inGANs. Some focus on discriminators
by introducing different divergence metrics [46] and optimization losses [7, 44]. The minibatch
discrimination scheme proposed by Salimans et al. [50] allows discrimination between whole mini-
batches of samples instead of between individual samples. Durugkar et al. [20] adopted multiple
discriminators to alleviate mode collapse. Lin et al. [40] proposed PacGAN to mitigate mode collapse
by passing𝑚 “packed” or concatenated samples to the discriminator for joint classification.

ModeGAN [16] and VEEGAN [55] enforce the bijection mapping between the input noise vectors
and generated images with additional encoder networks. Multiple generators [22] and weight-
sharing generators [41] are developed to capture more modes of the distribution. However, all of
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the above assumes (re-)training, and hence are on a different track from our work that focuses on
calibrating trained GANs as “black boxes”.
A handful of works attempted to apply sampling methods to improve GAN generation quality.

Turner et al. [58] introduced the Metropolis-Hastings generative adversarial network (MH-GAN).
MH-GAN uses the learned discriminator from GAN training to build a wrapper for the generator
for improved sampling at the generation inference stage. With a perfect discriminator, the wrapped
generator can sample from the true distribution exactly even with a deficient generator. Azadi et
al. [10] proposed discriminator rejection sampling (DRS) for GANs, which rejects the generator
samples by using the probabilities given by the discriminator to approximately correct errors in
the generator’s distribution. Nevertheless, these approaches are white-box calibration and require
access to trained discriminators, which are hardly accessible or even discarded after a GAN is
trained.

3 METHOD
Inter-Mode Collapse vs. Intra-Mode Collapse. Mode collapse happens when there are at least
two distant points in the code vectorZ mapped to the same or similar points in the sample spaceX,
whose consequence is limited sample variety inX. There are two distinct concepts here: intra-mode
collapse and inter-mode collapse. Inter-mode collapse occurs when some modes (e.g., digit classes
in MNIST) are never produced from the generated samples; while intra-mode collapse occurs when
all modes (e.g., classes) can be found in the generated samples but with limited variations (e.g., a
digit with few writing styles). In this paper, we investigate the intra-mode collapse on the task of
unconditional GAN image generation, due to its popularity as well as the constraint of missing
object labels during generation. Note that all our techniques can be straightforwardly applied to a
conditional generation too.
Given an unconditional generator 𝐺 , we can sample an image I = 𝐺 (𝑧) by drawing 𝑧 from a

standard Gaussian distribution N(𝑧). We define that mode collapse happens when the probability
of generating samples with a certain condition 𝑓 (I)=0 deviates from the expected value of a target
distribution.

For inter-mode collapse, the conditional function 𝑓 usually specifies the probability ofI belonging
to a certain class [12, 51]. For intra-mode collapse, we favor a conditional function 𝑓 that can
characterize the diversity of samples in a local region. The definition of diversity (loss), especially
when it comes to the semantic level, can be elusive and vague. To concretize our study subject, we
focus on the collapse of the most significant property that makes a generated image “unique”, i.e.,
the identity (for generated faces, vehicle, etc.). Note that the definition of identity generalizes more
broadly than class, and can apply to open-set scenarios when the class is not well-defined, such as
generating new faces. Conceptually, we canmeasure intra-mode collapsew.r.t. an anchor imageI ′ by
the probability of generating a sample I with the same identity as I ′, i.e., 𝑓 (I) = 𝐼𝐷 (I ′) − 𝐼𝐷 (I).
Black-Box Setting.We assume neither access to the original training data, nor the model parame-
ters, nor the class labels of the original data (which might be inaccessible or even not well defined,
as above explained).
Diagnosis & Calibration. Importantly, we never use the identity labels in any form to evaluate
sample diversity. Instead, we leverage the embedded features obtained from the deep networks
pre-trained for the recognition or re-identification task for subjects such as faces and vehicles. That
is based on the known observation that those “identity” features can often directly characterize or
show strong transferability to depict other essential attributes: e.g., age/gender/race of faces [53]
and color/type/brand of vehicles [77].
Assume we have an identity descriptor 𝐹𝑖𝑑 (·) that produces a unit vector for image I in the

identity embedding space. We can use the identity feature similarity 𝑠 (I ′,I) between the anchor
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and sampled images as a probabilistic surrogate to identity matching in our conditional function:

𝑓 (I) ∼ B(𝑠 (I ′,I)), (1)

where B(𝑝) denotes Bernoulli distribution with zero-probability 𝑝 . Thus, the detection metric for
our intra-mode collapse becomes the expected similarity with the anchor image I ′:

𝑝 (𝑓 (I) = 0) = EI [𝑠 (I ′,I)] . (2)

Since only high similarity indicates possible identity matching, we design 𝑠 (·, ·) as a truncated
exponential function of inverse feature distance:

𝑠 (I1,I2) =
1

𝑒𝜃 − 1
(𝑒𝑚𝑎𝑥 (0,𝜃−𝑑 (I1,I2)) − 1), (3)

where 𝑑 (·, ·) is the normalized cosine distance between identity features:

𝑑 (I1,I2) =
1
𝜋
𝑐𝑜𝑠−1 (< 𝐹𝑖𝑑 (I1), 𝐹𝑖𝑑 (I2) >), (4)

and 𝜃 is a hyper-parameter specifying the maximum feature distance between two images of the
same identity in the embedding space 𝐹𝑖𝑑 . Note that 𝜃 only depends on 𝐹𝑖𝑑 . We use Monte Carlo
sampling to approximate the expected similarity between an anchor image I ′ and a randomly sam-
pled image in the generator’s learned distribution. We further propose two calibration approaches
to alleviate the collapse by “reshaping the latent space”.

3.1 Black-box Intra-Mode Collapse Diagnosis via Monte Carlo Sampling
Now we introduce a practical way to evaluate the expected similarity between an anchor image I ′
and a randomly sampled image I=𝐺 (𝑧):

E𝑧 [𝑠 (I ′,𝐺 (𝑧))] =
∫
𝑧
𝑠 (I ′,𝐺 (𝑧))𝑝 (𝑧)𝑑𝑧. (5)

Eq.(5) can be used to quantitatively measure the mode collapse in the neighborhood of the anchor
I ′ in𝐺 ’s learned distribution. We hereby show two extreme cases: Eq.(5) yields 0 when𝐺 produces
no images similar to I ′ (i.e., ∀𝑧, 𝑑 (𝐺 (𝑧),I ′) > 𝜃 ); in contrast, Eq.(5) yields 1 when 𝐺 produces
identical images to I ′ (i.e., ∀𝑧, 𝑑 (𝐺 (𝑧),I ′) = 0).

As the integral in Eq.(5) is generally intractable, we further incorporate Monte Carlo sampling to
approximate the expectation with the average of 𝑛 samples from a Gaussian distribution {𝑧𝑖 } ∼
N(𝑧):

E𝑧 [𝑠 (I ′,𝐺 (𝑧))] ≈
1
𝑛

𝑛∑︁
𝑖=1

𝑠 (I ′,𝐺 (𝑧𝑖 )) . (6)

Considering both scale and normalization in Eq.(6), we further define a metric named “Monte
Carlo-based Collapse Score” (MCCS):

MCCS(I ′) = 1/(1 − log( 1
𝑛

𝑛∑︁
𝑖=1

𝑠 (I ′,𝐺 (𝑧𝑖 )))), (7)

where 𝑛 is the size of C, a collection of sampled images. MCCS ranges between 0 and 1: the
larger it is, the more𝐺 suffers in mode collapse on I ′. In Section 4.2, we empirically validate the
sampling-efficiency and effectiveness of the proposed MCCS.
Finally, the population statistics of MCCS can indicate the occurrence of local dense modes

in the entire sample space. We use the mean 𝜇mccs and the standard deviation 𝜎mccs of MCCS to
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quantitatively measure GANs’ intra-mode collapse:

𝜇mccs =
1
𝑚

𝑚∑︁
𝑖=1

MCCS(𝐺 (𝑧𝑖 )), 𝜎mccs = (
𝑚∑︁
𝑖=1

(MCCS(𝐺 (𝑧𝑖 )) − 𝜇mccs)2
𝑚 − 1 )1/2. (8)

Note that, to get the population statistics, we need to obtain a collection of sampled anchor images
A, whose size is𝑚. We have A ∩ C = ∅. Details are shown in Section 4.2.1.

(a) |A| = 1𝑘 (b) |A| = 10𝑘 (c) |A| = 100𝑘 (d) |A| = 1𝑚 (e) |A| = 10𝑚

Fig. 1. Visualization of the worst-case dense mode I𝑤 w.r.t. different size of the A. A is a collection of
randomly sampled anchor images. The I𝑤 could be reliable obtained when |A| = 10𝑘 .

3.2 Black-box Intra-Mode Collapse Calibration via Latent Space Reshaping
3.2.1 Calibration w.r.t. the “Worst-Case" Collapse. In calibration, we first define the worst-case
collapsed (dense) mode I𝑤 , i.e., the identity with the largest number of neighbors within a specified
distance threshold. Given the radius 𝑟 of the points neighborhood centered at I ′ in the embedding
space, a collection of randomly sampled anchor imagesA, a collection of randomly sampled images
C, a worst-case collapsed mode I𝑤 can be expressed as:

I𝑤 = argmax
I′∈A

∑︁
I∈C

1𝑟 (𝑑 (I ′,I)), (9)

where
∑
I∈C 1𝑟 (𝑑 (I ′,I)) computes the number of neighbors within 𝑟 distance of I ′ in the embed-

ding space, among all images in C, and 1𝑟 (·) is an indicator function that gives 1 if 𝑑 (I ′,I) ≤ 𝑟 .

Algorithm 1 Reshaping Latent Space via Gaussian Mix-
ture Models

⊲ Given a generator 𝐺 , a neighbor distance threshold
𝑟0, and a collection of dense modes D
⊲Z ← {𝑧1, · · · , 𝑧𝑛} // 𝑛 sampled latent codes
⊲ {𝜇𝑘 }𝐾 ,A𝑐 (·) ← K-Means(Z, 𝐾) // Cluster assignment
A𝑐 : Z ↦→ {1, · · · , 𝐾}
⊲ 𝑤𝑠𝑢𝑚 ← 0 // The normalization factor
for each 𝑘 ∈ range(1, 𝐾) do

⊲ C𝑘 ← {𝐺 (𝑧) |A𝑐 (𝑧) = 𝑘, 𝑧 ∈ Z}
⊲ 𝑤𝑘 ← 1/(∑I𝑚 ∈D ∑

I∈C𝑘 1𝑟0 (𝑑 (I𝑚,I)))
⊲ 𝑤𝑠𝑢𝑚 ← 𝑤𝑠𝑢𝑚 +𝑤𝑘

return
𝐾∑︁
𝑘=1

𝑤𝑘

𝑤𝑠𝑢𝑚
𝜙 (·|𝜇𝑘 , Σ)

We next present two black-box ap-
proaches, both focusing on calibrating
a detected worst-case “collapsed” mode
I𝑤 . The calibration aims to maximally
alleviate the density of the mode I𝑤
while preserving the overall diversity
and quality of all generated images.
Biased Anchor Images. The sampled
anchor images could indeed be biased
due to limited sampling size. But we
have empirically verified that the worst-
case densemodeI𝑤 is consistent against
sampling. In order to verify the consis-
tency of the worst-case dense mode I𝑤
against sampling, we fix the size of C to
be 1𝑚 and visualize the I𝑤 w.r.t. differ-
ent size of A in Figure 1. We consistently observe roughly the same identity as the sampling size
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increases. Therefore, despite sampling bias in anchor images, I𝑤 can be reliably obtained even
when |A| = 10𝑘 . The consistency of I𝑤 demonstrates that the support size of I𝑤 is nonnegligible.
The experiments are conducted on StyleGAN2 trained on CelebAHQ-1024.
Why Calibrating the Worst-Case Mode Only?We emphasize that our proposed methods can
be readily applied to any amounts of collapse modes; however, we have two-fold rationales: (1)
focusing on and calibrating the worst-case mode provides good proofs-of-concept and are usually
the easiest to demonstrate quantitative and visual gains; (2) we empirically observe that calibrating
only the worst-case mode could simultaneously alleviate other collapsed modes, without incurring
multiple rounds of sampling overheads.

3.2.2 Two Approaches. Given the worst-case dense mode I𝑤 , our proposed calibration approaches
alleviate the collapse by “reshaping the latent space”: they operate on the latent codes as post-
processing and require no modification of the trained model nor access to the model parameters or
training data, making them completely “black-box”.
A prerequisite for the proposed calibrations is a smooth manifold assumption that comes from

empirical observation: as we consistently obtain neighbors that are visually close to I𝑤 , when
interpolating near I𝑤 , the latent codes of I𝑤 are assumed to lay on some smooth manifold. This
assumption is mild and well observed in practice.
Approach #1: Reshaping Latent Space via Gaussian Mixture Models. Based on the smooth
manifold assumption, the latent space distribution 𝜙 (𝑧; 𝜉0) can be approximated with a mixture

of Gaussians
𝐾∑︁
𝑖=1

𝑤𝑖𝜙 (𝑧; 𝜉𝑖 ). We randomly sample 𝑁 latent codes and use 𝐾-means to explore

𝜉𝑘 = (𝜇𝑘 , 𝜎𝑘 ). We denote 𝑝 (I𝑤) as the probability of sampling the target worst-case dense mode I𝑤 :

𝑝 (I𝑤) =
∫

𝑝 (I𝑤 |𝑧)𝜙 (𝑧; 𝜉0)𝑑𝑧 ≈
𝐾∑︁
𝑘=1

𝑤𝑘

∫
𝑝 (I𝑤 |𝑧)𝜙𝑘 (𝑧; 𝜉𝑘 )𝑑𝑧. (10)

If 𝑝 (I𝑤 |𝜉𝑘 ) is large, we reduce 𝑤𝑘 to make the overall 𝑝 (I𝑤) small. 𝑝 (I𝑤 |𝜉𝑘 ) is estimated by the
number of neighbors within 𝑟 distance to I𝑤 in the 𝑘𝑡ℎ cluster C𝑘 , i.e.,

∑
I∈C𝑘 1𝑟 (𝑑 (I𝑤,I)). The

detailed algorithm is outlined in Algorithm 1.

Algorithm 2 Reshaping Latent Space via Importance
Sampling

⊲ Given a generator 𝐺 , a neighbor distance threshold
𝑟0, and a collection of dense modes D
⊲Z ← {𝑧1, · · · , 𝑧𝑛} // 𝑛 sampled latent codes
⊲ X ← {𝐺 (𝑧1), · · · ,𝐺 (𝑧𝑛)}
⊲ I𝑟 ← 𝐺 (𝑧) // Random image for reference
⊲ IS← ∅ // A collection of important sampling parameters
for each I𝑚 ∈ D do

⊲ 𝑝 ← ∑
I∈X 1𝑟0 (𝑑 (I𝑟 ,I))/

∑
I∈X 1𝑟0 (𝑑 (I𝑚,I))

⊲H ← {𝑧 |𝑑 (𝐺 (𝑧),I𝑚) ≤ 𝑟0, 𝑧 ∈ Z}
⊲Z′← {

∑︁
𝑖

𝛼𝑖𝑧𝑖 : 𝑧 ∈ H , ∀𝑖, 𝛼𝑖 ≥ 0,
∑︁
𝑖

𝛼𝑖 = 1}

⊲ IS← IS ∪ (𝑝,Z′)
return IS

Approach #2: Reshaping Latent Space
via Importance Sampling. Under the
same smooth manifold hypothesis, the
high-density region corresponding to
the target dense modeI𝑤 can be approx-
imated with a convex hull.
Let the estimated neighboring func-

tion densities for the dense and sparse
regions be 𝑝1 and 𝑝2 respectively. We
accept the samples from 𝐺 falling in
the high-density region with a probabil-
ity of 𝑝2/𝑝1 so that the calibrated den-
sities can match. We approximate the
high-density region with a convex hull
formed by the collection of latent codes
corresponding to the identities close to
the target dense mode I𝑤 . The details
are outlined in Algorithm 2.
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Compared to Approach #1 that relies on Gaussian mixture models, Approach #2 that relies
on importance sampling is often found to be better in preserving the image generation quality.
In importance sampling, the high-density region corresponding to the target dense mode I𝑤 is
approximated with a convex hull formed by the collection of the latent codes, whose identity
is very close to I𝑤 in the embedding space. Then, a rejection step is introduced to match the
calibrated dense mode with a regular mode. In comparison, in the Gaussian mixture model, there
is no explicit formulation of the dense region corresponding to the dense mode I𝑤 . However, the
rejection step based on the explicit formulation of the dense mode via convex hull in the importance
sampling approach brings additional computation cost, thus more time-consuming than the mixture
model-based approach. We present both options for practitioners to choose from as per their needs.

4 EXPERIMENTS
4.1 Experiment Settings
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Fig. 2. Justifying the sampling-efficiency of
MCCS(I ′) w.r.t. log10 ( |C|). |C| is the number of
sampled images. For simplicity, I𝑤 is the worst-case
dense mode. I𝑟 is a randomly sampled image.MCCS
can be reliably obtained at around |C| = 104. On the

face generation task, we have MCCS(I 𝑓𝑤 ) = 0.62 and
MCCS(I 𝑓𝑟 ) = 0.34. On the vehicle generation task, we
have MCCS(I𝑣𝑤) = 0.50 and MCCS(I𝑣𝑟 ) = 0.30.

4.1.1 Datasets and Models. We choose four
state-of-the-art GANs: PGGAN [36], Style-
GAN [37] StyleGAN2 [38] and BigGAN [15],
as our model subjects of study 1. All are known
to be able to produce high-resolution, realistic,
and diverse images. The observations below
drawn from the four models also generalize
to a few other GAN models. We choose high-
resolution human face benchmarks of Cele-
bAHQ [36] and FFHQ [37], and high-resolution
vehicle benchmark of LSUN-Car [74] as our
data subject of study. All benchmarks consist of
diverse and realistic images. Lower resolutions
are used for fast convergence in training. E.g.,
CelebAHQ-128 stands for CelebAHQ downsam-
pled to 128 × 128 resolution.

4.1.2 Choice of 𝐹𝑖𝑑 and Hyperparameters. We
use InsightFace [17–19, 29] and RAM [43] as
𝐹𝑖𝑑 to serve as the face identity descriptor and
vehicle identity descriptor, respectively. We em-
phasize that the due diligence of “sanity check”
2 has been performed on those classifiers.

4.2 Justifying MCCS’s Sampling-efficiency and Correctness
We justify the sampling-efficiency and correctness of MCCS in Eq.(7) on StyleGAN trained on
CelebAHQ-1024 and BigGAN trained on LSUN-Car-1024.

4.2.1 Sampling-efficiency. We empirically justify the efficiency of sampling at both sample and
population levels.

1While detecting collapse in unconditional GANs is more challenging, our proposed diagnosis can also be directly applied
to conditional GANs.
2Their face recognition and vehicle re-identification results are manually inspected one-by-one and confirmed to be
highly reliable on the generated images. More specifically, dissimilar-looking images are far away from one another in the
embedding space, while similar-looking images are close to one another.
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Sample-level.We first obtain two pairs of worst-case dense mode defined in Eq.(9) and a randomly
sampled image on the face generation task and vehicle generation task respectively, i.e., (I 𝑓𝑤 ,I

𝑓
𝑟 )

on face and (I𝑣𝑤,I𝑣𝑟 ) on vehicle. Then, we compute MCCS using a collection of sampled images C
at different sizes. As is shown in Figure 2, MCCS can be reliably obtained at around |C| = 104 for
(I𝑤,I𝑟 ) on both face and vehicle generation.
Population-level.We first obtain a collection of sampled anchor imagesA. Then, we draw another
collection of sampled images C. Note that A ∩ C = ∅. Next, for each anchor image I ′ ∈ A, we
compute its value ofMCCS in C. Finally, we compute (𝜇mccs, 𝜎mccs) usingA and C at different sizes.
As is shown in Figure 3, (𝜇mccs, 𝜎mccs) can be reliably obtained at |C| = 104 and |A| = 104.

4.2.2 Correctness. We empirically justify the correctness of the proposed metric in three experi-
ments: StyleGAN trained on a simulated image set, StyleGAN trained on CelebAHQ, and PacGAN
trained on CelebA.
StyleGAN Trained on a Simulated Image Set. The first experiment is designed to prove that
our proposed black-box diagnosis can uniquely detect intra-mode collapse cases, when existing
evaluation metrics fail to do so. To this end, we curate a new dataset of images, whose “ground-truth
collapses” are manipulated by us in a fully controlled way. No GAN-generated image is used.
CelebAHQ is a highly imbalanced dataset: among it, 30𝑘 high-resolution face images of 6, 217

different celebrities, the largest identity class has 28 images, and the smallest one has only 1. Among
the 30𝑘 faces in CelebAHQ, 20, 472 are White, 4, 364 are Black and 3, 154 are Asian. Flickr-Faces-HQ
Dataset (FFHQ) is another high-quality human face dataset, consisting of 70𝑘 high-resolution face
images, without repeated identities (we manually examined the dataset to ensure so. It is thus
“balanced” in terms of identity, in the sense that each identity class has one sample. Among the 70𝑘
faces in FFHQ, 53, 481 are White, 9, 381 are Black, and 7, 138 are Asian.
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Fig. 3. Justifying the sampling-efficiency of (𝜇mccs, 𝜎mccs) w.r.t.
log10 ( |C|) and log10 ( |A|) on the face generation task and vehicle
generation task. |A| is the number of sampled anchor images. |C|
is the number of sampled images. A ∩ C = ∅. (𝜇mccs, 𝜎mccs) can
be reliably obtained at around |A| = 104 and |C| = 104.

Since white faces dominate both
CelebAHQ and FFHQ, we com-
bine the 30𝑘 images in CelebAHQ
with the 70𝑘 images in FFHQ, dis-
card the repeated identities, and
randomly select 6𝑘 faces for each
race in {White, Black Asian}. We
called the resulting set Race-Identity-
Calibrated-CelebAFFHQ (RIC). Next,
we randomly pick one face for
each race in the above set, re-
peat it 1,000 times, and add all re-
peated faces. This augmented set
is called Race-Identity-Calibrated-
CelebAFFHQ-aug (RIC-aug). Both
RIC and RIC-aug have no inter-mode
collapse since the number of different
identities are equal across races. How-
ever, RIC-aug suffers from strong
intra-mode collapse.

The two StyleGAN trained on RIC
and RIC-aug at resolution of 128 are
denoted as M𝑅𝐼𝐶 (FID=15.36) and
M𝑅𝐼𝐶−𝑎𝑢𝑔 (FID=15.93). Neither FID
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or the classification-based study [51] could reflect the intra-mode collapse in RIC-aug. Our pro-
posed black-box diagnosis can detect intra-mode collapse by observing a huge gap between
MCCS(I𝑤) = 0.59 and MCCS(I ′𝑤) = 0.81, where I𝑤 and I ′𝑤 are the worst-case dense mode among
the generated images ofM𝑅𝐼𝐶 andM𝑅𝐼𝐶−𝑎𝑢𝑔 respectively.
StyleGAN Trained on CelebAHQ. Using |A| = 104 and |C| = 106 faces sampled from StyleGAN
trained on CelebAHQ-1024, we run a “sanity check” on our proposedMCCS and show the results in
Figure 4. The left figure I𝑤 , as an anchor face, is theworst-case dense mode in Eq.(9). The right figure
I𝑟 is a randomly selected anchor face. Both figures are surrounded with the top 80 neighbors sorted
by the distance function defined in Eq (4). I𝑤 is clearly suffering from mode collapse since all its
neighbor are almost identical to it. In contrast, the neighbors of I𝑟 are quite diverse, though sharing
some attribute-level similarities. Importantly, we haveMCCS(I𝑤, C) = 0.62≫ MCCS(I𝑟 , C) = 0.35,
which agrees with the fact that I𝑤 is the worst-case dense mode.
PacGAN Trained on CelebA. PacGAN [40] also reduces both inter- and intra-mode collapses
at the same time. It can be represented in the form of “Pac(X)(m)”, where 𝑋 is the name of the
backbone architecture (e.g., DCGAN [49]), and the integer 𝑚 refers to the number of samples
packed together as input to the discriminator. We conduct our last experiment to run MCCS and
see if it reflects an improvement. We adopt the SN-DCGAN [47] architecture, set the number
of packed sample 𝑚 to be 4, and train the Pac(SN-DCGAN)(4) on CelebAHQ-128. The FID of
SN-DCGAN and Pac(SN-DCGAN)(4) are 34.25 and 28.12, respectively. The (𝜇mccs, 𝜎mccs) of SN-
DCGAN and Pac(SN-DCGAN)(4) are (0.62, 0.18) and (0.54, 0.14) respectively. The MCCS(I𝑤)
of SN-DCGAN and Pac(SN-DCGAN)(4) are are 0.84 and 0.73 respectively. Our proposed MCCS
is able to reflect the improvement of PacGAN in both sample and population-level statistics.

Fig. 4. A “sanity check” of MCCS is run on StyleGAN trained
with CelebAHQ. The left figure is I𝑤 and the right figure is I𝑟 .
Both figures are surrounded with the top 80 neighbors sorted by
distance function in Eq (4).

4.3 Black-box Diagnosis
on Intra-Mode Collapse
4.3.1 Observation of Intra-Mode Col-
lapse on State-Of-The-Art GANs. For
StyleGAN (SGAN), StyleGAN2 (SGAN2),
PGGAN, and BigGAN (BGAN), de-
spite their observed diversity and
high quality in generated images,
we still find they are suffering from
strong intra-mode collapse in Ta-
ble 1. Note that PGGAN is trained on
CelebAHQ-1024, StyleGAN on FFHQ-
1024, StyleGAN2 on LSUN-Car-1024,
and BigGAN on LSUN-Car-1024.

Table 1. Observation of intra-mode collapse on state-
of-the-art GANs.

SGAN PGGAN SGAN2 BGAN
(𝜇mccs, 𝜎mccs) (0.41, 0.06) (0.48, 0.07) (0.31, 0.05) (0.45, 0.07)
MCCS(I𝑤) 0.64 0.72 0.56 0.69

4.3.2 Empirical Study on the Cause of Intra-
Mode Collapse. We hypothesize multiple fac-
tors that may potentially lead to the observed
dense mode (indicating intra-mode collapse) of
face identity. We perform additional experi-
ments, aiming to validate one by one. Despite
the variance for the obtained sample-level and
population-level statistics on MCCS, none of
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them was observed to cause the observed mode collapse. That implies the existence of some more
intrinsic reason for the mode collapse in GAN, which we leave for future exploration.
Imbalance of Training Data? CelebAHQ is a highly imbalanced dataset: among its 30𝑘 high-
resolution face images of 6, 217 different celebrities. It is natural to ask: would a balanced dataset
alleviate the mode collapse? We turn to the Flickr-Faces-HQ Dataset (FFHQ), a high-quality human
face dataset created in [37], consisting of 70𝑘 high-resolution images, without repeated identities.
FFHQ dataset does not have an imbalance in facial attributes. To further eliminate the attribute-level
imbalance, e.g., race, and gender, we combine the 30𝑘 images in CelebAHQ with the 70𝑘 images in
FFHQ, and discard repeated images in identities. When selecting 6𝑘 faces for each race in {White,
Black Asian}, we intentionally make the resulting set balanced in gender for each race. The resulting
set is dubbed as Gender-Race-Identity-Calibrated-CelebAFFHQ (GRIC). As shown in Table 2, while
the generation quality of StyleGAN trained on GRIC is still high, the intra-mode collapse persists
and seems to be no less than StyleGAN on CelebAHQ and FFHQ. Therefore, imbalance of training
data, regardless of at attribute-level or identity-level, does not cause intra-mode collapse.

Table 2. Empirical study on the cause of intra-
mode collapse: imbalance of training data?

CelebAHQ FFHQ GRIC
(𝜇mccs, 𝜎mccs) (0.44, 0.08) (0.41, 0.06) (0.43, 0.06)
MCCS(I𝑤 ) 0.67 0.64 0.62

Table 3. Empirical study on the cause of intra-mode collapse:
model architecture differences?

128 256 512 1024

SGAN (𝜇mccs, 𝜎mccs) (0.43,0.06) (0.44,0.06) (0.43,0.06) (0.42,0.06)
MCCS(I𝑤 ) 0.64 0.63 0.65 0.65

PGGAN (𝜇mccs, 𝜎mccs) (0.52,0.08) (0.51,0.09) (0.53,0.08) (0.52,0.08)
MCCS(I𝑤 ) 0.74 0.77 0.78 0.75

Randomness during Optimization? We repeat training StyleGAN on CelebAHQ-128 for 10
times, with different random initializations and mini-batching. We have (𝜇mccs, 𝜎mccs) consistently
around (0.43, 0.06). Despite little variances, the intra-mode collapse persists. We conclude that
randomness during optimization is not the reason for intra-mode collapse.
Unfitting/Overfitting in Training?We train StyleGAN on CelebAHQ-128 again, and store model
checkpoints at iteration 7707 (FID = 7.67, same hereinafter), 8307 (7.02), 8908 (6.89), 9508 (6.63),
10108 (6.41), and 12000 (6.32). As the training iterations increases, (𝜇mccs, 𝜎mccs) decreases from
(0.51, 0.09) to (0.43, 0.06). Therefore, the intra-mode collapse persists, regardless of stopping the
training earlier or later. We point out that unfittinng or overfitting is not the cause of intra-mode
collapse.
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Fig. 5. Reshaping Latent Space via Gaussian Mix-
ture Models: mode collapse analysis of StyleGAN on
CelebAHQ-128, before/after Gaussian mixture model-
based reshaping.

ModelArchitectureDifferences?Both Style-
GAN and PGGAN progressively grow their
architectures to generate images of differ-
ent resolutions: 128, 256, 512, and 1024.
Thus, we train StyleGAN and PGGAN on
CelebAHQ-128, CelebAHQ-256, CelebAHQ-
512, and CelebAHQ-1024, respectively. Accord-
ing to Table 3, varying the architectures does
not eliminate the intra-mode collapse either.
Thus, we empirically show that different model
architectures do not lead to intra-mode collapse.

4.3.3 Diagnosis on Other Fine-Grained Image
Generation. Flowers-102 consists of 102 flower
categories and is divided into 2, 040 images for
training and 6, 149 for testing. CUB-200 has 200
bird categories and is split into 5, 994 images
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for training and 5, 794 images for testing. We denote the identity descriptor for flower and bird as
𝐹
𝑓

𝑖𝑑
and 𝐹𝑏

𝑖𝑑
, respectively. Similarly, we denote the image generator for flower and bird as 𝐺 𝑓 and

𝐺𝑏 .
To obtain an accurate flower identity descriptor 𝐹 𝑓

𝑖𝑑
, we adopt the EfficientNet [57] and pretrain

it on LifeCLEF2021 Plant Identification [5, 23–25]. Later on, we finetune it on a curated dataset that
combines Jena Flowers 30 [54], Flowers Recognition [3], Flowers [4], and Flowers-17 & Flowers-
102 [2]. As an image generator, MSG-GAN [35] is trained on Flowers-102’s union of training and
testing set, a total of 8, 189 images.

Table 4. Experiments on CUB-200 and Flowers-102

Dataset Image Generator (𝐺) Identity Descriptor (𝐹𝑖𝑑 ) (𝜇mccs, 𝜎mccs) MCCS(I𝑤)
Flowers-102 [48] MSG-GAN [35] EfficientNet [57] (0.69, 0.12) 0.84
CUB-200 [64] StackGAN-v2 [75] API-NET [80] (0.64, 0.09) 0.86

To obtain an accu-
rate bird identity de-
scriptor 𝐹𝑏

𝑖𝑑
, we adopt

the API-NET [80] and
pretrain it on theDong-
Niao International Birds
10000 (DIB-10K) [45].
Later on, we finetune it on a curated dataset that combines Bird265 [1] and NABirds [60]. As an
image generator, StackGAN-v2 is trained on CUB-200, a total of 11, 788 images.

According to Table 4, on the fine-grained image generation of birds and flowers, despite observed
diversity and high quality in generated images, we can still spot strong intra-mode collapse.

4.4 Black-box Calibration on Intra-Mode Collapse
4.4.1 Reshaping Latent Space via Gaussian Mixture Models. Starting from a StyleGAN modelM
pre-trained on CelebAHQ-128, we aim at alleviating the collapse on the worst-case dense mode
I𝑤 . We reshape the latent space ofM via Gaussian mixture models to get the new modelM ′. We
get the new worst-case dense mode I ′𝑤 inM ′. The (𝜇mccs, 𝜎mccs) has decreased from (0.43, 0.06) to
(0.41, 0.05). The MCCS(I𝑤) has also decreased from 0.66 to 0.61. Such an alleviation is achieved
with an unnoticeable degradation of generation quality, with FID increasing from 5.93 (M) to 5.95
(M ′). As is shown in Figure 5, after applying the latent space reshaping, the intra-mode collapse
has been alleviated, which are indicated by the large gap between I𝑤 (before) and I ′𝑤 (after), and
the large gap between I𝑟 (before) and I ′𝑟 (after). For the sake of readability and visual quality, in
each boxplot, only 100 randomly chosen I𝑟 are shown.
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Fig. 6. Reshaping Latent Space via Importance Sam-
pling: mode collapse analysis of PGGAN on FFHQ-128,
before/after importance sampling-based reshaping.

4.4.2 Reshaping Latent Space via Importance
Sampling. The experiment setting is mostly
similar to the reshaping latent space via the
Gaussian mixture models case, except that we
are using PGGAN trained on FFHQ-128. We in-
tegrate importance sampling to the latent code
generation stage. Given the dense mode I𝑤 ,
we can find the collection of latent codes from
the top 102 latent codes whose corresponding
images have the smallest distances Eq.(4) to
I𝑤 , among the 106 random samples. We get
the new worst-case dense mode I ′𝑤 inM ′. The
(𝜇mccs, 𝜎mccs) has decreased from (0.46, 0.07) to
(0.42, 0.06). The MCCS(I𝑤) has also decreased
from 0.69 to 0.64. The intra-mode collapse is
again alleviated without sacrificing the visual

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 37, No. 4, Article 111. Publication date: August 2021.



111:14 Zhenyu Wu, Zhaowen Wang, Ye Yuan, Jianming Zhang, Zhangyang Wang, and Hailin Jin

quality of generated images, since FID only marginally increases from 9.43 (M) to 9.46 (M ′). As
is shown in Figure 6, after applying the latent space reshaping, the intra-mode collapse has been
alleviated, which are indicated by the large gap between I𝑤 (before) and I ′𝑤 (after), and the large
gap between I𝑟 (before) and I ′𝑟 (after). For the sake of readability and visual quality, in each boxplot,
only 100 randomly chosen I𝑟 are shown.

4.4.3 Why Calibrating theI𝑤 Could Benefit the Calibration of Other Modes? As is shown in Figure 7,
we visualize the top 24 modes with the largest number of neighbors within 0.25 distance and found
that they look very similar. Thus, we conclude that the dense region corresponding to I𝑤 has
occupied a considerably large portion in the number of supports in the GAN’s learned face identity
distribution. Calibrating theworst-case mode I𝑤 implicitly takes the entire dense region into account,
since the entire dense region corresponding to the same face identity of I𝑤 .

5 DISCUSSIONS AND FUTUREWORK
This paper is intended as a pilot study on the intra-mode collapse issue of GANs, under a novel and
hardly explored black-box setting. Using face and vehicle as study subjects, we quantify the general
intra-mode collapse via statistical tools, discuss and verify possible causes, as well as propose
two black-box calibration approaches for the first time to alleviate the mode collapse. Despite
the preliminary success, the current study remains to be limited in many ways. First, there are
inevitably prediction errors for the identity description on generated images, and even we have
done our best to use the most accurate descriptors. Moreover, the fundamental causes of GAN mode
collapse call for deeper understandings. We hope our work to draw more attention to studying
both the intra-mode collapse problem and the new black-box setting.

Fig. 7. Using the 10 million face images sampled from a StyleGAN trained on CelebAHQ-1024, we visualize
the top 24 modes with largest number of neighbors within 0.25 distance described by 𝐹𝑖𝑑 and found that
they looks very similar. Calibrating the worst-case dense mode, which is the first mode shown here, implicitly
takes the top 24 modes dense modes into account.
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