A Thread-A ware Debugger with an Open Interface

Daniel Schulz
Qcentic GmbH
Max-Planck-Str. 39A
50858 Koln
Germany

ABSTRACT

While threads have become an accepted and standardized
model for expressing concurrency and exploiting parallelism
for the shared-memory model, debugging threads is still
poorly supported. This paper identifies challenges in de-
bugging threads and offers solutions to them. The contribu-
tions of this paper are threefold. First, an open interface for
debugging as an extension to thread implementations is pro-
posed. Second, extensions for thread-aware debugging are
identified and implemented within the Gnu Debugger to pro-
vide additional features beyond the scope of existing debug-
gers. Third, an active debugging framework is proposed that
includes a language-independent protocol to communicate
between debugger and application via relational queries en-
suring that the enhancements of the debugger are indepen-
dent of actual thread implementations. Partial or complete
implementations of the interface for debugging can be added
to thread implementations to work in unison with the en-
hanced debugger without any modifications to the debugger
itself. Sample implementations of the interface for debug-
ging have shown its adequacy for user-level threads, kernel
threads and mixed thread implementations while providing
extended debugging functionality at improved efficiency and
portability at the same time.

Categoriesand Subject Descriptors

D.2 [Software]: Software Engineering; D.2.5 [Software
Engineering]: Testing and Debugging; D.1.3
[Programming Techniques]: Concurrent Program-
ming—parallel programming

General Terms
Design, Standardization, Languages

Keywords
Debugging, Concurrency, Threads, Active Debugging, Open
Interface

Frank Mueller
Humboldt University Berlin
Institut f. Informatik
10099 Berlin (Germany)

mueller@informatik.hu-berlin.de

1. INTRODUCTION

Threads have become an accepted abstraction of concur-
rency using the shared-memory programming paradigm and
provide the means to exploit parallelism in a shared-memory
multi-processor environment. Today, many thread imple-
mentations adhere to the POSIX Threads (Pthreads) stan-
dard [21], which defines a common application interface
(API) to exhibit the functionality of threads. The Pthreads
standard describes the semantics in terms of the observable
behavior for this API but excludes constraints on imple-
mentation choices. Hence, Pthreads implementations range
from user-level libraries [14, 17] via mixed-mode threads [16,
20, 8] to kernel-level implementations [2, 22, 1, 11].

Software development of threaded programs should be fa-
cilitated by adhering to the Pthreads API at the level of
program design and implementation. The testing and de-
bugging stage, however, lacks support for threaded appli-
cations. The motivation for special testing and debugging
tools is given by a number of properties that distinguish
multi-threaded programs from single-threaded ones:

1. The control flow of threads may interleave or even ex-
ecute in parallel.

2. Threads may suspend and resume execution voluntar-
ily, due to preemption or as a result of events (signals).

3. Synchronization between threads defines a partial or-
der of program execution.

The debugging process, which takes at least 50% of the
development effort together with testing, is affected for
threaded programs in several ways [7]. The following issues
illuminate common problems.

e Conventional breakpoint debugging does not suffice to
capture a single flow of control for a program. The
programmer is accustomed to follow the control flow of
one thread. When two consecutive breakpoints within
a thread are hit, other threads may have been execut-
ing between these breakpoints. Furthermore, a break-
point in a subroutine called by different threads may
be hit in sequence for different threads at a time.

e The state of threads and synchronization objects is not
visible during debugging due to a lack of debugger in-
formation. However, state information would be vital

to allow inferences about the execution stage of the
program and its progress relative to the partial order
of synchronization.

e Thread scheduling cannot be controlled by the debug-
ger. It may, however, be desirable to forcibly suspend
or resume the execution of selected threads to identify
problems in the application by reducing interference
between or ensuring reaction to other threads, respec-
tively.

Thus, a thread-aware debugger should provide the following
features that address these issues to facilitate the debugging
of threads:

Thread-specific breakpoints stop the application only
when a certain thread reaches the breakpoint.

Status inquiries about threads and synchronization ob-
jects show the progress of execution and the current
state of the objects.

Scheduling control provides the means to forcibly sus-
pend and resume threads.

Scheduling breakpoints halt the application upon a con-
text switch and serve as a means to track the interleav-
ing of execution between threads.

The work described in this paper also aims at providing
a flexible platform for both the debugger and a variety of
thread implementations to support thread-aware debugging.
Instead of customizing the debugger for each thread imple-
mentation, a common framework for controlling threads is
provided, which communicates with the threads of the ap-
plication. The thread implementation, on the other hand,
provides a standard interface for debugging to serve requests
by the debugger. This approach has several advantages:

Portability is ensured through an open interface for de-
bugging threads on one side and functional extensions
to the debugger on the other side. The former requires
that thread implementations support this interface by
providing at least part of the functionality but does
not assume any particular API for thread implemen-
tations, e.g., POSIX compliance is optional. The lat-
ter is independent of the actual thread implementation
and remains unchanged, regardless of the extend of the
support by the open interface or the source language
of the application.

Extensibility is guaranteed by the communication inter-
face between the debugger and the threaded applica-
tion. This interface only defines a query language but
not the actual messages themselves to allow the addi-
tion of new functionality and new messages in the fu-
ture without changes in the communication interface
on either side.

Flexibility is provided for partial support instead of
the full functionality of the interface for debugging

threads. The debugger remains functional but pro-
vides less information and less control over threads
when only a part of the interface for debugging threads
exists. This allows partial implementations of the de-
bug interface where certain information is not available
or not accessible, e.g., when kernel threads prohibit ac-
cess/control of threads.

Optional invocation allows the application to run with-
out the thread debugging support while the same exe-
cutable may be used for debugging when needed. The
thread debug support can be dynamically loaded as an
add-on library only upon activation of the debugger.

The technical issues of these features are presented in de-
tail in the description of the design and implementation of
the thread-aware debugger and the interface for debugging
threads.

This paper is structured as follows. Section 2 gives an
overview of the design. Section 3 describes the open inter-
face for debugging threads whose implementation will de-
pend on the thread implementation. Section 4 introduces
the thread debug interface common to all implementations.
Section 5 presents the communication structure between de-
bugger and application. Section 6 summarizes the exten-
sions to the debugger. Section 7 describes the implemen-
tation. Section 8 lists the extended commands for thread-
aware debugging. Section 9 discusses related work. Finally,
Section 10 presents the conclusions.

2. DESIGN OVERVIEW

The components of the framework for thread-aware debug-
ging comprise two executable components and two inter-
faces. The executable components are the application on
one side and the debugger on the other side. Since the ap-
plication is assumed to be multi-threaded, it also utilizes
a thread implementation. The debugger includes enhance-
ments for thread-aware debugging and for communication
with the application. The interfaces consist of a thread de-
bug interface (TDI) and the thread eztensions for debug-
ging (TED). The TDI includes a query language interpreter
and provides the communication interface between debug-
ger and application. The TED comprises the open interface
for debugging threads as a thin layer over the actual thread
implementation.

The separation of TDI and TED was a design choice aim-
ing at separating generic parts of the framework, such as
the TDI, from non-generic parts that depend on the actual
thread implementation, such as the TED. Without the dis-
tinction between these interfaces, the TDI of a thread-aware
debugger would need to be modified each time when support
for a new thread implementation is added. Figure 1(a) de-
picts this case where the TDI includes interface components
Iy, ..., I, for each thread implementation. These interface
components would be required to extract internal informa-
tion from the thread implementation and transform them
into a normalized representation. Even if the threads API
was restricted to POSIX threads, as depicted here, the com-
ponents of data structures (e.g. pthread_t) would differ
from one implementation to the next requiring the interface
components as a mediator. This, in turn, forces a rebuild of

Debugger

TDI
Coding | I I
Decoding 1 2 n
POSIX Threads API
Pthreads- Pthreads- Pthreads-
Implementation Implementation .. . |Implementation
|1 I2 In

(a) Non-Generic Design

Debugger
TDI
TED-Access
(generic)
TED
TED-Impl. 4 TED-Impl. , TED-Impl.
Threads- Threads- Threads-
Implementation Implementation Implementation
l 1 I2 In
(b) Generic Design

Figure 1: Design Options for Encapsulation

the TDI each time support for a new thread implementation
is added.

Figure 1(b) shows better encapsulation chosen for the im-
plementation. The TDI uses a generic interface to the
TED component. The TED provides access to the in-
ternals of a thread implementation, ¢.e., the TED has an
implementation-dependent part. Since the TED only pro-
vides a thin layer, it reduces the amount of implementation-
dependent code considerable compared to Figure 1(a) where
the TDI is implementation dependent (and the TED is miss-
ing). The TED also provides opportunities to integrate non-
standard thread implementations since the abstraction from
the thread API occurs early while the non-generic approach
requires adherence to a certain thread interface on the TDI
level.

The encapsulation by TDI and TED also provides the means
of active debugging. In active debugging, the application is
enhanced by special routines that may provide and collect
information about the state or perform manipulations on the
executing of an application. This approach facilitates and
speeds up the debugging process. Passive debugging only
probes the application. Instead of extensions for debugging
on the application side, the debugger is enhanced to con-
tain knowledge about the thread implementation. Table 1
compares active to passive debugging. Generally, debuggers
extract information from an application using a procedural
approach through probing data, even if data may later be
processed within the debugger under a different paradigm.
Active debugging allows preprocessing on the application
side to communicate data following an arbitrary paradigm,
e.g., using a declarative paradigm, as given in this paper.
The encapsulation by TDI and TED hides implementation
details of the threads to enhance portability, as discussed
before. In addition, the TDI maintains a database of the
application’s state. Queries to the database are performed
in a uniform and extensible query language. Furthermore,
requests for the state of distinct objects from the debug-
ger can be clustered and are optimized to remove redundan-
cies. As a result, such a declarative query interface performs
better than a procedural interface where each information

request would require a separate action by the debugger.
Post-mortem debugging, i.e., debugging core files of a pre-
maturely terminated execution of the application, provides
support for debugging threads in the passive case. Active
debugging does not work with post-mortem debugging since
the program is no longer executable. Hence, the TED func-
tionality cannot be utilized.

3. THREAD EXTENSION FOR DEBUG-
GING (TED)

The objective of the TED layer is to provide uniform ac-
cess to implementation-dependent thread structures. Basic
primitives to manipulate sets within the TDI realize a uni-
form method to access information. This information can
either be extracted directly from the thread implementation
(if the API supports direct access) or has to be extracted by
extension of the thread implementation for debugging.

For example, a thread within an application has a state sim-
ilar to a process: it may be running, ready, blocked or termi-
nated.! The Threads API, however, may not provide access
to the internal state of a thread. A non-standard function

!The implementation actually distinguishes the cause of
blocking. A thread may be blocked on a mutez, a condi-
tion variable, a timer object, due to suspension or for an
unspecified reason (other).

[Issue | Active Debugging [Passive Debugging |
details of thread | not known to de- | must be known by
implementation bugger debugger
change/add new | + no changes of | — debugger must be
thread impl. debugger enhanced
extract info from | declarative ap- | procedural ap-
application proach proach
query overhead + lower, no redun- | — higher, redun-

dancies dant requests
post-mortem — not possible + always possible
thread debugging

Table 1: Active vs. Passive Debugging

to access the state of a thread is added in such a case to
provide the required access. The state is then translated to
a standard encoding defined by TED uniform for all thread
implementations.

The TED provides access functions for attributes with a
common signature to simplify and unify access to any inter-
nal data structure.

Sr :TDO —)TDA

Sw :TDA XTDO —)TDA

Functions for reading S, and writing S, with domains
dom(Tp,) = D4 and dom(Tp,) = Do for types T of the
domain of objects Do and addresses D4 allow arbitrary val-
ues to be associated with objects for later inquiries.? The
objects are active or passive entities of the threads imple-
mentation, such as threads, mutex objects and condition
variables. Objects of a common entity can be accessed us-
ing set operations that are either mapped onto the threads
API or onto functions that serve as debugging extensions of
the API and access internal structures. For example, the
set of all threads within an application may not be accessi-
ble through the threads API but there commonly exists an
internal data structure with access functions, which can be
utilized by TED. Mutex objects, on the other hand, are typi-
cally not linked to each other so that the set of mutex objects
has to be maintained on the TED level. For this purpose,
call-outs of the thread implementation to the TED layer
upon object creation provide the means to register these
objects in a common set within TED. These call-outs are
part of the modifications to the thread implementation to
ensure debugging support.

TED also supports relations between objects that are cre-
ated or revoked when certain events occur. Upon occurrence
of such an event, a call-back from the thread implementa-
tion updates a relation. Let Dr, Dy, Doy be the domains
of threads, mutexes and condition variables, respectively.
Then, the following relations may hold (see Figure 2):

1. OwnedBy{ThreadID:Dr, MutexID:Dy}
2. BlockedOn {ThreadID: Dy, MutexID:D)s}
3. WaitFor {ThreadID:Dr, CondVarID:Dcv }

4. SignaledBy{CondVarID:Dcv , MutexID:Das}

Relations 1 to 3 have a cardinality of 1 : IV, i.e., a thread
may own multiple mutexes, multiple threads may be blocked
on the same mutex or may wait for the same condition vari-
able. Relation 4 has a cardinality of 1 : 1 for Pthreads since
only one mutex may be associated with a condition variable
that threads are blocked on at a time. Other cardinalities
can be supported as well. E.g., MIT Threads has a M : N
model that allows threads to be blocked on the same con-
dition variable even if they used different mutexes before
suspending. Notice that M : N cardinalities would require

2In the implementation, Tp, is substituted by Tp, since
objects can be uniquely identified by their addresses. This
simplifies the mapping even further.

v

" Thread

)
‘

~, Identifier ‘- WaitFor - Condtion Variable
;éddr{izss of self \\dentifier p
, Priority ?
./ State L Address of self

User Function ;

BlockedOn

l,;

" Mutex
'~ ldentifier o
\ Address of self K

Figure 2: Booch Class Diagram of Object Classes

object classes since only scalar attributes are currently sup-
port by the TED domain T4, i.e., extensions to the TED
would be required.

The open interface for debugging threads encompasses ac-
cess functions for sets to iterate over its members and access
functions for attributes of a member. Table 2 depicts the
iterators and attribute functions and their operational de-
scription. Each interface function is registered with the TDI,
which uses it to build a database of the application’s state
as explained in the next section. The domain of values re-
turned by the iterators and functions is D4 and NU{NULL},
respectively®. If a thread implementation supports only a
subset of this functionality, it simply does not register the
function. Invalid requests return NULL. Persistent objects
are discussed in the next section.

4. THREAD DEBUG INTERFACE (TDI)

The objective of the TDI component is an abstraction from
the thread implementation on one side and the debugger
on the other side. The TDI keeps a database of the ap-
plication’s state. This approach supports the paradigm of
active debugging. The database maintained by the TDI is
only updated when the application changes its state wrt.
multi-threading objects. The TED may register a set of
operations that will inform the TDI of updates during the
application’s execution. Notice that this approach is unique
to active debugging since passive debugging does not allow
application-side execution of auxiliary operations. The TDI
exports the following functions for the registration purpose:

int RegisterObject (RelT Rel, ObjRefT ObjRef);

int DeregisterObject (RelT Rel, ObjRefT ObjRef);

int IsRegistered (RelT Rel, ObjRefT ObjRef);
The signature of these operations includes the relation and
an object of the same type (thread, mutex or condition
variable). If the thread application supports the registra-

3with the following exceptions: id and rstate have a do-
main of Z U {NULL}, state has a domain of {undef=0,
running, ready, blocked_m, blocked_c, blocked_t, blocked_s,
blocked_o, exiting } where the different blocking states refer
to the cause of blocking: mutex, condition variable, timer,
suspension (forced) and other.

Iterator

Description

GetFirstThread, get thread from set
GetNextThread
GetFirstMutex, get mutex from set
GetNextMutex
GetFirstCond, get condition variable from set
GetNextCond
[Attribute | Description

for threads:
id process-persistent thread-ID
addr address of the thread structure
prio priority
state execution state
rstate implementation-dependent state
entry address of thread’s function
earg address of function’s argument
newpc next program counter
sp stack pointer
mbo blocked on this mutex
cvwf blocked on this condition variable
pid ID of process executing the thread

for mutexes:
id process-persistent ID
addr address of mutex structure
owner mutex owner (thread ID)

for condition variables:

id process-persistent ID
addr address of cond var structure
cmutex associated mutex

Table 2: Open Interface for Debugging Threads (It-
erators and Attributes)

tion process, it will invoke the corresponding functions, e.g.,
when locking, unlocking and destroying a mutex. The TED
functionality described in the open interface for debugging
threads is also registered with the TDI. This allows the TDI
to generically invoke TED operations to resolve database
queries. The registration occurs via the following interface:
int SetlterFunc (RelT Rel,ObjRefT (*GetFirst)(),
ObjRefT (*GetNext)(ObjRefT Last));
int SetAttrFunc (RelT Rel, AttrT Attr,
AttrDomainT (*GetFunc) (ObjRefT Obj),
AttrDomainT (*SetFunc) (ObjRefT Obj,
AttrDomainT value));

The exchange between TED and TDI about the range of
debugging support is further generalized by letting the TDI
inform the TED upon activation that a number of functions
are expected to be registered. This registration request of
the TDI includes the list of attribute functions, iterators
and registration procedures for all objects. The TED may
then register a subset or all of these functions, depending on
the range of support. This initial exchange only assumes a
known layout of the data types to be registered and serves
the portability of the involved software components.

The TDI handles the communication with the debugger in
such a way that the debugger receives a consistent view of
the multi-threaded objects in the application, which is dis-
cussed in section 7. This abstraction provides the means to
support persistent identifiers, as seen in Table 2. A persis-
tent identifier is a unique identifier assigned to an object for
its life time. This provision circumvents problems rooted

within thread implementations that recycle object identi-
fiers. FE.g., the Pthreads API only defines a common inter-
face including the signature of operations and their types.
A thread object has a certain type but the meaning of the
value is transparent, i.e., a value may refer to a thread ob-
ject A as long as it exists. Once A terminates, the value may
be recycled to refer to thread B. In a passive debugging ap-
proach, threads A and B cannot be distinguished explicitly,
it would be the user’s responsibility to detect A’s termina-
tion and infer that another thread with the same identifier
truly refers to B. By active debugging, the TDI receives no-
tice of the creation and termination of a thread through the
registration procedure. This allows the TDI to assign its
own values to identify objects and use these values to com-
municate with the debugger. The user is only exposed to
the debugger, which provides the persistent identifiers and
allows a distinction between threads A and B for active de-
bugging.

The actual queries for the database are issued in a uniform
and extensible query language. Queries are defined accord-
ing to a specification of a relational algebra. Each query is
preceded by a mode that either refers to a TED query or a
user-defined extension with its own operational framework.
Queries can be selections and projections limiting the set
of objects in question and defining the requested attributes,
respectively. Each query includes a set of selections of

e a relation with values or

e projections of a relation with assignments.

The queries are resolved by a list of values corresponding to
the projections in the query or by an error message. The
results are a set of answers reduced to ensure that no du-
plicates are contained within the set. Furthermore, requests
for the state of distinct objects can be clustered in one query
and are optimized to remove redundancies. As a result, this
declarative query interface performs better than a procedu-
ral interface where each request would require a separate
function call by the debugger. An example is given in Sec-
tion 7.

5. COMMUNICA TION STRUCTURE

Breakpoint debugging is generally supported by a service
of the operating system. This service, e.g., the system call
ptrace under UNIX, provides access to the trace of a process
as depicted in Figure 3. The debugging process can peek or
poke one word of the application process at a time. It may
also continue in the execution of the application. The per-
formance of the debugger is often constrained by the granu-
larity of its data accesses, which will be quantified in Section
7. When the approach of active debugging is utilized, large
amounts of data may be exchanged between the debugger
and the application rendering the ptrace approach less ef-
ficient. The responses of the TDI for a query issued by the
debugger may contain large amounts of data depending on
the number of active multi-threaded objects in the applica-
tion. Although queries are often much shorter, a symmetric
approach was chosen. The queries issued by the debugger
as well as the responses from the TDI are transmitted using
inter-process communication (IPC).

Target Process

IPC-C
(buff

hannel
ered)

Debugger

Target.call(<RequestHandler>)

call write(<Result #n>

return =—— |

IPC.read

.

8 IPC.write(<TED-Requ aggu) 8
© | o]
E Target.call(<RequestHandler>) (r%lll’m E
5 call M o
Dreturn e—————— Q
> IPC.write(<Result #1>
o cal——— " =)
Qreturn P——— | g
[nd —{return x
IPC.read() call
() (]
I [————————return (Result #1 %
S_-“ subsequent handler calls <
o o
(<]
3 3
c c
o o
o o
(%] 0
[0} (O]
o x

call

return
call
return (Result #n

(a) mutual exclusive execution

(b) parallel execution

Figure 4: Communication between Debugger and Application

Another problem is posed by the fact that the application

(see Figure 4(b)).

Target Process|PC Channel Debugger
(buffered)
IPC.write(<TED-Request>)
e call
| —
Target.call(<RequestHandler> E%wm
| UeteRs el
Replicated call IPC.read()
Target return
Process ok
. ————— . return
calll— |PC.write(IPC.read call
return e ——————— |
call—IPC.write(IPC.read E‘Zﬁ?m (REEMBEEY]
L
W [return (Result #2)
call IPC.write(<Result #n>)
R ———— IPC.read()
return «————— call
exit [return (Result #n)

The child receives the responsibility to

process is stopped while the debugger is active (and vice
versa). The debugger can only make progress when its
queries are handled by the TDI, which is part of the applica-
tion. This problem is solved by letting the debugger issue a
call to a handler function within the application. A ptrace
call for continuation activates the server side of the TDI,
which receives the request, resolves the query and initiates
the response. The response may contain a large amount of
data that cannot be transfered in one buffer since the buffer
length is generally constrained by the IPC mechanism. The
debugger could issue repeated ptrace calls to receive one
packet at a time but this would result in a large number of
context switches of the debugger and the application process
as a side effect of using ptrace (see Figure 4(a)). Instead,
the application process forks a child upon long responses

Application Operating System Debugger
I
I
! . ptrace[POKE...] /
! read/write ptrace[PEEK...]
‘ Data e || call
| I W
I
. .
| e cal
.
! return
I
o ! ptrace[CONT]
£ | continue e |
[[I —————
return
wait call
e |
| trap, signal ;
) return
rrrrrrrrrrr blocked
777777 stopped
— CtIVE

Figure 3: Breakpoint Debugging with Ptrace

fill the IPC buffers before terminating while the debugger
can receive the TPC packets in parallel.*

6. DEBUGGER EXTENSIONS

The debugger was extended in two respects. First, the IPC
interface to the TDI was added. Second, new user com-
mands to control the debugging process were included and
their resolution was handed off to the TDI. The IPC exten-
sions are bundled in one module, the TDI client, and can
be bound with the debugger during the build process. The
TDI client handles the client side of the IPC communica-
tion. The debugger may invoke send and receive functions
of the TDI client to send a query and receive the response,
in both cases as a string. After sending a query the ap-
plication is continued (ptrace call) within the TDI-Server,
the main function on the application side of the TDI. The
TDI server evaluates the query, hands it off to the parser
of the query language, which may update the state of the
database using the TED interface. Once the response has
been formatted, it is returned using IPC and the debugger
can act upon the result. The second extension of the de-
bugger defines a number of new user commands and their
actions. This additional functionality is detailed in Section
8.

7. IMPLEMENT ATION

The implementation comprises changes to the debugger and
the threads implementation. The Gnu debugger GDB 4.18
was chosen for this purpose since the sources are available,
it is widely used and actively maintained [19]. The chosen
thread implementations range from kernel threads (Linux-
Threads) [11] over mixed threads (Solaris) [16] to user-level
threads (FSU and MIT Pthreads) [14, 17].

One of the challenges of active debugging is posed by the
interaction between the activation of debugging operations

“Even on a uniprocessor, the child process and the debugger
may run concurrently and do not require context switches
for each packet anymore.

within the application and the regular execution of the ap-
plication itself. The TDI server may be a separate thread
for kernel threads while the server may simply be invoked in
the context of the active thread for user-level threads. But
this approach may result in scheduling actions due to

1. a skew of the consumed execution time of the TDI,
2. event notification or

3. calls to library functions that use synchronization.

When round-robin scheduling is active, additional execu-
tion time consumed by the TDI server may cause a context
switch of the current thread. If the switch occurs before
the TDI server finishes, the results obtained for debugging
may be inconsistent. One part of the results may origi-
nate before the context switch and another part after the
switch subject to a modified thread state since application
threads had been active meanwhile. This problem will not
only occur upon timer expiration but may also be caused
by other signals. Context switches may also be caused by
synchronization, in particular when the TDI server calls a
library function whose entry is protected by a mutex. The
mutex may already be locked by a thread in the application
resulting in a context switch from the TDI server to the ap-
plication thread. Even worse, a deadlock may occur if the
application thread is the same thread that executes the TDI
server.

First, the problem of calling library functions that contain
synchronization was addressed by providing TDI-specific
replacements for heap allocation and string manipulation.
Other functions used by the TDI server do not contain po-
tentially blocking library calls.

Second, the problem of signal handling during TDI acti-
vation shall be discussed. One solution would be to mask
signals in the application for a limited time. But masking
could only be accomplished by the application itself, which
causes a race: A signal may arrive while the TDI tries to
mask signals so that the TDI would loose control and other
threads may be scheduled. The race can be avoided if the
debugger forced the masking of signals for the application
but most operating systems only provide such an interface
for the current process and not for another process. Instead
of an operating system interface, the thread implementation
was enhanced to provide a flag that, when set, collects sig-
nals for later handling as depicted in Figure 5. The debugger
uses the ptrace call to set the flag in the application (1).
Incoming signals are collected but their handling is post-
poned during TDI activation. Once the TDI activities are
complete, the debugger reads the collected signals (2), clears
the flag and collected signals and sends each signal to the
application (3).°

The implementation of the TDI server contains a commu-
nication subsystem, a query parser and a query evaluator.

5An alternative to re-issuing the signals would be to add
them to the pending signals of the thread implementation
and force a check on pending signals when resuming the ap-
plication, which would have the advantage that signal con-
texts were preserved. Future work may include such a pro-
vision.

The communication structure was implemented via shared
memory IPC between processes. The performance was eval-
uated by comparing the IPC variant using a page size of
8kB with a ptrace implementation using a 32 bit word size,
both under Linux 2.0.36 on a 150MHz Pentium with FSU
Pthreads. Figure 6 shows that the response time for ptrace
is five times higher than the performance for IPC. The re-
sults underline the advantages of the IPC approach for the
TDI communication.

The query parser was generated from lexical and syntactical
specifications by the generators Flex and Bison, respectively.
The parser reports errors for illegal queries or transforms
legal ones into a tuple representation, which is then fed to
the query evaluator. The evaluator may optimize the query,
invoke TED functions to resolve the query and compile a
response. Examples for a query may be as follows:

thread:id,entry,state:state == 1 || mbo == 0 (1)
thread:id,prio=10,state: (prio+10<20) && cvwf ! =0x10 (2)

Query (1) requests the identifier, state and function of all
threads that are running or not blocked on a mutex. Query
(2) requests the same information (except for the function)
for threads whose priority plus 10 is less than 20 and who
are not blocked on a condition variable (second conjunct).

POSIX Threads Debugger

Scheduling

trace(POKE..., . ..
pthread_debug_TDI_sig_ignore @ - ()

F off op Record

(3) kill(pid, SIGALRM)

Feedback

Timer
@ ptrace(PEEK..., . . .)

T -

pthread_debug_TDI_ignored_signals

Figure 5: Signal Handling during Active Debugging

20
175
15
125
10
7.5
5
25
0

response time [sec]

0 250 500 750 1000 1250 1500
instantiated threads

Figure 6: Response Times: IPC vs. Ptrace

Query (2) also sets the priority of the selected thread to 10.
A response to the debugger may be as follows:

8 804b238 2 #7 804b238 2 #10 804b238 1

The debugger interprets each of the three tuples as (iden-
tifier, function address, state) and translates addresses and
states into symbolic names for its output.

The TDI server is combined with the application by dy-
namically linking the application with the TDI server relo-
catable library. This has the advantage that an application
compiled for testing and debugging only has to be linked
with the dynamic linker library using -1d1. The TDI will
not be invoked or even linked when the application is exe-
cuted outside the debugger. Once the debugger is invoked,
it checks if the threads of the application contain a sym-
bol to indicate debugging support for threads. If the the
flag is found, it will be set by the debugger and results in
dynamic binding and invocation of the TDI server library
during the initialization phase. The debugger then sends a
pthread TDI_register message to the TDI server. The TDI
presents the TED with the set of functions it expects, and
the TED responds with the registration of attribute and it-
eration functions. Afterwards, the TDI may resolve queries
by referencing thread objects through TED functions.

Thread-specific breakpoint debugging also requires changes
to the debugger. In GDB, the routine proceed calling nor-
mal_stop, wait_for_inferior and resume control the trap han-
dling for breakpoints. A command to resume execution ac-
tivates the application. The debugger then waits for the in-
ferior process (application) to hit a trap instruction. When
the trap is hit, the debugger resumes control and cleans
up its traces from the application’s code in normal_stop.
Thread-specific breakpoints modify this sequence by check-
ing upon resumption of the debugger after wait if the break-
point reached corresponded to the requested thread. If the
thread identifiers match, normal_stop is called. Otherwise,
the breakpoint is reset similar to the cleanup performed in
normal_stop and resume is called again. The cleanup is de-
picted in Figure 7. When the application traps, the inserted
trap instruction has to be replaced by the original instruc-
tion A of the application to ensure the correct semantics.
Now, B has been replaced by a trap to transfer control to
the debugger for resuming execution (2). Then, the trap is
replaced by B while A is replaced by a trap to make sure that
the application halts at the same breakpoint again the next
time around. The execution in step (2) may, however, cause
a scheduling action if a signal was received. This is prevented
by disabling signals during step (2) using the facilities dis-
cussed before. Finally, the thread identifier of the active
thread has to be determined at a breakpoint. For user-level
threads, it suffices to search for the single running thread us-
ing a TDI query. For kernel threads, multiple threads may
be running (on a multi-processor) but the system call wait
returns information about the process that caused a trap.
For mixed threads, the low-level scheduling entity has to be
identified and it has to be ensured that parallel execution
of a trap by different threads of one application results in
serial notification of the debugger (on the operating system
level). For example, Solaris maps POSIX threads onto light-

weight processes (LWPs) whose status information would
have to be checked upon encountering a trap. This requires
that the LWP and its state for a POSIX thread is deter-
mined, for example, through the /proc file system. Single
step commands, such as ptstep, ptnext (see next section),
use a similar technique to only count steps executed by the
current thread. Attaching and detaching threads also has
a similar effect but includes thread-specific breakpoints for
the program counter of the target thread. A breakpoint on
the next context switch is realized by setting conditional
breakpoints at the program counter of all threads except for
the one that has trapped. Once such a breakpoint is hit, all
other conditional breakpoints set before have to be deleted.
Forcing a change in the scheduling pattern results in a TDI
query that sets thread attributes and invokes a TED func-
tion to affect the scheduler of the thread implementation. A
forced suspension also requires that the debugger signal the
application. This ensures that the scheduler is invoked to
dispatch the next thread eligible to run. This can also be
achieved by adding a scheduler signal to the set of collected
signals during signal masking, as discussed before.

8. THREAD-AWARE DEBUGGING

This sections describes commands that have been added or
modified to make GDB thread aware and provide extended
debugging support for multi-threaded applications. Notice
that GDB already provides limited debugging support for
selected thread implementations. The new commands for
debugging threads have been chosen to coexist with the ex-
isting functionality. For example, info threads may already
list the threads for Solaris, Mach and LinuxThreads. The
new command info pthreads lists threads for any applica-
tion supporting the TDI/TED facilities and includes exten-
sive information about the state of each thread, the object
it may be blocked on, priorities etc. Both commands are
available at the same time.

Breakpoint a[n] hit
)
c trap aln]
i—- Inst. B |a[n+1]
Inst. C |a[n+2]

[

Code Segment

—

Reset L instA an]
trap a[n+1]
Inst. C | a[n+2]
]

Code Segment

Resie
Ready to
Resume Execution
—)
Inst. A | a[n] Reset ne trap aln]

pe trap a[n+1] == Inst. B | a[n+1]

=—s=| Inst.C |a[n+2] Inst. C | a[n+2]
— —

Code Segment Code Segment

Figure 7: Resetting a Breakpoint

e info pthreads lists the set of threads that have not
terminated yet including the attributes for threads de-
picted in Table 2.

e info pmutex lists the set of initialized mutexes with
the attributes of Table 2.

e info pcond lists the set of initialized condition vari-
ables with the attributes of Table 2.

e break <location>pthread <Thread ID> sets a
thread-specific breakpoint for <Thread ID>at <loca-
tion>

e ptattach <Thread ID> stops <Thread ID>the
next time it is scheduled at the first possible location
and transfers control to the debugger. Once issued, all
subsequent breakpoint commands (break, next, step)
are thread-specific. This means that these breakpoints
only apply to the attached thread while other active
threads will not stop at these breakpoints.

e ptdetach reverses a ptattach and makes breakpoints
applicable to all threads again.

e ptstack <Thread ID> prints the call stack of
<Thread ID>.

e continue -cs continues the execution until a break-
point is hit or a context switch occurs, which ever
comes first. In the latter case, the identifier of the
new thread is printed.

e ptnext/ptnexti/ptstep/ptstepi [n] issues n next or
step instructions for the current thread and ignores
other instructions executed by concurrently running
threads.

These facilities go beyond traditional debugging support for
threads in the following sense. The cause of blocking of
threads and the blocking object can be identified. This may
allow the user to identify deadlocks when circular depen-
dencies between synchronization objects and threads are de-
picted.® It provides the user with the call stack of threads,
i.e., the user can follow the progress of concurrent execu-
tions. Thread-specific breakpoint debugging simplifies the
user’s task of tracing the execution of selected threads. In-
teractions with other threads can be detected by notification
upon context switches. Finally, scheduling actions forced by
the user allow selected activation and suspension to disable
or force thread interactions, test their impacts and possibly
track down problems between these interactions.

We also assessed the overhead of the active debugging sup-
port through TDI and TED. On the application side, over-
head may be incurred by the TED. Two Splash-2 bench-
marks [24] were measured (processes emulated by FSU
Pthreads) on a Pentium II 350 MHz under Linux 2.2.14, as
depicted in Figure 6. Fft performed calculations for 2%° data

5Tt may seem that automatic deadlock detection could be
easily incorporated. This is true in the sense that the state
of threads may not change in the absence of signals. The
signal semantics of Pthreads does not provide such a stable
state since signals may interrupt a synchronization request
and then skip out of the synchronization call from the signal
handler. For this reason, automatic deadlock detection has
not been implemented.

Program | No Debugging | GDB-TDI | Overhead
fft 14 sec 16 sec 12.5%
barnes 33 sec 40 sec 17.5%

Table 3: Performance Overhead of Active Debug-
ging

points. The numbers for Fft exclude initialization. Barnes
used the standard parameters (except for 5 leaves), and
the numbers reported represent the computation time, only.
During the experiments, the number of processes (threads)
was varied between 2 and 128 but this had no effect on the
measurements. The overhead represents the portion of the
second measurements that were due to active debugging.
This overhead depends on the characteristics of the appli-
cation, e.g., fft uses less synchronization than barnes, which
explains the lower overhead of the former. On the debugger
side, the overhead of the TDI and of queries are not notice-
able to the user, i.e., the response time of TDI queries equals
that of any other debugger interaction. However, if a large
database is gradually built (thousands of threads, mutexes,
etc.) then the response time of queries may be affected since
all entries may be probed. We did not experience this prob-
lem in practice. Hence, relational queries seem suitable for
active debugging.

9. RELATED WORK

McDowell and Helmbold present an overview of the prob-
lems and solutions for debugging concurrent programs [13].
Ceswell and Black [5] describe a debugger for Mach threads
with thread-specific breakpoints and forced scheduling ac-
tions. The approach is limited to kernel threads, uses a
non-standard ptrace interface and is not as portable as the
approach described in this paper. Ponamgi et al. [15] con-
tinue their work with this debugger by adding event han-
dling to detect deadlocks, livelocks and multiple entry to
critical sections. Similar support could be added to our work
at the level of the TDI but is subject to the constraints de-
scribed before, i.e., certain thread standards may not allow
deadlock detection due to signal handling. SmartGDB uses
the non-generic design of Figure 1(a) where for each thread
implementation the debugger has to be modified. Changes
in a thread implementation may, in turn, require changes
in the debugger. GDB 4.18 [19] requires even more modi-
fications than SmartGDB for each thread implementation.
SmartGDB and GDB 4.18 support only a subset of our func-
tionality for debugging threads and still use the slow ptrace
call for communication. Solaris utilizes the /proc file system
to efficiently access internal structures of the application,
which is an alternative to the communication used by TDI
in terms of efficiency but provides neither portability for sys-
tems without /proc file system nor does it allow a generic
encapsulation as seen in Figure 1(b) with its localization of
implementation-dependent extensions. Solaris also provides
a library for debugging threads with similar functionality
as the TED interface but lacks the flexibility of the TDI,
which makes our approach portable. Wismiiller et al. [23]
describe a tool set for debugging parallel programs consist-
ing of a debugger (Partop) and a monitoring tool. Partop
supports thread-aware debugging and uses the event-action
paradigm that executes a certain action when an event oc-

curs, e.g., when a thread is created. A generalization of the
event-action paradigm is provided by path expressions and
path actions in the context of debugging [3]. In this work,
path expressions were proposed at the user level, which few
debuggers support today. Our work does, on one hand, uses
similar concepts under the paradigm of active debugging.
On the other hand, these concepts are utilized for internal
purposes rather than at the user level, i.e., as a means of
communication between debugger components in a portable
fashion. The high performance debugging forum (HPDF)
specified a command interface for parallel debuggers [9] in-
cluding thread-aware debugging. Our work does not specify
a user interface but rather an interface to a thread library
that may be utilized by a debugger. We also implement the
thread-aware functionality of the HPDF interface and even
go beyond these requirements, e.g., by supplying additional
functionality to display synchronization data or execute up
to the next breakpoint. Cownie and Gropp [6] propose a
debugger interface to display messages within MPI imple-
mentations and demonstrate this work in TotalView. In-
dependent from our work, they also conclude that dynamic
linking of shared libraries represents the most flexible way
to provide debugging facilities for multiple runtime libraries.
Panorama [12] is a parallel debugger for MIMD architectures
that relies on text-based debuggers to collect information
and visualize it in a predefined or a user-defined representa-
tion. Panorama’s portability is given by its reliance on text-
based debuggers at a lower level. Our work differs in that
we provide such a text-based debugger extension that may
be used by a visualization debugger like Panorama. Kessler
[10] introduced fast breakpoints, which can be regarded as
a variant on active debugging. Conditional breakpoints are
realized by replacing the trap with a call to a debugging-
specific handler in the application that checks the condi-
tion of the breakpoint and only traps if it evaluates to true,
thereby improving performance. We use active debugging
to resolve relational queries. KDB [4] supports two-level
debugging of user and kernel threads with a unique design.
Each kernel thread is controlled separately by a local debug-
ger using the ptrace interface and the /proc file system. A
main debugger interacts with the user and steers all local
debuggers. Our work differs in that we require a TED inter-
face for each thread level. Snodgrass [18] utilizes relational
queries for monitoring by extending databases to keep his-
tories of traces and providing a temporal operator to query
these histories. Our relational queries involve on-line de-
buggers accessing computing states without histories rather
than monitoring data. Overall, none of these tools use active
debugging or relational queries for debugging threads nor do
they support as much functionality as the work presented in
this paper combined with portability at the same time.

10. CONCLUSION

This paper proposes an open interface for debugging as an
extension to thread implementations. In addition, exten-
sions for thread-aware debugging are identified and imple-
mented within the Gnu Debugger to provide additional fea-
tures beyond the scope of existing debuggers. The work is
based on the paradigm of active debugging that includes
a language-independent protocol to communicate between
debugger and application via relational queries to ensure
that the enhancements of the debugger are independent of
actual thread implementations. Partial or complete imple-

mentations of the interface for debugging can be added to
thread implementations to work in unison with the enhanced
debugger without any modifications to the debugger itself.
Sample implementations of the interface for debugging have
shown its adequacy for user-level threads, kernel threads and
mixed thread implementations while providing extended de-
bugging functionality at improved efficiency and portability
at the same time.

Availability

The modified debugger GDB-TDI (sources and bi-
naries) and its documentation are available at
http://www.informatik.hu-berlin.de/~mueller/TDI un-
der the Gnu Public License.

11. REFERENCES

[1] R. Alfieri. An efficient kernel-based implementation of
posix threads. In USENIX Conference, Summer 1994.

[2] F. Armand, F. Herrmann, J. Lipkis, and M. Rozier.
Multi-threaded processes in CHORUS/MIX. In EEUG
Conference, pages 1-13, Spring 1990.

[3] B. Bruegge and P. Hibbard. Generalized path
expressions: A high level debugging mechanism. In
Software Engineering Symposium on High-Level
Debugging, pages 34-44, Aug. 1983.

[4] P. Buhr, M. Karsten, and J. Shih. KDB: A
multi-threaded debugger for multi-threaded
applications. In Symposium on Parallel and
Distributed Tools, pages 80-87. ACM Press, May 1996.

[6] D. Caswell and D. Black. Implementing a Mach
debugger for multithreaded applications. In Winter
USENIX Conference, pages 25—40, Berkeley, CA,
USA, Jan. 1990.

[6] J. Cownie and W. Gropp. A standard interface for
debugger access to message queue information in MPI.
In 6th European PVM/MPI Users’ Group Meeting,
volume 1697 of LNCS, pages 51-58. Springer-Verlag,
1999.

[7] C. G. Davis. Testing large, real-time software systems.
In Software Testing, Infotech State of the Art Report,
volume 2, pages 85-105, 1979.

[8] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner,
A. Shivalingiah, M. Smith, D. Stein, J. Voll,
M. Weeks, and D. Williams. Beyond multiprocessing
... multithreading the SunOS kernel. In USENIX
Conference, pages 11-18, Summer 1992.

[9] H. P. D. Forum. Command interface for parallel
debuggers. Draft revision 2.1 for standard, The
Parallel Tools Consortium, Sept. 1998.
http://www.ptools.org/hpdf/draft.

[10] P. B. Kessler. Fast breakpoints. design and
implementation. ACM SIGPLAN Notices,
25(6):78-84, June 1990.

[11] X. Leroy. The linuxthreads library.
http://pauvillac.inria.fr/~zleroy /linuzthreads, 1996.

[12]

[17]

(20]

[21]

[22]

[24]

J. May and F. Berman. Retargetability and
extensibility in a parallel debugger. Journal of Parallel
and Distributed Computing, 35(2):142-155, June 1996.

C. E. McDowell and D. P. Helmbold. Debugging
concurrent programs. ACM Computing Surveys,
21(4):593-622, Dec. 1989.

F. Mueller. A library implementation of POSIX
threads under UNIX. In Proceedings of the USENIX
Conference, pages 29-41, Jan. 1993.

M. K. Ponamgi, W. Hseush, and G. E. Kaiser.
Debugging multithreaded programs with MPD. IEEE
Software, 6(3):37-43, May 1991.

M. L. Powell, S. R. Kleiman, S. Barton, D. Shah,
D. Stein, and M. Weeks. SunOS multi-thread
architecture. In USENIX Conference, pages 65-80,
Winter 1991.

C. Provenzano, G. Hudson, and K. Raeburn. Mit
pthreads.
http://www.mit.edu/people/proven/pthreads. htmil,
1993.

R. Snodgrass. A relational approach to monitoring
complex systems. ACM Transactions on Computer
Systems, 6(2):157-196, May 1988.

R. M. Stallman. GDB manual (the GNU source-level
debugger). Technical report, Free Software
Foundation, 675 Mass Ave, Cambridge, MA 02139,
USA, Tel: (617) 876-3296, USA, Jan. 1989. Third
Edition, GDB version 3.1.

D. Stein and D. Shah. Implementing lightweight
threads. In USENIX Conference, pages 1-10, Summer
1992.

Technical Committee on Operating Systems and
Application Environments of the IEEE. Portable
Operating System Interface (POSIX)—Part 1: System
Application Program Interface (API), 1996.
ANSI/IEEE Std 1003.1, 1995 Edition, including
1003.1c: Amendment 2: Threads Extension [C
Language].

A. Tevanian, R. F. Rashid, D. B. Golub, D. L. Black,
E. Cooper, and M. W. Young. MACH threads and the
UNIX kernel: The battle for control. In USENIX
Conference, pages 185-197, Summer 1987.

R. Wismiiller, M. Oberhuber, J. Krammer, and

O. Hansen. Interactive debugging and performance
analysis of massively parallel applications. Parallel
Computing, 22(3):415-442, Apr. 1996.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and

A. Gupta. The SPLASH-2 programs: Characteriation
and methodological considerations. In Proceedings of
the 22nd Annual International Symposium on
Computer Architecture, pages 24-37, New York,

June 22-24 1995. ACM Press.

