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ABSTRACT
Due to the long-run and unpredictable nature of stream
processing, any statically configuredexecution of stream jobs
fails to process data in a timely and efficient manner. To
achieve performance requirements, stream jobs need to be
reconfigured dynamically. In this paper, we present Trisk, a
control plane that support versatile reconfigurations while
keeping high efficiency with easy-to-use programming APIs.
Trisk enables versatile reconfigurations with usability based
on a task-centric abstraction, and encapsulates primitive
operations such that reconfigurations can be described by
compositing the primitive operations on the abstraction.
Trisk adopts a partial pause-and-resume design for efficiency,
through which synchronization mechanisms in the native
stream systems can further be leveraged.We implement Trisk
on Apache Flink and demonstrate its usage and performance
under realistic application scenarios. We show that Trisk
executes reconfigurations with shorter completion time and
comparable latency compared to a state-of-the-art fluid
mechanism for state management.
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1 INTRODUCTION
With the development of Internet-scale services, data is
generated in high volume, velocity and variety. Applications
with time constraints are increasingly implemented in
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the form of stream processing, where the arrived data
is processed immediately with low latency and high
throughput. Today, many distributed stream systems, e.g.,
Samza [32], Flink [9], Heron [24], Storm [41] and Spark
Streaming [44], have been developed to parallelize, deploy
and manage stream jobs for users.
As data stream is by nature fluctuating with dynamic

rates and distribution over time, to satisfy low latency
requirements, stream jobs must process data timely [6, 8].
This requires stream systems to be able to reconfigure part
of the dataflow computation dynamically during execution
without affecting the correctness of processing logic. We
define such actions as reconfigurations on stream jobs. In
practice, reconfigurations are often applied by a control
policy to achieve certain performance goals. Based on
prior literature [10], we summarize that a good stream
system should enable reconfigurations with three desirable
properties: versatility, efficiency, and usability.

Versatility. A stream system should support a wide
variety of reconfigurations, such that various control polices
that require different types of reconfigurations can be
implemented. Common reconfigurations mainly include
operations along three dimensions, i.e., resources, workloads,
and execution logic. The resources and workloads often need
to be re-assigned to handle data skewness and changes of
input rates, while the execution logic needs to be updated to
fix bugs and handle emerging events [7, 9].

Efficiency. Reconfigurations should be executed and
completed in short time, having minimum impact on the
original stream job execution. Stream jobs are physically
executed by a set of parallel tasks, to guarantee the
correctness of job execution during reconfigurations,
synchronization is required among those parallel tasks,
which blocks the system temporarily. Thus, it is important
to execute reconfigurations efficiently to minimize the
unavoidable unavailablity time during reconfigurations.

Usability. A stream system should also provide intuitive
and easy-to-use APIs for users to implement their control
policies, ideally without assuming that users understand the
details of reconfiguration execution.
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Although existing works provide some of the desirable
properties, they are unable to achieve all. Due to the use
of a kill-and-restart method to execute reconfigurations,
Flink [9], Samza [32], and Heron [24] enable reconfigurations
at a high cost of efficiency. Research prototypes such as
Megaphone [19] and Rhino [29] proposed efficient state
management primitives with high usability, but lack of
the support for other types of reconfigurations such as
change of logic to update execution logic. Chi [28] used
a control message based programming model to support
various control logic, but was not mainly designed for
reconfigurations. As specific system-level operations need to
be specified to implement a reconfiguration, Chi was targeted
for advanced users that manage system internals.
In this paper, we present Trisk1, a control plane solution

that supports reconfigurations of stream jobs with all three
properties. The core of Trisk is a task-centric abstraction
that describes the execution plan of the target stream
job. The execution plan of a stream job maintains the
configurations of its physical tasks and is used to deploy
the job on a cluster. Since any reconfiguration boils down
to change the existing execution plan to a new one, it can
be formally described by the operations applied on the
current execution plan. To provide usability, we classify
the operations into three types of primitive operations,
so that various reconfigurations can be implemented by
applying a combination of primitive operations on the Trisk
abstraction. To execute reconfiguration efficiently with low
system overhead, we adopt a partial pause-and-resume
mechanism by leveraging synchronization mechanisms in
the native stream, where only part of the stream job will be
paused and updated. We implement Trisk on top of Apache
Flink by leveraging the checkpoint mechanism to achieve
synchronization, and show that Trisk achieves sub-second
completion time to execute reconfigurations. In summary,
we make the following contributions:
• Wepropose a control plane solution, Trisk, thatmaintains a
task-centric abstraction with three-dimensional primitive
operations to implement versatile reconfigurations with
high usability.

• We design and implement a prepare-sync-resume pipeline
to execute reconfigurations by leveraging synchronization
mechanisms in the native stream.

• We integrate Trisk with Flink and leverage the checkpoint
mechanism in Flink to execute reconfigurations.

• We evaluate Trisk via comprehensive experiments
using both real-world applications and synthetic micro-
benchmark.We also compare Triskwith native Flink on the
performance of supporting control policies and executing
reconfigurations.

1The source codes are available at: https://github.com/sane-lab/Trisk

2 BACKGROUND AND MOTIVATION
In this section, we first introduce the terminologies used in
this paper, and then motivate the necessity of supporting
reconfigurations with the three proposed properties.
A distributed stream job runs as a physical deployment

of an execution plan which instantiates operators to physical
parallel tasks. An execution plan describes the configurations
of a stream job, and can be represented as a directed graph,
where vertices in the graph represent tasks instantiated from
operators, and edges represent the data flow between tasks.
Specifically, operators maintain the user-defined execution
logic to process the input data, and tasks that are instantiated
from the same operator share the same execution logic.
The input data of an operator forms the workloads to be
processed by tasks in parallel. The workloads of an operator
are commonly grouped by keys and partitioned across tasks.
Each task is allocated with certain resources such as CPU
cores andmemory on a node in cluster for physical execution.
To achieve performance requirements, users often apply

control policy on stream jobs. A control policy involves
two steps. First, it monitors the stream job and decides
whether or not to update the current execution plan based
on the symptoms detected, e.g., backpressure in the pipeline.
Second, the control policy needs to identify the performance
bottleneck in stream jobs and invoke reconfigurations to
optimize it accordingly. Different control policies make
decisions based on different kinds of metrics [14, 15, 22]
in both system level, e.g. CPU utilization, and application
level, e.g. observed arrival rate and backpressure. In this
work, we focus on the execution of reconfigurations given
the decisions of control policies, while metrics retrieval
mechanisms are regarded as a part of the control logic.

Reconfigurations need to dynamically change the physical
execution plan of a stream job, which boils down to
reconfigure its resources, workloads, and execution logic.
Such a variety of reconfigurations are required by control
policies to achieve different performance goals. For example,
to achieve a SLO/SLA objective for general stream jobs,
prior works such as Henge [23], Dhalion [14], DS2 [22],
and DRS [15] introduce control policies based on scaling
to reallocate resources for stream jobs. To achieve balanced
load and better resource utilization, prior works such as
DKG [40] propose control policies to detect data skewness
and apply load balancing to manage the workloads of stream
jobs. Furthermore, for machine learning based stream jobs
such as online anomaly detection [18], because new scenarios
and input data are emerging over time, the model with
current parameters may fail to process them accurately and
effectively. To solve this problem, the model needs to be
updated appropriately, where change of logic can be applied
to achieve dynamic model tuning.
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Table 1: Overview of existing work enables reconfigurations in stream systems.
Methodology Versatility Usability Efficiency

Flink [9] Dataflow model + Redeploy Medium High Low
Heron [24] Dataflow model + Redeploy Medium High Low
Seep [12] State management primitives + Partial redeploy Low High Medium

Rhino [29] State management primitives + Partial update Low High High
Megaphone [19] State management primitives + Non-stop partial update Medium High High

Chi [28] Message-based programming model + Partial update High Medium High
Trisk Three-dimensional task-centric abstraction + Partial update High High High

Although reconfiguration is best supported with three
properties [10]: versatility, efficiency, and usability, existing
systems and research fall short in achieving all of them. We
summarized existing works that support reconfigurations
for stream jobs in Table 1, and classify them into three types
of implementations.

Built-in reconfiguration leverages the original dataflow
model and programming interfaces provided by stream
systems to enable reconfigurations. For example, Flink [9]
and Heron [24] redeploy the stream job with updated context
for all tasks, i.e. restarting the job with modified source code
and configuration files. Although reconfigurations can be
easily invoked through the original programming interfaces
provided by the stream systems, they are executed in low
efficiency and incur high system overhead and performance
degradation due to the nature of kill-and-restart.

Reconfiguration for state management has been
designed in prior works such as SEEP [12], Rhino [29] and
Megaphone [19]. These works proposed state management
primitives that provide interfaces to manage the state of
stream jobs efficiently. Stateful stream jobs maintain state
to process each of the assigned keys, which is regarded as
a workload-related configuration in our context. With the
provided interfaces, reconfigurations that cover workloads
redistribution for stateful jobs can be implemented with
high usability and efficiency. However, such primitives are
limited to state management and do not support other types
of reconfigurations such as placement and change of logic.

Reconfiguration via a control plane encapsulates
mechanisms for applying various control logics on stream
jobs, which supports a variety of reconfigurations. Chi [28]
proposes a programming model based on control message
injection, through which new reconfigurations can be
implemented by applying fine-grained instructions on each
task and embed them into control messages. Tasks are
updated asynchronously upon receiving the instructions in
the control messages. However, since the task update logic is
defined by users, they need to be familiar with the execution
details of the stream system and implement instructions
accordingly, which requires non-trivial engineering efforts.

Targeted for achieving all three desirable properties for
stream reconfigurations, Trisk is designed as a control
plane solution applicable to general stream systems, and
encapsulates mechanisms for general control policies. To
achieve versatility, Trisk uses a task-centric abstraction,
which describes the configurations of each task in three
dimensions i.e., resources, workloads and execution logic.
The Trisk abstraction is designed around tasks, as the
states of tasks describe configurations at the minimum
granularity, i.e., reconfigurations can be achieved by
updating a subset of tasks. For example, load balancing
redistributes workloads among tasks, scaling cancels or
deploys tasks, placement redeploys tasks on other nodes,
and change of logic updates the execution logic of tasks.
Based on the abstraction, Trisk implements three primitive
operations (Section 3.1) on updating tasks along the three
dimensions and encapsulates them as a set of APIs. For
usability, Trisk provides common reconfigurations (Section
3.3) for users to implement control policies easily; while any
general reconfigurations can be implemented by compositing
primitive operations (Section 4.2). Trisk uses a prepare-
sync-update execution pipeline to execute reconfigurations
efficiently (Section 3.2), under which tasks are partially
paused and updated asynchronously. This enables Trisk to
leverage the synchronization mechanisms in native stream
systems with low system overhead.

3 DESIGN
We focus on the problem of reconfiguring stream jobs on-
the-fly, and our goal is to design a control plane that enables
versatile reconfigurations while maintaining usability and
efficiency. In this section, we first introduce the design of the
Trisk abstraction, and then describe the mechanisms that
enable asynchronous execution of the reconfiguration. Last,
we present the reconfiguration APIs and show how users
can implement control policies by using them.

3.1 The Trisk Abstraction
The Trisk abstraction maintains an abstract execution plan
that is independent of stream systems for extensibility. This
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Figure 1: Deployment steps of jobs in stream systems

is achieved by specifying the execution plan in terms of the
configurations with respect to individual tasks, which can be
classified along three dimensions: execution logic, workloads,
and resources. In other words, any reconfiguration consists
of mainly three types of operations. The intuition behind
the three-dimensional Trisk abstraction is derived from the
three-step deployment of stream jobs shown in Figure 1. This
stream job has two operators (𝑂1,𝑂2), which are instantiated
as three tasks (𝑇1,𝑇2,𝑇3) physically deployed across two
machines. The keyspace of the data stream contains four
unique keys and is partitioned into two substreams.
In the first step, a stream job is defined by its logical

topology described as a DAG, where vertices represent
operators and edges represent the intermediate data streams.
At this stage, the execution logic is configured and associated
with each operator, implying that all instances of parallel
tasks of the operator will use the same execution logic to
process the assigned input streams so as to generate outputs.
In the second step, the stream job specifies the number

of parallel tasks to be instantiated for each operator. Input
data is often defined over a key space, and each task will be
assigned with a partition of an non-overlapping subset of
keys for independent data processing. The configuration
is maintained by both upstream and downstream tasks.
In particular, the upstream tasks maintain the routing
information, which maps their processing results to
downstream tasks. Each downstream task keeps a subset
of input keys representing the subset of substreams to be
processed and the corresponding states to be managed.
At this stage, the configuration of workloads needs to be
specified for the individual tasks.
In the final step, the stream job deploys tasks on

physical machines. In particular, each task is assigned to
a resource slot configured with resources that determine its
performance. For example, computational resource such as
CPU cores affects the processing rate and memory resource
is used to store on-going processing states and affects the
speed of I/O operations. Furthermore, data streams between

an upstream and a downstream tasks go through networks
if both tasks are deployed in different physical machines.

UDF

Key Mappings
Key States

Resource slot

Figure 2: Configurations of tasks in Trisk abstraction.

Figure 2 illustrates the four configurations associated with
each task specified in the Trisk abstraction, i.e., Key State,
User-Defined Function (UDF), Key Mapping, and Resource Slot.

• Along the execution logic dimension, User-Defined
Function (UDF) defines the processing logic on each input
tuple that it received. After processing, the results from the
UDF form the output streams. For stateful tasks, UDF has
access to its processing state, which is generated according
to the processing history of arrived data, and will update
the state after new tuples being processed.

• Along the workloads dimension, the distribution of
workloads among the tasks of an operator is described
by the Key State distributed across the tasks and the Key
Mapping in the upstream tasks. Key State represents the
assigned subset of input keys to be processed and the
associated processing state to be maintained. Key Mapping
defines how a task maps the keys of output results to
downstream tasks. The Key Mapping in the upstream
tasks also represents the global Key State assignment of
downstream tasks, i.e., the combination of Key State of all
downstream tasks.

• Along the resources dimension, Resource Slot denotes the
amount of resources allocated to a task, e.g., CPU cores and
memory obtained from the resource management system;
it also describes the location of task to be deployed, which
is important for communication efficiency and avoiding
resource contention.

Our task-centric abstraction is general for providing the
versatility of reconfigurations, because any reconfiguration
boils down to updating the three types of task configurations,
originally executed by the initial deployment of stream jobs.
Besides the chosen configurations, the Trisk abstraction can
be easily extended, since all configurations are generated
during the initial deployment. For example, the batch size in
mini-batch processing can be classified as a type of execution
logic configuration to define how input tuples are batched.
Based on the dimensions of execution logic, workloads and
resources, Trisk implements common reconfigurations of
change of logic, load balancing and placement, respectively.
Furthermore, by using operations along the dimensions of
workloads and resources, Trisk also implements scaling.
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Figure 3: An example of reconfiguration execution
steps with 3 affected tasks to be updated: T1, T2, T4.

3.2 Reconfiguration Execution
To realize a reconfiguration, a new execution plan is
generated based on which a sequence of operations will
be applied on tasks. There are two main requirements
for this reconfiguration execution. On the one hand, the
execution is required to be completed in short time with
low system overhead, so as to avoid affecting the original
stream processing. On the other hand, the execution also
needs to keep the consistency and correctness of the stream
processing. Because reconfiguration execution is task-centric
and each of the parallel task instances can be modified
independently, it can result in inconsistent processing if
tasks are not synchronized before being updated. The goal
of task synchronization is to make all parallel tasks to be
paused at the same logical time to avoid data loss or data
duplication during reconfiguration execution.

With the consideration of efficiency and system overhead,
Trisk adopts a partial pause-and-resume scheme and is able
to leverage the mechanisms in native stream systems for
tasks synchronization. As the native stream systems often
have their own synchronization mechanisms to guarantee
the consistency and fault tolerance of data processing,
we leverage such mechanisms to pause all affected tasks
during reconfigurations. In this way, Trisk has minimum
performance impact on the native systems, while keeping
the consistency and fault tolerance properties provided
by the stream system. After the affected tasks are paused
during the synchronization, they can be updated and
resumed asynchronously. For task reconfiguration, instead
of redeploying the task by killing the current instance
and creating a new one, Trisk updates the corresponding
components in the task instance, reducing the overhead of
modifying the configurations.
Trisk embeds a coordinator (Section 4.1) in the

native stream system to coordinate the execution of
reconfigurations. Upon receiving a remote call with an
updated Trisk abstraction, the coordinator instructs the
stream system to execute reconfigurations in the following
three steps illustrated in Figure 3. 1) Prepare. The coordinator
finds the affected tasks𝑇 by comparing the current execution
plan 𝐺 with the new generated execution plan 𝐺 ′, and
prepares the system-specific configurations based on the
task configurations in the Trisk abstraction. 2) Synchronize.

The coordinator starts to synchronize the affected tasks 𝑇 ,
which are to be paused and send back acknowledgements to
the coordinator. The pause operation does not include any
unaffected tasks, for the downstream tasks that consume
output from affected tasks, they may wait for new data
when the intermediate buffer becomes empty. 3) Update.
Once all the affected tasks are paused, i.e., the coordinator
receives all acknowledgements from them, each affected task
𝑇𝑖 updates with its new configurations independently and
can be resumed immediately once the update is completed.
Trisk is more efficient than the approaches taken by

existing stream systems, which try to kill and restart the
entire stream job. Although recent research prototypes [19,
28, 29] also adopted partial pause-and-resume approaches to
execute reconfigurations, their designs are bound to specific
synchronization mechanisms, and therefore, are difficult to
be integrated with existing stream systems. In particular, an
additional synchronization mechanism introduces system
overhead and compatibility issues with existing mechanisms,
e.g., for achieving fault tolerance. Comparatively, Trisk has
a more modularized design that encapsulates the steps of
prepare, synchronization and update separately. This design
enables easy integration with stream systems by leveraging
their native synchronization mechanism. For example,
for integrating with Flink, we leverage its asynchronous
checkpoint mechanism [9] to synchronize tasks, which
is achieved by applying aligned barrier-passing on the
entire pipeline. This design is also compatible with common
Zookeeper-based coordination [32] used by stream systems
such as Samza.
While Trisk maintains fault tolerance of stream systems

with low system overhead, it can be slowed down due to the
excessive delay to execute synchronization in native stream
systems. For example, checkpoints in Flink may take longer
to complete when the pipeline is backlogged, which increases
the completion time of reconfigurations in Trisk (Section 5.3).
We notice that the Flink community has recently proposed
the unaligned-checkpoint [13] to reduce barrier-passing
latency, which potentially improves the performance of Trisk
on Flink, and we leave this as our future work.

3.3 Reconfiguration API
We next describe our reconfiguration APIs that enable users
to enforce control policies for their stream jobs. To define a
control policy, users implement a controller, a Trisk runtime
component, that wraps control policies. When a new stream
job starts, the Trisk runtime will be launched alongside and
execute the control policy embedded in the user-defined
controller automatically.

Controller Instantiation. Trisk supports two methods
for controller submission. First, users can implement the
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controller and configure it in Trisk directly, and the controller
will be instantiated and started by Trisk runtime once the
stream job is running. Second, Trisk also exposes restful
APIs for submitting the source codes of controllers, and
the Trisk runtime will dynamically compile and instantiate
controller instances accordingly. Through our restful APIs,
Trisk accepts new control policies in the runtime, through
which users can update their control policies at any time
after the stream job is deployed and running.

Supported Reconfigurations. There are four high-level
reconfigurations APIs, i.e., loadBalancing(opId,dist),
changeOfLogic(opId,func), placement(opId,deploy)
and scaling(opId,dist,deploy), through which users
can implement control policies using these supported
reconfigurations without worrying about the system-level
implementation details. The first three APIs are implemented
by three primitive low-level operations along the three-
dimensional configuration space to enable load balancing,
change of logic and placement, respectively. As a commonly
used reconfiguration in controllers [12, 14, 15, 22], scaling
is implemented via compositing the primitive operations.
Besides the supported reconfigurations, users can also
implement customized reconfigurations (Section 4.2) in the
controller by leveraging the lower-level primitive operations
on Trisk abstraction, similar to how the scaling API is
implemented in Trisk.

1 // 1. Extend a Controller from AbstractController
2 class LoadBalancer extends AbstractController {
3 // 2. Override to define a new control policy
4 protected void defineControlAction () {
5 // The user -defined load balancer monitors

data skewness among tasks every second.
6 // It proposes a new workloads distribution if

load imbalanced.
7 while(true) {
8 Map <taskID , List <Key >>
9 workloads = detectSymptoms ();
10 if (workloads != null) {
11 // 3. Invoke reconfiguration API
12 loadBalancing(operatorId , workloads);
13 }
14 sleep (1000);
15 }
16 }
17 }

Listing 1: Example of load balancing controller.

An Example. We illustrate an implementation of a
controller whose control policy detects load imbalance
among tasks every second and balances the workload
when the load is skewed. It involves three steps shown in
Listing 1. First, users need to extend a new controller from
AbstractController, which is the class exposed by Trisk to
provides APIs of supported and customized reconfigurations.

Second, users can override their own control policy in
defineControlAction() method. In particular, control
policies need to specify when and what reconfigurations
to be executed. In this example, the load balancer can detect
symptoms based on the statistics of input keys distribution
among tasks, and decide to apply load balancing if the key
distribution among tasks are skewed. Third, users invoke the
provided reconfiguration APIs in the AbstractController
accordingly. When using these APIs, users need to specify
the new configurations to be updated as input parameters.

4 IMPLEMENTATION
The implementation of Trisk consists of around 10,000 lines
of code in Java. In this section, we describe the system
architecture and illustrate how it supports the design of
Trisk. We will also discuss the detailed decisions we made
on Trisk’s implementation.

4.1 Implementation Architecture
The Trisk architecture consists of two parts: the Trisk
runtime and the corresponding instrumentation in a stream
system. Trisk leverages the Netty framework to remote
communicate with the stream system. The Trisk runtime
runs as a standalone process and is the entrypoint that
provides the Trisk abstraction and reconfiguration APIs
for users. The instrumentation in stream system performs
efficient execution of reconfigurations requested from the
Trisk runtime. Figure 4 shows the architecture of Trisk with
four main entities.
• Controller is defined by users to specify their control
policies and invoke the supported reconfiguration APIs
or implement customized reconfigurations with APIs of
primitive operations.

• StreamManager runs as a backend runtime, which
maintains a web service to receive new controller
submission and maintains the Trisk abstraction. It also
instructs stream systems to execute the reconfigurations
in prepare-sync-update manner.

• JobReconfigCoordinator is maintained in the jobmaster
of a stream job. It maps the configurations from Trisk
abstraction to the configurations in stream systems, and
can leverage the synchronization mechanisms in native
stream systems for reconfigurations.

• TaskConfigManager is maintained by each task, which
manages the configurations of the task. It receives remote
instructions from ReconfigCoordinator and update task
configurations accordingly.
A reconfiguration is executed in the following three

steps. 1 Controller gets the Trisk abstraction from
StreamManager, and invoke primitive APIs to update the
abstraction. 2 Once StreamManager receives the updated
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Trisk abstraction, it parses the recorded , primitive operations
applied inside and constructs instructions to be sent. 3
StreamManager instructs ReconfigCoordinator to execute
reconfigurations through the prepare-sync-update pipeline.

4.2 Reconfiguration Implementation
In Trisk, reconfigurations are described in terms of the
Trisk abstraction and executed via encapsulated primitive
operations. In particular, the prepare-sync-update steps
of reconfiguration instructions are constructed based
on the difference between an update Trisk abstraction
and the existing one. Consequently, users can also
construct new reconfigurations by modifying the Trisk
abstraction using the provided primitive operations.
Such a design of encapsulation hides the details of
the reconfiguration execution from users. As any
reconfiguration may involve operations along the three
dimensions, Trisk exposes three primitive APIs, i.e.,
assignLogic(opId,func), assignResource(opId,dist)
and assignWorkload(opId,deploy). To be user-friendly,
eachAPI takes an operator ID and the updated configurations
of tasks under the operator as input parameters, through
which Trisk identifies the affected tasks by checking
whether the configurations of tasks under the operator are
changed. To prepare new configurations, users can query
the current configurations in the Trisk abstraction and
modify accordingly. For the specific configurations in each
API, dist refers to the workloads distribution of the tasks
in the associated operator, which is a map of tasks to key
states; func refers to a new UDF, where the input and output
keys have to remain the same with the original one; deploy
refers to the deployment of tasks in the associated operator,
which is represented as a map of tasks to the newly allocated
resource slot. When applying a primitive operation on the
Trisk abstraction, a new Trisk abstraction is to be generated,
and the primitive operation will be eventually executed
during the update phase of reconfiguration execution.
The assignLogic(opId,func) API accepts a user-

defined function (UDF) object representing execution logic

that will replace the original UDF object in the task. The
function object is provided by the user-defined controller at
runtime, and Trisk provides three methods for a controller
to create a new function object: 1) Instantiate the function
object from the same function class of the stream job with
different initialization parameters. 2) Instantiate the object
from another existing function class. 3) Instantiate from a
new function class that does not exist previously.
Upon receiving model codes, Controller needs to

instantiate function object accordingly; however, the typical
instantiation method new() cannot be used, since the
application context is not known to Controllerwhen it tries
to compile the newly received source codes. Fortunately, Java
has a reflectionmechanism that allows an executing program
to examine or “introspect” upon itself, and manipulate
internal properties of the program. In Trisk, Controller
uses Java reflection to obtain the properties of classes as they
are dynamically loaded, so as to achieve the aforementioned
three methods. To create an object from a new class, the
Controller also needs to compile submitted source codes
and load it into the JVM. In this way, we generalize the
assignLogic(opId,func) operation to only concern the
function object while the object itself could be created in
many ways decided by controllers.
Besides the four supported reconfigurations, Trisk also

enable users to implement customized reconfigurations. This
can be done by chaining the primitive operations with
desirable parameters in a specific order. We demonstrate
how Trisk implements the supported scaling reconfiguration
in such a way in the following Listing 2.

1 class Controller extends AbstractController {
2 private void scaling(operatorID operatorId ,
3 Map <taskID , Node > resources ,
4 Map <taskID , List <Key >> workloads) {
5 // get a copy of the Trisk abstraction
6 Trisk trisk = getTrisk ();
7 // update Trisk abstraction
8 trisk
9 .assignResource(operatorId , resources)
10 .assignWorkload(operatorId , workloads);
11 // execute the new abstraction
12 execute(trisk);
13 }
14 }

Listing 2: Code sketch of the scaling reconfiguration.

4.3 Integration with Apache Flink
To integrate with Flink, we map the Trisk abstraction to the
configurations in Flink’s JobGraph and ExecutionGraph.
The JobGraph maintains each operator configuration in
a JobVertex, which maintains common configurations
in all tasks under the operator such as the UDF. The
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Figure 5: An illustration of scaling out and migrates workloads from the task 2 to the new task 5.

ExecutionGraph maintains the configurations for each task
in a ExecutionVertex, where task-specific configurations
are maintained, e.g., allocated resources and workloads.
We utilize the asynchronous checkpoint mechanism [8]

to achieve synchronization, where tasks can be paused on
receiving all stream barriers from upstream tasks and start
to update independently. For the update in each individual
task, we leverage the native methods in Flink to instantiate
components for the corresponding configuration, and update
the components by following the same way to create new
versions of components and substitute the old components.

We use an example of scaling out to show the procedure of
an end-to-end reconfiguration in Trisk on Flink, illustrated
in Figure 5. The coordinator, i.e., JobConfigCoordinator,
is responsible for synchronizing the entire pipeline and
instructing the affected tasks to update their configurations
accordingly. In this scale-out example, a new execution plan
has been proposed, where a new task 𝑇5 is to be created,
the workloads are to be redistributed between the existing
task 𝑇2 and the new task 𝑇5, and the upstream task 𝑇1 needs
to update the key mapping accordingly. The scaling is
executed in three phases. In the prepare phase, the system-
specific task configurations are to be generated. In the
synchronize phase, 𝑇1 in the upstream and 𝑇2 in the middle
stage are to be paused, which is executed in two steps. Step
1, the coordinator triggers a synchronization by starting a
checkpoint procedure, which injects barriers, which are to
pass through the entire pipeline. Step 2, once an affected
task receives all the barriers from its upstream tasks, it will
1) broadcast the barrier, 2) pause the current execution, and
3) acknowledge to the coordinator. In the update phase,
when the coordinator receives all acks from affected tasks,
it will inform the affected tasks to update with the given
new configurations asynchronously. The reconfiguration
completes when all tasks get updated and resumed.

5 EVALUATION
We have implemented Trisk and integrated it with Apache
Flink. To evaluate the performance of Trisk, we have
conducted experiments to answer the following questions.

Q1. How can Trisk controllers leverage reconfigurations to
help optimize stream processing in real-world? Does it
achieve three aforementioned properties on supporting
reconfigurations?

Q2. What are the impacts of workload characteristics on the
reconfiguration execution in Trisk?

Q3. How about the efficiency of Trisk reconfiguration
compared to existing work?

We present our experimental results as follows. In Section
5.2, we design three Trisk controllers on two real-world
stream jobs to handle different scenarios, and compare the
performance of a Trisk controller with that implemented in
Flink to answer Q1. In Section 5.3, we evaluate the impact of
the varying characteristics of workload using a benchmark
application to answer Q2. In Section 5.4, we compare the
performance of Trisk reconfigurations with that of vanilla
Flink and Megaphone [19] to answer Q3.

5.1 Experimental Setup
Experiment Environment. We run experiments on a
cluster of 4 machines. Each has an Intel Xeon Silver 4216
@2.10GHz processor with 16 cores and 64GB of RAM,
running Ubuntu 18.04.4 LTS. All machines are in the same
rack, connected by a high-speed switch. The bandwidth
of each machine is 1 Gbps. We run Trisk on Flink-1.10.0
configured with 4 TaskManagers, and each with 8 slots
for all experiments. To stress test the performance under
reconfigurations, we disable the flow control mechanism in
Flink to exclude the impact of backpressure.
Workload. We use three applications to evaluate Trisk.

1. Stock trading transaction processing.We use a real-world
dataset extracted from a major stock exchange in Asia. The
dataset contains 500 seconds of quotes created by sellers and
buyers. We implemented a stock exchange application that
matches the quotes of each stock from both sides and outputs
the transaction results continuously. It also accumulates a
large amount of pending quotes as its state.
2. Fraud detection application. We use a credit card

transactions generator mentioned in a simulated credit
card transaction dataset published in Kaggle [21]. We use
this generator to generate a dataset contains 2,188,073
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for fraud detection.

transactions in 10 minutes which keeps a fraud rate of 7%
over the entire data. To simulate emerging data with time,
the generation parameters of the data changes with time.
We implemented a fraud detection application by adopting a
rule-based decision tree model.

3.Word count.We use a representative stateful application,
i.e., word count, as a micro-benchmark to evaluate the
behavior of Trisk under different workload characteristics
in detail. The generator of the words is configurable that we
can set different sizes of words and arrival rates to control
the state size and resource utilization.
Performance Metrics. We evaluate Trisk’s performance
with respect to controller and reconfiguration execution.

1. Controller.We evaluate the performance of an end-to-
end controller implementation by using different metrics.
Since our controllers are designed for different user
requirements, we mainly measures the metrics related to
the specified requirements. For the latency-aware controller
whose goal is to minimize the processing latency by scaling
and load balancing, we mainly measure the latency of
the stream job over time to evaluate whether the latency
is minimized and stable. For the service-quality-aware
controllers that aims to do change of logic to process input
data more appropriately, we measure the application-level
metrics. In our experiment, fraud detection is implemented
by the decision tree model, where we mainly use the
F1 score [17] to evaluate the accuracy of the model.
For placement controller, which is designed to re-assign
resources to reduce resource contention, we measure the
CPU utilization of each machine and the application level
latency to evaluate the effectiveness of placement.

2. Reconfiguration execution.We evaluate the performance
of reconfiguration execution by the completion time and
the end-to-end processing latency during the execution. The
completion time is defined as the time passed from making
the decision to all affected tasks updated and resumed
successfully. The end-to-end latency during reconfiguration
shows the impact of reconfigurations on the original stream
processing.

5.2 Trisk in Action
In this subsection, we implement three controllers for
stock trading and fraud detection applications to show
the effectiveness of Trisk, i.e., versatile and efficient
reconfigurations with usability. Each controller applies
different types of reconfigurations for different optimization
purposes. We also implemented a controller on the
native Flink for efficiency comparison. We enabled native
reconfigurations in Flink by using the savepoint mechanism
to do a global snapshot, and re-submit a stream job with new
configurations.
Through experiments we demonstrate that: 1) Trisk

supports versatile reconfigurations that can be applied to
optimize stream processing in various real-world scenarios,
2) Trisk performs reconfigurations better than native Flink
in terms of supporting controllers with higher efficiency
and achieving user requirements such as low latency stream
processing, and 3) Trisk controller can be written in around
a hundred lines of code, making it easy to use.

Latency-aware controller. We design a latency-aware
controller by using load balancing and scaling to adjust the
workloads and resources allocated to tasks, to achieve low-
latency stream processing. We set the initial configuration of
the stock exchange application as follows: 1) Parallelism
of transaction processing operator is 10, the parallelism
of source and sink operator has been set to 1. 2) The key
distribution follows the default key mapping strategy in
Flink, which assigns a consecutive equisized set of keygroups
to each task. The processing rate of each task is upper-bound
by 100 transactions per second. The arrival curve of the
dataset is shown in figure 6a, the data stream has shown
a fluctuating arrival pattern, the arrival rate is increasing
from 0s to 300s and decreasing from 300s to 500s. The keys
in the stock stream shows a long tail pattern, and the key
distribution is highly skewed, which has a skewness of -5.23
calculated from Pandas skew method [34].

To handle the characteristics of stock transcation streams,
we implement a latency-aware controller according to the
arrival curve. The controller is written in 78 lines of code,
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in which 30 lines of code are to construct parameters
for reconfigurations and the rest constructs the core of
control logic. The controller makes the following decisions
in response to the arrival of workload: 1) load balancing to
re-assign workload over all tasks at beginning to handle the
data skewness, 2) scaling out by one task at time 100s and
200s to adapt to the increase of arrival rate, 3) scaling in by
one task at time 400s to save computation resources.
The comparisons in terms of processing latency under

Trisk and native Flink are shown in Figure 6b. We use an
initialized static configuration as our baseline for the stock
trading application. The results show that although the
static configuration works well at the beginning, it cannot
handle the fluctuating arrival data, resulting in increasing
latency two orders of magnitude higher. Comparatively, the
controller implemented using Flink’s native reconfiguration
is able to adapt to the changes in workload; however, it
induces high latency spikes, one to two order of magnitude
higher, during the execution of reconfiguration, which
makes the stream job failed to process the arrival data
with low latency. In contrast, with the partial pause-and-
resume mechanism, the controller on Trisk that made the
same decisions shows negligible latency increment during
reconfigurations and can process the input data in low
latency during the stream processing.

Service-quality-aware controller.We design a service-
quality-aware controller for fraud detection to optimize
the detection precision. The machine learning-based
fraud detection consists of two parts - training and
serving. The training part is written by using the Python
scikit-learn [36] library and the serving part is written
in a Flink stream job. The controller gets the latest model
parameters via Restful APIs and update them via the change
of logic reconfiguration on the corresponding tasks in the
Flink job. We set the initial configurations as follows. 1)
We use the latest transaction data to train the model via
scikit-learn and update them to the Flink job at 100 seconds.
2) We set the parallelism of the stream job to be 16. The
controller updates the model parameters when the F1 score
of predicting fraudulent transactions is lower than 0.6. The
controller is written in 110 lines of code, in which 15 lines of
code are to construct parameters for reconfigurations and
the rest are for control logic.

Figure 7 plots the F1 scores for fraud detection, comparing
the prediction accuracy with and without the dynamic
changes of execution logic. When the emerging fraud
data arrives, the F1 score of fraud detection in the static
configuration has decreased to 0.2 in around 30 seconds.
To handle this problem and increase the performance, Trisk
controller updates the decision tree parameters that has been
trained with the latest arrival data at time 200s and 320s
when the F1 score was decreasing drastically. Compared
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Figure 8: Placement in fraud detection to reduce
resource contention and processing latency.

to the baseline, the change of logic controller optimized
the performance of fraud detection. Although the F1 score
can be higher with more parameters tuning effort when
updating the model, the current change of F1 score shows
the effectiveness of change of logic.

Placement Controller.We built a controller that applies
placement to reassign resources. This placement controller is
written in 102 lines of code, whichmainly contains a resource
slot re-allocation control logic. The default scheduling
strategy in Flink tries to allocate resources locally to fully
utilize the resources in a machine. Because the CPU resource
is not isolated, such scheduling strategy causes CPU resource
contention for computation intensive jobs. To mitigate this
problem, we apply a placement to equally allocate tasks
to machines at time 50s, such that tasks can have enough
resources to support their services.
Figure 8 shows the application latency and the

CPU utilization of both machines under the placement
reconfiguration, where we illustrate the effectiveness of
placement by comparing the latency before and after
placement. The CPU utilization of the machines are
measured over time by using the perf tool in Linux to
understand more detailed behaviors. We have made two
major observations based on the experimental results. First,
the latency figure shows that placement helps the application
achieve nearly 50% lower latency compared to the original
setting. For CPU utilization, machine 1 and machine 2
have balanced CPU utilization after migrating half of tasks.
Second, the placement incurs a latency spike at around 600
ms during the reconfiguration, which drops back in a couple
of seconds. This is because placement needs to reassign
resources and is executed by stopping tasks and restarting
them with the newly allocated ones.
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Figure 9: Impact of parallelism.
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Figure 10: Impact of arrival rate.
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Figure 11: Impact of state size.

5.3 Micro Benchmarks
In this subsection, we study the details of reconfiguration
execution in Trisk on Flink. Specifically, we are interested
in understanding the behavior of reconfigurations under
different workload characteristics via a micro-benchmark.
To show detailed behaviors, we breakdown the execution
of reconfiguration according to the prepare-sync-update
pipeline, and plot the completion time of each phase. We
consider the possible parameters that affect the performance
of reconfiguration including the degree of parallelism, data
arrival rate, state size, and the number of affected tasks
during the reconfiguration. We evaluate the performance
under three reconfigurations, i.e., load balancing, scaling,
and change of logic, that execute different types of primitive
operations in the update phase, respectively.

We set the default configuration of the micro-benchmark
as follows. 1) The default degree of parallelism of the counter
operator is set to 20, and that of the source operator is set
to 5. 2) The default arrival rate is 6,000 tuples per second
which is 75% of the maximum processing capacity. 3) We
set the number of keys to 1,000, and the default state size
per key is 1024 bytes. 4) We trigger a reconfiguration after
30 seconds, when all the keys will be appeared in each task
and the state size is more stable. 5) All reconfigurations are
applied on the counter operator, which is implemented in a

stateful RichFlatMapFunction in Flink. For load balancing,
we choose two tasks to randomly shuffle their workload. For
scaling, we scale out the counter operator by one task, and
shuffle the workload randomly among all tasks. For change
of logic, we add a simple log-printing logic to the original
execution logic, and keep the state unchanged.
Overall, we observe that the reconfigurations in Trisk

can be completed in milliseconds level with good scalablity.
According to the breakdown results, we have three major
findings. The prepare phase spent negligible time to complete.
The synchronization time mainly depends on the original
synchronization mechanism and state management logic in
stream systems. The main performance bottleneck of the
update phase is highly related to the status of the original
stream processing in terms of current state size.

Parallelism. In this experiment, we choose the
parallelism of the counter tasks from 5 to 30, and the results
are as shown in Figure 9. In general, Trisk keeps good
scalability where the completion time are in hundreds of
milliseconds level. The reconfiguration completion time
slightly increases with the degree of parallelism. We have
made three observations from the parallelism experiments
as follows. First, experiments in load balancing and scaling
show a monotonically increased completion time, in which
the update time is increased. This is mainly resulting from
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Figure 12: Impact of affected tasks.

the cross nodes state migration. The parallelism setting
of 5 and 10 are smaller than the update time in 20 and 30,
because state update in small parallelism is executed locally.
Second, scaling requires longer update time compared to
load balancing, because an additional time-consuming
step of resource allocation is needed during the update.
Third, change of logic shows a consistent update time
under different degrees of parallelism, because there is no
state migration overhead during the function update. The
synchronization time increases steadily with parallelism,
because in change of logic, all tasks under the operator are
required to be updated and the number of affected tasks
equals the degree of parallelism.

Arrival rate. In this experiment, we vary the arrival
rate of each counter task from 1,000 to 8,000, which covers
different utilization of each task, and show measurement
results in Figure 10. From the figure, we have made two
observations. First, although the completion time increases
under a higher arrival rate, the increment is relatively small.
When the arrival rate exceeds the maximum processing
capacity of the tasks, the synchronization time has increased
drastically, because the task is backlogged and cannot process
input data in time, and therefore, stream barriers need to be
queued until the data before it has been processed, which
takes a long time. Such high synchronization overhead can
be reduced by using the unaligned checkpoints [13], where
the barriers are preemptive to be processed in advance.
Second, the update times of the three reconfigurations keep
consistent under different arrival rates, which indicates that
the performance of the update mechanism does not get
affected by the arrival rate.

State size. In this experiment, we vary the state size of
each key from 1024 bytes to 40,960 bytes and show the results
in Figure 11. Two observations are made from the figure.
First, the larger state size results in higher completion time
for all reconfigurations. In particular, the synchronization
time has increased with larger state size caused by the
checkpoint mechanism in Flink, where each task needs to
return its local state snapshot to the job manager once it
receives all the barriers from its upstream. The overhead
can be optimized with incremental checkpoint [39], where
the snapshot state size can be reduced by recording the

differences between each checkpoint. Second, scaling spends
more time on updating with a larger sized state, because
scaling affects all tasks in the counter operator, and the size
of state to be migrated is larger than that in load balancing.
Third, the update time in change of logic increases with state
size. This is because for stateful tasks in Flink, the execution
logic and computation involve the state to satisfy stateful
data processing, which is part of the instance variables;
and therefore, reloading a new function object requires to
reconstruct the state variables accordingly.

Affected tasks. In this experiment, we evaluate the
impact of affected tasks and vary the number of affected
tasks for scaling and load balancing. The affected tasks for
scaling refers to number of new tasks to be scaled out,
and the affected tasks for load balancing is the number
of tasks whose states need to be updated. As shown in
Figure 11, in general, the number of affected tasks in scaling
and load balancing does not affect the completion time of
reconfiguration much, which is consistent with our findings
in the parallelism experiment, because the update on each
task is highly asynchronous. Furthermore, another reason is
that the state size is relatively small, which incurs negligible
overhead on synchronization.

5.4 Performance Comparison
We compare the reconfiguration performance of Trisk
with that of two existing frameworks: native Flink and
Megaphone. For stream jobs, the processing latency
is usually the key performance criteria; however, for
consistency and correctness, systems unavoidably bring
some latency overhead into the running jobs while applying
reconfigurations. Therefore, in this experiment, we use the
latency overhead as the performance criteria to evaluate
the reconfiguration frameworks. We analyze the latency
overhead in two ways: 1) how much is the overhead,
i.e., increased latency during the reconfiguration; and 2)
how long does the overhead exist, i.e., the reconfiguration
completion time. We use the word-count workload and set
the state size of each key to be 40,960 bytes. The controller
triggers a global load balancing at 50 seconds, which shuffles
the workload among all tasks of the counter operator, i.e.,
all tasks under the counter operator are the affected tasks.
For comparison, we implemented Megaphone on top of

Flink following prior work [19]. In particular, we leverage a
Apache Kafka message queue to enable output timestamp
probe for upstream tasks in Megaphone.
Figure 13 shows latency and throughput of the three

systems for comparisons, from which we have made two
major observations. First, the partial pause-and-resume
mechanism in Trisk achieves lower completion time than
the native reconfiguration in Flink and Megaphone’s fluid
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Figure 13: Load balancing under Trisk, Megaphone
and Flink.

migration mechanism. In particular, Trisk takes 1,462 ms
to complete the load balancing, while Flink needs 2,177 ms
with higher peak latency incurred during the reconfiguration.
In contrast, Megaphone needs much longer time which is
39,258 ms to complete the load balancing, but because of the
nature of fluid migration, the latency during migration is
within 500 ms. Second, the throughput figure shows that
the throughput of all systems have dropped during the
reconfiguration. The throughput in Trisk is 10,075 tuples
per second, which is higher than that in Flink but is still
lower than the input rate. This main reason is because all
tasks under the counter operator are affected tasks, and
will be paused until the JobConfigCoordinator receives
all acknowledgements from the affected tasks. Nevertheless,
Trisk has less backlogged data than Flink because of shorter
completion time. The throughput of Megaphone reaches
on average 30,000 tuples per second during load balancing,
which is higher than both Trisk and Flink, and there
are less backlogged data after the completion of the load
balancing. However, this comes at the cost of a much longer
completion time, an order of magnitude higher than that
of Trisk and Flink. In summary, Trisk achieves competitive
performance compared to state-of-the-art solutions with
respect to completion time, latency and throughput.

6 RELATEDWORK
In this section, we describe the related works not cover in
previous sections and discusses how they are related to Trisk.

Stream systems.A lot of stream systems have emerged in
both academia and industry [1–5, 16, 20, 25, 30, 31, 38, 43, 46].
Existing systems can be divided into pure stream systems [11,
24, 32, 41, 41] that process data once it arrives and mini-batch
systems [20, 31, 44] that adopt the bulk synchronous parallel
(BSP) model [42] by operating on micro batches. Trisk is
a control plane designed for pure stream systems, where
tasks in a stream pipeline are deployed as long-run instances.
Trisk is able to execute reconfigurations by updating the
computation of those long-run tasks.

Controllers for stream processing. Controllers for
stream systems maintain control policies that decide when
and how to dynamically reconfigure the systems to optimize

performance. Prior works have proposed various controllers
with different performance objectives [12, 14, 15, 22, 23, 26].
DS2 [22] and Dhalion [14] propose controllers that make
scaling decisions to maximize throughput. In particular,
DS2 retrieves the arrival rate and the useful time of each
task periodically to detect the bottleneck of a stream
job; while Dhalion monitors the backlog of a stream
job and makes decisions according to the backpressure.
DRS [15] and Nephele [26] introduce controllers that focus
on latency guarantees and make decisions using queuing
models, which require latency and service time from stream
jobs. Henge [23] achieves SLO/SLAs while maximizing
the overall system utilization by introducing an automata-
based cluster resource management. Particularly, it performs
cluster-wide reconfiguration to increase and/or decrease
resources for stream jobs. Trisk provides versatile and
efficient reconfigurations, such that controllers can be easily
implemented by migrating control policies on Trisk and
execute reconfigurations by using built-in Trisk APIs based
on control decisions.

Controllers in other areas. Beyond stream processing,
controllers have been developed in other areas with
different optimization purposes and different reconfiguration
techniques [27, 33, 35, 37, 45]. Similar to the controllers
in stream systems, these works introduced control policies
based on the specific requirements of jobs, and optimize the
processing of the target jobs by applying the system-specific
reconfigurations. In cloud computing area, Wiera [33] is
designed to optimize data placement with users-specified
requirements in geo-distributed datacenters to handle
the changes of network, workload and storage access
pattern. KungFu [27] is designed to enable adaptive
training for distributed machine learning, which allows
users to implement policies to tune the parameters during
training. There are also policies designed for database
management systems [35, 37, 45] to optimize query
processing. Peloton [35] introduces a policy to tune the
execution of operations with various database-specific
techniques such as indexing and data partitioning.

7 CONCLUSION
In this paper, we design and implement Trisk, a control plane
solution that enables versatile, efficient and user-friendly
reconfigurations for stream systems. Trisk maintains a task-
centric abstraction and describes various reconfigurations
with encapsulated APIs. Trisk executes reconfigurations
via a prepare-sync-update pipeline, a type of partial pause-
and-resume mechanism, by leveraging the synchronization
mechanism in the native stream systems with low system
overhead. The experiments confirm that Trisk supports
versatile reconfigurations with sub-second completion time.
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