
OMEN: A Strategy for Testing Object-Oriented Software �

Amie L. Souter
Computer and Information Sciences

University of Delaware
Newark, DE 19716

souter@cis.udel.edu

Lori L. Pollock
Computer and Information Sciences

University of Delaware
Newark, DE 19716

pollock@cis.udel.edu

ABSTRACT
This paper presents a strategy for structural testing of object-
oriented software systems with possibly unknown clients and
unknown information about invoked methods. By exploit-
ing the combined points-to and escape analysis developed
for compiler optimization, our testing paradigm does not
require a whole program representation to be in memory
simultaneously for testing analysis. Potential e�ects from
outside the component under test are easily identi�ed and
reported to the tester. As client and server methods become
known, the graph representation of object relationships is
easily extended, allowing the computation of test tuples to
be performed in a demand-driven manner, without requiring
unnecessary computation of test tuples based on predictions
of potential clients.

1. INTRODUCTION
The e�ectiveness of control ow and data ow-based test-
ing techniques is unclear in the object-oriented program-
ming domain where object-oriented design principles result
in programs with a structure that di�ers signi�cantly from
the imperative programs originally targeted by these meth-
ods. The novel characteristics of object-oriented software
are primarily due to classes, inheritance, polymorphism and
dynamic binding. Applications consist of a set of classes
(with a main program or main class), which contain calls to
methods within these classes as well as calls to methods in
classes written by others. A programmer may design and
implement just a single class or library as their designated
programming goal, without a speci�c targeted application
which will use the class. The context of the class is often
unknown. Moreover, the order in which methods of the class
will be called from client applications is unknown.

With the evolution of object-oriented software into compo-
nent-based software comes an additional set of character-

�This work was supported in part by NSF EIA-9806525 and
NSF EIA-9870370.

istics a�ecting the testing process[27]. A component may
not necessarily be a class or a method, but any grouping
of methods. Objects may leave one component and become
visible to another component, through parameter passing
and return statements. An application can have a changing
composition as components are added, replaced, updated,
and deleted. Incomplete programs and programs with por-
tions unknown to the analysis need to be addressed. Some
components may be in binary only and dynamically loaded.

In this paper, we propose a new paradigm for structural test-
ing of object-oriented software. The premise behind our ap-
proach is that object manipulation is a natural testing basis
for exposing the possible behaviors of object-oriented soft-
ware, and that a testing tool should be capable of aiding a
programmer in testing object manipulations in a component-
based programming environment. Our approach was in-
spired by both the characteristics of component-based soft-
ware and the results from our empirical study of the charac-
teristics of a set of large Java applications, which we reported
in a previous paper[24]. We found that object-oriented de-
sign commonly results in many methods, each with a small
number of statements and simple intraprocedural control
ow. The static branch count within a method is often zero,
and on average between 0 and 3. This suggests that control
ow-based testing may not be the most e�ective for revealing
the behaviors of the program. Often a small percentage of
methods de�ned in a server class are actually used by a given
client class. Only approximately half of the methods used
by the client actually change the state of the object being
used within the client. Very few manipulations of primitive-
type variables typically targeted by data ow testing occur
in the programs. Instead, computation is achieved primar-
ily through manipulation of instance variables of objects via
method calls. Polymorphism and loads and copies of ob-
ject references create aliasing relationships that need to be
considered in the identi�cation of object manipulations for
testing.

We begin by illustrating the testing coverage provided by ex-
isting techniques applicable to object-oriented software. We
then introduce the object manipulation-based testing ap-
proach by �rst identifying and classifying the set of possible
object manipulations followed by a description of our ap-
proach to achieving object manipulation-based testing. The
key insight is that some simple extensions to the points-
to escape graph introduced by Whaley and Rinard[29] for
compiler optimization enable the computation of related ob-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISSTA '00, Portland, Oregon.
Copyright 2000 ACM 1-58113-266-2/00/0008…$5.00.
ISSTA '00,

49

ject manipulations which can serve as a basis for object
manipulation-based testing, without requiring a whole pro-
gram representation in memory simultaneously.

Our extended points-to escape graph representation, which
we call the ape (Annotated Points-to Escape) graph1, con-
tains adequate information to identify potential manipula-
tions to the same object in the presence of polymorphism,
aliasing, and inheritance, in addition to knowledge of which
manipulations are captured within the software component
being tested, which objects may be potentially manipulated
from outside the component, and the di�erent ways in which
the object is accessible from outside. With this representa-
tion of object manipulations, we can identify object creation
and potential write's and read's to the same object for test-
ing, similar to data ow testing of primitive-type variables,
in a straightforward way. Furthermore, we are able to give
various kinds of feedback to the tester about testing objects
with respect to the interactions with other unknown com-
ponents.

2. MOTIVATING EXAMPLE
Consider data ow testing of the object-oriented program in
Figure 1 based on covering def-use associations. If we ap-
ply several known def-use analysis techniques to the code,
we obtain the def-use associations shown in Table 1. Each
approach extends the previous approaches to report a su-
perset of the def-use associations of the approaches in all
previous rows of the table. Thus, the indicated def-use asso-
ciations for each row are def-use pairs identi�ed in addition
to all those in previous rows. The notation methodname-
list(variable name, def statement, use statement) represents
the def-use association corresponding to the sequence of
method calls in the methodname list.

By using traditional def-use analysis for primitive types only,
we obtain only one def-use pair, main(i,19,19). This def-
use pair is formed from the de�nition of i on line 19 and
its use of i also on line 19. Obviously, this does not give
us much information about the program. Next, using an
intra-method def-use analysis applied to any variable, not
just primitive types in the method, we obtain several def-use
pairs. Intra-method def-use pairs have the same meaning as
they do in a procedural language; a de�nition of a variable
and a subsequent use are both located in the same method.
An example of such a def-use pair is pop(t, 8, 14), where
t is de�ned on line 8 of the method pop and then used on
line 14. The resulting set of pairs is limited in its testing
coverage, because it does not test the interactions between
di�erent methods.

Next, we consider inter-method def-use pairs. Inter-method
def-use pairs have the same meaning as interprocedural def-
use pairs in a procedural language. However, inter-method
def-use pairs result from the calling relations between meth-
ods of a class disregarding the unknown sequence of calls
after instantiation[14]. In this example, an inter-method
approach does not give us any additional pairs due to the
fact that the only inter-method calls invoke methods of other
classes. Intra-class def-use pairs are created by sequences of

1The ape graph apes, or mimics, the object manipulations
potentially performed at run-time.

class Stack{ //Basic Operations
Node top;

1 public Stack(){ top = null; } //store: this.top
2 public void push(Object e) {
3 if (top == null) //load: r1 = this.top
4 top = new Node(e, null); //object creation,
5 else //store: this.top
6 top = top.insert(e); } //call, store:

//this.top
7 public Object pop(){
8 Object t = null;
9 if(isempty()) //call
10 System.out.println("ERROR: nothing to pop");
11 else{
12 t= top.get(); //call
13 top = top.remove(); } //call, store:

//this.top
14 return t; }
15 public boolean isempty() {
16 return top == null; } } //load:

//r2 = this.top
class StackClient{

17 public static void main(String args[]){
18 Stack s = new Stack(); //object creation
19 for(int i = 0; i < 10; i++)
20 s.push(new Integer(i*2)); //call
21 while(!(s.isempty())){ //call
22 Object x = s.pop(); //call
23 System.out.println(x); } } }

class Node{
Object data;
Node next;

24 Node(Object e, Node n) {
25 data = e; //store: this.data
26 next = n; } //store: this.next
27 Object get() { return data;} //load:

//r2 = this.data
28 Node insert(Object e){
29 Node temp = new Node(e, this); //object creation
30 return temp; }
31 Node remove(){
32 Node e = this; //copy
33 e = e.next; //load: e = e.next
34 return e; } }

Figure 1: Object-oriented stack implementation

method invocations that arise if the class was instantiated.
An instantiated class can call methods in any order. Using
an approach based on intra-class pairs, as de�ned in [14],
we obtain several additional def-use pairs. For example,
from two successive calls to push, we obtain the def-use pair
(top, 4, 3), where we de�ne top in the �rst call on line 4,
and then use it in the second call to push on line 3. This ap-
proach obtains several additional def-use pairs, but again it
does not exercise the behavior of the object-oriented nature
of the code.

The last two approaches begin to use objects as the basis
for def-use pairs. In order to obtain these def-use pairs,
a technique needs to incorporate the following information
into its analysis:

� treat the receiver object as a parameter to method
calls

� associate accesses to instance variables with �elds of
objects passed as parameters

� view de�nitions of the �eld of an object passed into a
method as a de�nition of the object itself

50

Research in optimization of object-oriented programs has
commonly treated the receiver as the �rst parameter [29].
Associating �eld names with objects is similar to that of
�elds being associated with structs in C, and researchers
have made this association for C programs in conjunction
with pointer analysis[31]. Finally, viewing the de�nition of
an object as any de�nition of its �eld variables was intro-
duced in [24].

The object-state entry of the table shows the additional def-
use pairs obtained by incorporating this additional informa-
tion into the analysis. For example, we obtain the def-use
pair (s, 18, 20) in main. The use of s on line 20 of main is
identi�ed by an analysis that identi�es the use of instance
variable top in the method push, and the fact that instance
variable top is associated with the object s. The pair (s,

18, 21) is another example of a def-use pair found using
this method.

The inter-class approach extends the intra-class and object-
state techniques by analyzing a single class's manipulation
of objects of other classes [24]. For example, the def-use pair
push-pop-[remove:Node](top, 6, 13) corresponds to the
de�nition of top on line 6. A subsequent call to pop uses top
at line 13, by following the call to remove, where top is used
on line 32.

Each of these approaches falls short in exploiting the associ-
ation between objects and their �elds or instance variables.
The last two approaches begin to form this association, but
are not complete. None of the above approaches uses points-
to information in its analysis, to consider the cases where
several references refer to the same object. There is also no
means to provide the tester with any information when part
of the code is missing in the case of a library or third party
code. All of the code must be analyzed for the analysis to
be complete.

Approach Example Additional Def-Use Pairs
primitive types main (i,19,19)
intra-method pop (t,8,14), pop(t,12,14),

insert (temp,29,30)
remove(e,33,34)

inter-method no additional def-use pairs
intra-class push-push(top,4,3), push-push(top,6,3)

pop-pop(top,13,12), pop-push(top,13,3)
object-state main(s,18,20), main(s,18,21)
inter-class push-pop-[remove:Node](top, 6, 13(32))

push-push-[insert:Node](top,6, 6(29))

Table 1: Def-use pairs from existing analyses

3. THE OMEN APPROACH
Object-oriented programming focuses on the data to be ma-
nipulated rather than the procedures that do the manip-
ulating. An object-oriented program achieves its goals by
creating objects of speci�c classes. The state of an object
is encapsulated as a copy of all of the �elds of data that
are de�ned in the corresponding class de�nition. Actions
are performed on an object by invoking methods de�ned in
the class de�nition, often called sending a message to the
object. A method invocation can modify and/or read the
data stored in the particular object.

Object-related Statements Object Manipulations
copy r1 = r2 read of reference r2

write to reference r1
load r1 = r2.f read of reference r2

read of �eld r2.f
write to reference r1

store r1.f = r2 read of reference r2
read of reference r1
write to �eld r1.f

global load r = cl.f read of class variable f
write to reference r

global store cl.f = r read of reference r
write class variable cl.f

return r read of reference r
object creation create a new object
r = new Object(....) write to reference r

MOD and USE
method invocation write to reference r
r = r0.methodname(r1,..., rn) read of references r0-rn

MOD and USE of r0's
�elds

Table 2: Basic object manipulations

In order to better understand the possible behaviors of an
object-oriented program in terms of object manipulations,
we identify the most elemental object manipulation as either
a read or write action. The actions that a particular state-
ment or method performs on an object can be decomposed
into a sequence of these elemental actions. Speci�cally, we
identify the following set of basic read and write actions with
respect to objects and their references:

� read the value in a reference to an object

� write a value to an object, usually making the reference
point to a di�erent object

� read the value in a �eld of an object

� write a value in a �eld of an object

� create a new object

� delete an object (e.g., C++)

� pass a reference to an object as a parameter

� return a reference to an object from a method

There are also basic read and write actions on class instance
variables. These basic object and static class variable ma-
nipulations manifest themselves in programs through the use
of statements of the forms given below. The syntax r:f rep-
resents an access to the �eld f of the object referenced by r,
and cl:f denotes the static class variable f of class cl. Due
to aliasing and polymorphism, we may have a set of objects
potentially referenced by each reference, but for these de-
scriptions, we use the singular form. However, our analysis
addresses the potential for a set of objects being referenced.

� A copy statement, r1 = r2, sets the reference r1, to
point to the same object referenced by r2; r1 no longer

51

points to the object it previously referenced (unless it
was also referenced by r2).

� A load statement, r1 = r2:f , sets the reference r1 to
point to the object referenced by the �eld f of the
object referenced by r2.

� A store statement, r1:f = r2, sets the �eld f of the ob-
ject referenced by r1 to point to the object referenced
by r2.

� A global load, r = cl:f , sets r to point to the same
object referenced by the class variable f of cl.

� A global store, cl:f = r, sets the class variable f of cl
to point to the same object referenced by r.

� A return statement, return r, indicates that the method
in which the return statement is located returns the
object referenced by r.

� An object creation: For r = new Object(...), an object
of the class Object is created, and r is set to point to
the new object. Parameters are handled analogous to
other method invocations.

� A method invocation, r = r0.methodname(r1; r2; :::rn)
results in invoking the method called methodname of
the object referenced by r0, passing object references
r1; r2; ::: rn as parameters, and returning an object
which is then referenced by r after the call completes.
The reference r0 is implicitly passed as a parameter to
the method.

Table 2 depicts the elemental object manipulations performed
by each of these statements. We assume that the program
has been preprocessed such that all statements that per-
form object manipulations have been expressed in the form
of these basic statements.

In this paper, we present an approach to structural testing
of object-oriented software that is based on providing cov-
erage in terms of the elemental read and write actions. We
call our approach the OMEN approach, because it is based
on covering basic Object Manipulations in addition to us-
ing Escape iNformation to provide helpful feedback to the
tester in an interactive testing tool environment.2 While our
eventual goal is to develop a set of testing criteria under the
OMEN approach, this paper focuses on demonstrating one
speci�c testing technique using this approach.

We extrapolate the concept of data ow testing to the test-
ing of elemental object manipulations by de�ning a (write,
read) association of a given object's state, extending this as-
sociation to include object creation points, and developing
an algorithm for computing these test tuples. Recall that
an object's state is captured by its local copy of the �elds
de�ned in the corresponding class de�nition. From Table 2,
we can see that the statement that reads an object �eld
is the load statement, while the store statement writes to
an object �eld. To ensure that we do not miss any viable

2In addition, we view the test cases and the results of exe-
cuting the test cases as an omen to predicting the behaviors
of the executing program in the production environment.

(write, read) pairs, we assume that a given load/store state-
ment may read/write the �eld of any object to which the
reference is potentially referencing at that program point.

For a given load statement l: r1 = r2:f , the set of (write,
read) pairs associated with the read at l, WR-pairs(l), is
de�ned as follows:

Let pro = fo j o is an object potentially refer-
enced by r2g. WR-pairs(l) is de�ned to be the
set of pairs of the form:
(w, l) where w 2 fs j s is a store r3.f = r4, such
that r3 potentially references an object o in pro,
and s reaches l along some de�nition-free path
for the �eld f of og.

Because objects are instantiated at run-time through exe-
cutable statements, we extend (write, read) pairs to triples
of the form (write, read, object creation) to reect the fact
that a test case should cover the creation of the object be-
fore any write's or read's to that object. In the remainder of
this paper, we present our method for computing these test
tuples, determining when the tester needs to be aware of
outside inuences on the test results for particular objects,
and when the tester may need to provide a driver to enable
testing of particular objects.

4. PROGRAM REPRESENTATION
Each method's control ow is represented by a control ow
graph(CFG)[28]. The calling relationships between methods
are represented by a call graph, which could be constructed
by any conservative call graph construction method[11, 2].
The relationships between objects are represented by an ape
graph, our extension to the points-to escape graph represen-
tation developed by Whaley and Rinard[29].

4.1 The Points-to Escape Graph
The points-to escape graph representation combines points-
to information about objects with information about which
object creations and references occur within the current anal-
ysis region versus outside this program region[29]. The cur-
rent analysis region is the region of the program on which
program analysis is being performed, while the regions out-
side the current analysis region include routines either called
by or calling methods in the current analysis region, in which
the code is unavailable to the program analysis. The points-
to information characterizes how local variables and �elds in
objects refer to other objects. The escape information can
be used to determine how objects allocated in one region of
the program can escape and be accessed by another region of
the program. Whaley and Rinard developed this represen-
tation to enable an optimization analysis of Java programs
that determines which synchronization operations are un-
necessary and could be eliminated, as well as for reducing
the number of objects that are unnecessarily allocated on
the heap when they could be allocated on the stack. Their
analysis is able to analyze incomplete program units as well
as arbitrary parts of the program, while providing complete
information about objects that do not escape the analyzed
region. Their analysis analyzes each method once to produce
a single parameterized analysis result, allows for analyzing

52

a method independent of its callers and unanalyzed callees,
and then combines analysis results from multiple methods
through interprocedural analysis, and increases the precision
of the results as invoked methods are analyzed.

load r1=r2.f
before after

r2

f

r2

f

r1r1

store r1.f = r2

r2

r2

f

r1

before after

r1

r2

r1

r2

r1

f

inside node outside node load node inside edge outside edge

Figure 2: Points-to graph changes for load/store

In the points-to escape graph, nodes represent objects that
the program manipulates and edges represent references be-
tween objects. Each kind of object that can be manipulated
by a program is represented by a di�erent set of nodes in
the points-to escape graph. Each inside node represents an
object creation site for objects created and reached by ref-
erences created inside the current analysis region of the pro-
gram. A single inside node representing an object creation
site represents all objects created at that site. A class node
represents the statically allocated object with �elds for the
static class variables for the corresponding class. Outside
nodes represent objects created outside the current analysis
region or accessed via references created outside the cur-
rent analysis region. There are several di�erent kinds of
outside nodes, namely, parameter nodes, load nodes, and
return nodes. There is one parameter node for each formal
parameter; the parameter node represents the object that its
parameter references during the execution of the analyzed
method. Note that the receiver object is represented as the
�rst parameter of each method. Each load statement in the
program has a corresponding load node that represents all
of the outside objects whose references are loaded at the
given load statement, if the loaded reference could indeed
be to an outside object. Finally, there is one return node
for each method invocation site in the program to represent
the return values of the method invocation of unanalyzed
methods.

There are also two di�erent kinds of edges. An inside edge
represents references created inside the current analysis re-
gion. Inside edges from outside nodes or nodes reachable
from outside nodes represent the situation in which the un-
analyzed region may read a reference created inside the cur-
rent analysis region. An outside edge represents references

created outside the currently analyzed region. Outside edges
represent the situation in which the current analysis region
reads a reference created in an unanalyzed region. Thus,
each outside edge points to a load node.

The distinction between inside and outside nodes is impor-
tant because they are used to characterize nodes as either
captured or escaped. A captured node corresponds to the
fact that the object it represents has no interactions with
unanalyzed regions of the program, and the edges in the
graph completely characterize the points-to information be-
tween objects represented by these nodes. On the other
hand, an escaped node represents the fact that the object
escapes to unanalyzed portions of the program. An object
can escape in several ways. A reference to the object can be
passed as a parameter to the current method, a reference to
the object was written into a static class variable, a reference
was passed as a parameter to an invoked method and there
is no information about the invoked method, or the object
is returned as the return value of the current method.

For a given method, an initial points-to escape graph is con-
structed to represent the parameters and class objects on
entry to the method. The points-to escape graph is re�ned
by repeatedly processing the object-related statements in
the CFG of a method until a �xed point is reached. At each
statement, points-to escape graphs representing the prede-
cessors of the statement in the CFG are �rst merged into
a single graph. The new points-to escape graph in e�ect
at the program point immediately after the statement is
constructed by applying the statement's transfer function
to the merged graph that was in e�ect immediately before
the statement. For example, in the analysis of a copy or
load statement, the edges between a reference and the ob-
ject which it references before the statement are deleted (or
killed) when the reference points to a new object after the
statement.

Figure 2 illustrates the changes in a points-to escape graph
during analysis of load and store statements. The e�ect of
a load r1 = r2:f is represented in the graph in two di�er-
ent ways depending on what r2 references before the load
statement. In the �rst case, where r2 points to no escaped
nodes, the set of nodes, S, accessible via inside edges from
r2:f is computed, the set of nodes that r1 previously ref-
erenced is killed, and then inside edges from r1 to all the
nodes in S are generated. The second case occurs when r2
references escaped nodes. In this case, the value stored in
r2:f could be a reference created outside the current analysis
region. Therefore, other parts of the program can reference
and change the value of the �eld f . We have no knowledge
of the objects possibly referenced by the �eld f . To model
this case, the same process as above occurs, killing all edges
from r1 and generating inside edges to all inside nodes, but
for all escaped nodes that r2 references, outside edges are
generated from the escaped nodes to the newly generated
load node and labeled with the �eld name f . The execution
of a store statement, r1:f = r2, results in r1's f �eld point-
ing to the object that r2 references. The graph represents
this statement by �nding the set of nodes that r1 references,
and then generating inside edges from all of these nodes to
the nodes that r2 references.

53

e

data data

data

data

this

T

push (after line 6)

insert (exit)push

inside edge inside node

top

nextdata

top

next

next
top

push (exit)

push (after line 4)

(after line 3)

T

next

temp

top

top

outside edge outside node

next

e

this

e

this

this

e

this

e

Figure 3: Points-to escape graph example

Interprocedural analysis is achieved through merging the pa-
rameterized points-to escape graphs of the potentially in-
voked methods at a call site with the points-to escape graph
at the point immediately before the call site, to form the
points-to escape graph at the point just after the call site.
Nonrecursive programs can be processed in a reverse topo-
logical sort order, while recursive programs will involve �xed-
point iterative analysis within each strongly connected com-
ponent of the conservative call graph. For call sites to unan-
alyzed methods, the parameters and return value are marked
as escaped within the caller's graph.

Figure 3 shows the computed points-to escape graphs for
various points in the code given in Figure 1. The points-to
escape graphs are shown for the end of the insert and push

methods, as well as the graphs for several intervening pro-
gram points within the method push. The �rst graph (push
after line 3) shows the points-to escape graph for push prior
to the conditional statement. The parameters e and this
both point to outside nodes representing the fact that the
object to which the parameters point were created outside
the current analysis region, the push method. An outside
edge for top points to a load node, indicating that the refer-
ence in statement 3 reads a reference created outside push.
The graph for insert's exit point has a similar structure
for the parameters e and this. The reference temp points to
an inside object (created inside the current analysis region,
insert), whose data �eld points to e and next �eld which
points to this. These edges are created through the call to
the Node constructor. The inside node referenced by temp
is also the return value of the insert method.

The graph for push (after line 4) illustrates the points-to
graph that corresponds to the code following the true branch.
The reference top now points to a new inside node created
by the call to the Node constructor, with data �eld point-
ing to the parameter e and next �eld pointing to null. Push
(after line 6) corresponds to the points-to graph represent-
ing the false branch of the push method. The reference
top points to an inside node that corresponds to the return
value of the method insert. Through interprocedural anal-
ysis when building this graph, the mapping of nodes from
insert to push results in the data �eld of top pointing to the
parameter e and the next �eld pointing to the old top, which
is represented by the outside node with no label. Finally,
the points-to escape graphs are merged together at the join
of the if statement to result in the graph illustrating the
�nal result at the exit of the method push. The fact that
insert could be a virtual call site is handled through the
use of a conservative call graph. Therefore, a set of nodes
are mapped from insert to push for the potentially invoked
insert methods.

4.2 The APE Graph
While Whaley and Rinard[29] compute the points-to graph
at each program point during their analysis, the points-to
escape graph for a given method represents the points-to and
escape information with respect to the method exit. For our
application of the graph, we need to know points-to escape
information at each object-related statement. Our analysis
needs to be able to answer questions such as: What could
be referencing a given object at a particular program point,
such as at a given load statement? Similarly, what objects
could be read at this point in the program? Where are all the
possible reaching write's to this object prior to this program
point? However, we want to avoid the storage requirements
for a points-to graph representation at every program point
during testing analysis.

In order to avoid saving separate points-to graphs for each
object-related statement, we have made the following modi-
�cations to the points-to escape graph produced by Whaley
and Rinard[29] for each method exit, to enable pointwise in-
formation to be retained in a single representation for each
method.

Edges are not deleted upon kills. Each edge is annotated
with information about the loads and stores associated with
the edge's reference. From the construction of the inside and
outside edges, we know that an inside edge labeled with a
�eld is only created by store statements. However, an inside
edge can also be labeled with multiple load and store anno-
tations, since an edge from node ni to node nj represents
all references from ni to nj , and there could be multiple
loads and stores of a reference from ni to nj . Outside edges
labeled by �elds are only created by load nodes.

For each load/store of the reference represented by a partic-
ular edge e, we logically maintain:

� a sequence of statement numbers, (s1; s2; :::; sn), where
sn is the unique statement number of the load/store
statement; s1; s2; :::sn�1 contains the statement num-
bers of the call sites where this edge was merged into

54

Edge # Annotation
top:1 top 21-16, load

top 22(21)-9-16, load
top 20(19)-3, load, kill (20-4, 20-6)
top 18-1, store
top 22(21)-13, store

top:2 top 21-16, load
top 22(21)-9-16, load
top 20(19)-4, store
top 22(21)-13, store
top 20(19)-3, load,kill (20-4, 20-6)

top:3 top 21-16, load
top 20(19)-6, store
top 20(19)-3, load,kill (20-4, 20-6)
top 22(21)-9-16, load
top 22(21)-13 store

next:4 next 20(19)-6-29-26, store
next 22(21)-13-33, load

next:5 next 20(19)-6-29-26, store
next 22(21)-13-33, load

next:6 next 20(19)-4-26, store
next 22(21)-13-33, load

next:7 next 20(19)-6-29-26, store
next 22(21)-13-33, load

data:8 data 20(19)-4-25, store
data 22(21)-12-27, load

data:9 data 20(19)-6-29-25, store
data 22(21)-12-27, load

T

x,22

20-6-29

s,18

Integer,20

top:1

top:2

data:8 next:5

data:9

next:4

ne
xt

:6

next:7

top:3
18

20

20-4

Figure 4: Ape graph for exit of main

the caller's ape graph during interprocedural analysis
performed during construction of the current analy-
sis method's ape graph. Statement s1 is the state-
ment number of the call site within the current anal-
ysis method which eventually leads to the load/ store
statement.

� a corresponding sequence of statement numbers, (evs1;
evs2; :::evsn), where each evsi is the unique number of
the earliest statement at which the statement si could
have an e�ect on other statements. We call this the
earliest visible statement for si, evsi. The earliest vis-
ible statement evsi = si when the statement si is not
inside a loop; otherwise evsi = the statement number
of the header of the outermost loop containing si.

� a corresponding sequence of sets, killsi , of statement
numbers corresponding to the statements where the
reference at si would be killed and removed by the
points-to escape graph construction.

Statement number sequences also label nodes to indicate
the statement that created the node and calls leading to
that statement from the current analysis method.

The statement numbers are needed for our analysis in deter-
mining the order of manipulations to objects. The earliest
visible statement numbers are needed to correctly determine
the �rst visible point of references created within loops. The
kill information is needed to gain more precise information
about points-to relations that hold at a given point in our
analysis.

Sequence of statement numbers, earliest visible statements,

and kill sets are used to correctly compute write-read tuples
that cross over methods. The statement number of the call
site within the current method is used for statement order
information by the algorithm's processing within the current
method when a load/store statement occurs in an invoked
method. The statement number of the actual load/store
statement is used to indicate the �nal testing tuple.

The sequence for a given load/store annotation is incre-
mentally computed by modifying the points-to escape graph
merge algorithm performed at a call site to merge a callee's
ape graph into a caller's ape graph. As an edge is mapped
from a callee's ape graph into the caller's ape graph at a
call site in the caller, the statement number, and the earliest
visible statement for the call site are concatenated onto the
annotation sequences mapped from the callee's ape graph.

The points-to escape graph merge algorithm is also extended
to mark each callee's ape graph edge in the callee's ape graph
representation that is mapped into a caller's ape graph. Af-
ter a given method's graph has been mapped to possibly
several caller's ape graphs, the ape graph for the method
itself will have all edges marked which have been mapped
to any caller's graph. All unmarked edges are edges not
reachable by callers. These marks are used in the test tuple
construction algorithm to avoid creating duplicate test tu-
ples and also to identify loads that may have reaching stores
outside the component under test.

Figure 4 shows the ape graph for the exit of main, assuming
that we have knowledge of all invoked methods from main,
including methods in the Node class. For space reasons, we
only show evsi in parenthesis when evsi is di�erent from si.

55

As an example, the edge labeled top:1 is annotated by two
stores and three loads. The load 21-16 represents the load
to top in isempty called from the call site at statement 21 in
main. The merge of the isempty graph with the graph for
main at the call site at line 21 concatenated the 21 to the
statement sequence on the annotation for the load. Figure 6
shows the ape graph for the exit of main when the Node class
is unknown to the analysis of main.

5. TEST TUPLE CONSTRUCTION

Test Tuple Construction Algorithm: Compute testing
tuples for an object-oriented component.

Input: set of call graphs for component under test, CUT;
one ape graph per method in CUT;
Output: set of testing tuples for CUT;
feedback on potential inuences from outside CUT;

Let T be a topological ordering of the nodes in the call graphs
for CUT, starting at the roots of each call graph;
foreach node n in T do

Let AGm = ape graph for method m represented by node n;
/* create tuples from stores in m or stores reachable from m */
foreach unmarked edge e in AGm labeled by a STORE do

foreach STORE s labeling e do
Let css = unique statement number for s in AGm;
Let evss = earliest visible statement for s in AGm;
foreach LOAD l annotation on e do

Let csl = unique statement number for l in AGm;
if evss < csl then
Create a tuple of the form (store,load)
where store = (css-remaining statement sequence for s),
and load = (csl-remaining statement sequence for l);
/* �nd object creation site for this store-load pair */
Let sn = source node of e;
Let cssn = unique statement number for sn in AGm;
if sn is an inside node then
Replace tuple (store,load) by (store,load,cssn);

else /* sn is an outside node */
if n is a root in a call graph for CUT then

Feedback(object for (store,load) is potentially
created outside CUT);

else /* n is an interior node in call graph */
if sn is not a parameter node then
Feedback(object for (store,load)is potentially

created outside CUT);
Let tn = target node of e;
if sn not escaped and tn is escaped then

Feedback(value loaded in (store,load,cssn) is po-
tentially changed by method outside CUT,
but l is indeed referencing object created at
cssn);

endfor

endfor

endfor

/* examine loads in m or reachable from m */
foreach unmarked edge e in AGm labeled only by LOAD do

Let tn = target node of e;
if tn is a load node in AGm then

Feedback(object for (store,load) is potentially created
outside CUT);

Feedback(load at statement csl in method m has potentially
reaching references from outside CUT);

endfor

endfor

Figure 5: Test tuple construction algorithm

The test tuple construction algorithm in Figure 5 computes
a set of testing tuples for the component under test (CUT),
based on object manipulations. Starting at the root of each

call graph of CUT and proceeding in topological order, the
method for each call graph node is processed once, by an-
alyzing the node's ape graph. This processing order avoids
creating duplicate tuples potentially identi�ed due to sub-
graphs of invoked methods also appearing in a caller's ape
graph. As a particular ape graph is analyzed, only unmarked
edges (those not already processed in a caller's graph) are
processed.

The algorithm processes each edge in a method's ape graph.
For each annotation on an ape graph edge representing a
store, the associated loads potentially occurring after the
store are identi�ed, and a (store,load) tuple is created. The
annotations reect the results of the ow sensitive points-
to escape analysis used to build the ape graph. Thus, the
evs and cs statement numbers on these annotations are ade-
quate to identify the reachable loads from a particular store.
The object creation site associated with the (store,load) tu-
ple is determined by the source node of the edge being ana-
lyzed. If the source node is an inside node, then the source
node is the object creation site and the node number of the
source node is used to complete the tuple for the (store,load)
tuple. If the source node is an outside node, then the object
is not created inside CUT, and feedback is given depending
on the kind of the source node and whether it is interior
or root of the call graph. Additionally, feedback is given
when the target node of the ape graph edge being analyzed
is escaped from CUT. In this algorithm, we do not utilize
the kill information; however, it is used in algorithms we
are currently developing, thus we included it in our graph
description.

The algorithm also provides feedback for load nodes when
a corresponding store is not present in CUT. This is rep-
resented by an ape graph edge that is labeled only with
load annotations, and no store annotations. The feedback
provides the tester with information about the fact that an
object creation site could have potentially occurred outside
CUT, as well as the possibility that the load in CUT has
potentially reaching references from outside CUT.

5.1 Examples
5.1.1 Complete Component
Table 3 shows the set of tuples calculated using our algo-
rithm and the ape graph illustrated in Figure 4. For space
reasons, we only show the tuples when processing main. The
�rst column indicates the ape graph edge which creates the
testing tuple. The second column shows the tuples in the
form object-name(store, load, object creation site). For ex-
ample, the edges top:1, top:2, and top:3 create tuples due to
the objects created at line 18 in the code in Figure 1. The
tuple (<20-4>,<21-16>,18) created from edge top:2 corre-
sponds to an object s created on line 18, which has a value
stored at line 4, through the call site at line 20, and value
loaded at line 16 through the call site at line 21. There is no
feedback provided for this example because the component
is a complete program.

5.1.2 Component with Unknown Subcomponent
The second example with its ape graph shown in Figure 6,
does not have knowledge of the internals of Node class. This
ape graph di�ers from the previous one due to the outside

56

Edge # StackClient Tuples
top:1 top(<18-1>, <20-3>, 18)
top:1 top(<18-1>, <22-9-16>, 18)
top:1 top(<18-1>, <21-16>, 18)
top:1,2,3 top(<22-13>, <22-9-16>, 18)
top:2 top(<20-4>, <21-16>, 18)
top:2 top(<20-4>, <20-3>, 18)
top:2 top(<20-4>, <22-9-16>, 18)
top:3 top(<20-6>, <20-3>, 18)
top:3 top(<20-6>, <22-9-16>, 18)
top:3 top(<20-6>, <21-16>, 18)
top:1,2,3 top(<22-13>, <21-16>, 18)
next:4,5,7 next(<20-6-29-26>, <22-13-33>, 20-6-29)
next:6 next(<20-4-26>, <22-13-33>, 20-4)
data:8 data(<20-4-25>, <22-12-27>, 20-4)
data:9 data(<20-6-29-25>, <22-12-27>, 20-6-29)

Table 3: Computed tuples for complete program

nodes needed for the unknown return value at the call sites
of methods in the Node class. The edge annotations are
similar, except that the annotation details due to the Node

class are unknown in this example. Also, this example has
an additional edge, top:4, which the �rst example does not
have because during the merge of the graphs at call sites in
the �rst example, the annotations are attached to existing
edges created from the Node class methods, which are not
available in this example. Each tuple in this example will
have associated feedback to the tester. The feedback pro-
vided corresponds to the line in the algorithm, where it is
found that the source node is an inside node and the target
node is an outside node. The feedback given is the fact that
the value loaded at a particular point may be changed in a
method outside CUT.

The algorithm would also work correctly if the main program
were missing and we only had the Node class and/or Stack
class. The feedback would inform the tester that the object
creation site for the store/load pairs occur outside CUT. To
thoroughly test the component, a driver would be needed
that created the object of interest.

5.2 Space/Time Cost Analysis
We maintain one ape graph for each method in CUT. The
worst case for an ape graph is to have it fully connected,
that is, each object has a reference to every other object. In
this case, the size of an ape graph would be n2 for n object
creation sites in a complete program. In a component with
unknown subcomponents or callers, n would include both
object creation sites inside CUT and load nodes representing
objects potentially created outside CUT.

The testing tuple construction algorithm takes one pass over
the call graphs representing CUT. Because of the way the
ape graph is constructed interprocedurally, it is adequate
to take one pass through the nodes of a cycle in the call
graph. For each node in the call graph, it processes each
unmarked edge of the ape graph for that method exactly
once. In the worst case, the number of edges processed
by the algorithm is the total number of edges in all ape
graphs of CUT. However, due to the marking scheme, and
how edges are mapped during the merge of ape graphs at

call sites, it is expected that the actual number of processed
edges will be considerably less. For each ape graph edge
processed, the algorithm examines each store annotation on
the edge exactly once and each load annotation once for each
store annotation on the edge.

6. RELATED WORK
This work is related to testing and analysis of object-oriented
codes, pointer analysis, and escape analysis.

6.1 Object-Oriented Testing
Previous work on structural testing of object-oriented soft-
ware has concentrated on data ow analysis for computing
def-use associations for classes[14], testing of libraries in the
presence of unknown alias relationships between parameters
and unknown concrete types of parameters, dynamic dis-
patches, and exceptions[6], and developing a set of criteria
for testing Java exception handling constructs[23]. Com-
mercially available tools include a Java testing tool set by
SUN which is comprised of JavaSpec, JavaStar, JavaScope,
and JavaLoad [26].

Previous research on data ow analysis of classes has focused
on intra-method, inter-method, and intra-class def-use pairs
of primitive types [14]. Relationships between these def-
use pairs and program representations to generate the pairs
are de�ned. The program representations include the class
call graph, a frame around the class call graph, and the
class control ow graph. The frame represents the unknown
sequence of calls from clients by enabling a random calling
sequence between methods in a class. The frame also allows
techniques for interprocedural def-use analysis to be applied
to detect def-use pairs of primitive types in the class with
di�erent levels of precision due to aliasing e�ects and the
techniques used for dealing with aliases[15, 21].

We consider this to be the closest work to our work. While
this technique �nds def-use pairs within a single class, it does
not �nd inter-class def-use pairs in a scalable manner. The
program representation would not scale well for programs
with a large number of interacting classes. Our approach
uses a compositional representation, which does not require
the entire program representation to be in memory at once.
Another drawback of this approach is the lack of association
between objects and their �elds in the analyses. Our use of
object manipulations easily makes this association, which
we feel is critical due to the importance that objects play in
object-oriented programs.

Larsen and Harrold[18] introduced the concept of a class de-
pendence graph and adapt the system dependence graph for
object-oriented software. Their program representation fully
represents the features of object-oriented software including
inheritance and polymorphism. They use this program rep-
resentation for slicing object-oriented software[18]. Liang
and Harrold extended the program representation once more
for use with object slicing[19].

Chatterjee, Ryder, and Landi introduced relevant context
inference (RCI) as a modular technique for ow and context-
sensitive data ow analysis of statically typed object-oriented
programming languages[7]. Modularity makes it possible to
avoid having the entire program representation in memory

57

Edge # Annotation
top:1 top 21-16, load

top 22(21)-9-16, load
top 20(19)-3, load
top 18-1, store

top:2 top 21-16, load
top 22(21)-9-16, load
top 20(19)-4, store
top 22(21)-13, store

top:3 top 21-16, load
top 20(19)-6, store
top 20(19)-3, load
top 22(21)-9-16, load

top:4 top 22(21)-13, store
top 21-16, load

18
s,18

top:3

top:1

top:2

x, 22

to
p:

4

Edge # Stack Tuples
top:1 (<18-1>, <20-3>, 18)
top:1 (<18-1>, <22-9-16>, 18)
top:1 (<18-1>, <21-16>, 18)
top:1,2,3 (<22-13>, <22-9-16>, 18)
top:2 (<20-4>, <21-16>, 18)
top:2 (<20-4>, <20-3>, 18)
top:2 (<20-4>, <22-9-16>, 18)
top:3 (<20-6>, <20-3>, 18)
top:3 (<20-6>, <22-9-16>, 18)
top:3 (<20-6>, <21-16>, 18)
top:4 (<22-13>, <21-16>, 18)

Figure 6: Ape graph, annotations and tuples for main with unknown Node class

at the same time. Their approach is capable of analyz-
ing complete systems as well as incomplete systems such
as libraries. RCI has been used in the application of data
ow based testing of object-oriented libraries[6]. Their tech-
nique focuses on the di�culties attributed to testing libraries
due to unknown alias relationships between parameters, un-
known concrete types of parameters, dynamic dispatches,
and exceptions. These di�culties arise from the fact that
no driver program exists in library testing. They have devel-
oped an algorithm for �nding def-use associations in object-
oriented libraries.

6.2 Pointer Analysis
There has been a large body of work in pointer analysis,
resulting in a set of techniques which vary in the precision
of the results and the analysis e�ciency. Flow insensitive
techniques do not consider the control ow within proce-
dures, achieving fast analysis time at the cost of precision
loss [22, 25, 1, 16]. A single points-to graph that is valid
for the entire program is produced. Flow sensitive analysis
typically involves solving a data ow analysis problem to
obtain the intraprocedural results [12, 17, 8, 30]. An in-
terprocedural analysis is context sensitive when it takes into
account the legal call/return sequence of procedure calls,
whereas a context insensitive analysis does not go to the ex-
pense of avoiding the inclusion of information along invalid
call-return paths. Flow sensitive, context sensitive analyses
are very precise, but often require a long time as well as
a large amount of space. Liang and Harrold developed a
ow insensitive, context sensitive algorithm with the goal of
bridging the gap between speed and precision [20].

The concept of invisible variables was developed to parame-
terize the analysis result for pointer and shape analysis algo-
rithms so that the result can be used at di�erent call sites[17,
12, 30]. The points-to escape graph di�ers from the invisible
variable approach in its distinction between inside and out-
side edges, and how the relationship between outside objects
is determined[29].

6.3 Escape Analysis
Escape analysis has historically been developed and used in
the context of functional languages [13, 3, 10]. More re-
cently, escape analysis has been used for optimizing object-
oriented programs [29, 9, 4, 5]. Escape analysis identi�es

objects in the program that do not escape a method and
therefore can be allocated to the stack. This reduces the
amount of space needed for allocating objects on the heap
and also reduces the time spent by the garbage collector
deallocating heap space. Unnecessary thread synchroniza-
tion operations can be eliminated when escape analysis iden-
ti�es objects that are isolated to one thread.

7. CONCLUSIONS AND FUTURE WORK
This paper presents a strategy for structural testing of object-
oriented software systems with possibly unknown clients and
unknown information about invoked methods. By exploit-
ing the combined points-to and escape analysis developed
for compiler optimization, the OMEN testing paradigm does
not require a whole program representation to be in memory
simultaneously for testing analysis. Potential e�ects from
outside the component under test are easily identi�ed and
reported to the tester. The ape graph is easily extended and
the computation of additional test tuples can be performed
in a demand-driven way as clients are added, without re-
quiring an expensive, predictive computation of test tuples
due to potential clients.

We are currently extending the approach to include more
information on copies and other manipulations to object
references to increase the precision of the analysis. In ad-
dition, we are designing a testing tool based on the OMEN
approach. Lastly, we plan to perform empirical studies to
evaluate theOMEN approach on large Java software systems
focusing on experiments with di�erent scenarios of unknown
information about clients and invoked methods.

8. REFERENCES
[1] L. O. Andersen. Program Analysis and Specialization

for the C Programming Language. PhD thesis, DIKU,
University of Copenhagen, 1994.

[2] D. F. Bacon and P. F. Sweeney. Fast Static Analysis
of C++ Virtual Function Calls. In OOPSLA, 1996.

[3] B. Blanchet. Escape Analysis: Correctness proof,
implementation and experimental results. In POPL,
1998.

[4] B. Blanchet. Escape analysis for object-oriented
languages, application to Java. In OOPSLA, 1999.

58

[5] J. Bodga and U. Hoelzle. Removing unnecessary
synchronization in Java. In OOPSLA, 1999.

[6] R. Chatterjee and B. G. Ryder. Data-ow-based
Testing of Object-Oriented Libraries. Technical
Report 382, Rutgers U., 1999.

[7] R. Chatterjee, B. G. Ryder, and W. A. Landi.
Relevant Context Inference. In POPL, 1999.

[8] J. Choi, M. Burke, and P. Carini. E�cient
ow-sensitive interprocedural computation of
pointer-induced aliases and side e�ects. In POPL,
1993.

[9] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and
S. Midki�. Escape analysis for Java. In OOPSLA,
1999.

[10] A. Deutsch. On the Complexity of Escape Analysis. In
POPL, 1997.

[11] A. Diwan, J. E. B. Moss, and K. McKinley. Simple
and E�ective Analysis of Statically-Typed
Object-Oriented Programs. In OOPSLA, 1996.

[12] M. Emami, R. Ghiya, and L. Hendren.
Context-Sensitive Interprocedural Points-to Analysis
in the Presence of Function Pointers. In PLDI, 1994.

[13] B. Goldberg and Y. Park. Escape Analysis on Lists. In
PLDI, 1992.

[14] M. J. Harrold and G. Rothermel. Performing Data
Flow Testing on Classes. In FSE, 1994.

[15] M.J. Harrold and M.L. So�a. Interprocedural Data
Flow Testing. In TAV, 1989.

[16] M. Hind, M. Burke, P. Carini, and J.D. Choi.
Interprocedural pointer alias analysis. ACM Trans. on
Prog. Lang. and Sys., 1999.

[17] W. Landi and B. G. Ryder. A Safe Approximation
Algorithm for Interprocedural Pointer Aliasing. In
PLDI, 1992.

[18] L. Larsen and M. J. Harrold. Slicing Object-Oriented
Software. In ICSE, 1996.

[19] D. Liang and M. J. Harrold. Slicing Objects Using
System Dependence Graphs. In Inter. Conf. on Soft.
Maint., 1998.

[20] D. Liang and M. J. Harrold. E�cient Points-to
Analysis for Whole-Program Analysis. In FSE, 1999.

[21] H. Pande, W. Landi, and B.G. Ryder. Interprocedural
Def-Use Associations in C Programs. IEEE Trans. on
Soft. Eng., 1994.

[22] M. Shapiro and S. Horwitz. Fast and Accurate
Flow-Insensitive Points-To Analysis. In POPL, 1997.

[23] S. Sinha and M. J. Harrold. Criteria for Testing
Exception-Handling Constructs for Java Programs. In
Inter. Conf. on Soft. Maint., 1999.

[24] A. L. Souter and L. L. Pollock. Inter-class Def-Use
Analysis with Partial Class Representations. In
PASTE, 1999.

[25] B. Steensgaard. Points-to analysis in almost linear
time. In POPL, 1996.

[26] Sun Microsystems. Java Testing Tool.
www.sun.com/workshop/testingtools/index.html,
1998.

[27] C. Szyperski. Component Software Beyond
Object-Oriented Programming. Addison-Wesley, 1998.

[28] A. V.Aho, R. Sethi, and J. D. Ullman. Compilers
Principles, Techniques, and Tools. Addison Wesley,
1986.

[29] J. Whaley and M. Rinard. Compositional Pointer and
Escape Analysis for Java Programs. In OOPSLA,
1999.

[30] R. P. Wilson and M. S. Lam. E�cient
Context-Sensitive Pointer Analysis for C Programs. In
PLDI, 1995.

[31] S. H. Yong, S. Horwitz, and T. Reps. Pointer Analysis
for Programs with Structures and Casting. In PLDI,
1999.

59

