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ABSTRACT
Loss function is the fundamental driver of backpropagation learn-
ing in deep convolutional neural networks (DCNN). There exist
alternative formulations, such as cross entropy, jaccard and dice.
But does the choice of loss influence quality decisively? Another rel-
evant question is whether the quality of the best approaches nears
perfection, as some seem to suggest. In this paper we investigate
how variations of loss function affect the outcome of segmentation
of abdominal organs by Magnetic resonance imaging (MRI). Varia-
tions include changing the loss function (cross entropy, dice, IoU),
but also penalizing differently false positives and false negatives.
We conclude that, for this problem of segmentation of abdominal
organs, we were able to improve the quality of segmentation by
6% based on tuning the loss function on the best performing seg-
mentation network (deeplabV3). The conclusions are important
for anyone trying to segment these or other organs and structures.
Future work is required to generalize the conclusions on other
datasets as well, and to conclude in what concerns factors that
determine the best choice.
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1 INTRODUCTION
Magnetic resonance imaging (MRI) is an imaging technology based
on applying strong magnetic fields to affect proton spin movements,
then releasing the magnetic field and observing specific relaxation
times (the return of protons to the original resting phase). An MRI
scan produces a sequence of two-dimensional slices, allowing a
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full study and 3D reconstruction of the body structures captured
in those slices. Segmentation is an algorithmic procedure which
further individualizes specific organs and structures. While manu-
ally tuned segmentation algorithms, based on features extraction
and atlas information were the norm some years ago, deep learning
revolutionized the procedure by introducing automatic end-to-end
learning from training images and groundtruths. In those systems
a large number of iterations improves the quality of the output
sequentially.

In general, deep learning has since been used to both classify
and segment all kinds of medical images. Examples of segmentation
applied to Magnetic resonance images (MRI) include acute ischemic
lesions [1], brain tumors [2], the striatum [3], organs-at-risks in
head and neck [4], polycystic kidneys [5], prostate [6] and spine
[7], applications also being reviewed in [8] and [9].

The principal objective of the segmentation algorithm in this con-
text is to achieve as good as possible delineation of the organs and
structures that are targeted by the approach. Given a set of training
images and groundtruth segments, the deep learning segmenta-
tion system trains based on a set of iterations. On each iteration
it takes each image sequentially through a set of convolution and
deconvolution stages, which operate mathematical operations on
the inputs based on coefficients, and outputs a segmentation mask.
That segmentation mask is compared with the groundtruth masks
(the correct segmentation) using a function that is called the loss
function, since it computes the loss or error. The loss is then back-
propagated to iteratively modify the coefficients slightly along the
whole network in each iteration, using a gradient descent algo-
rithm or similar. The learning process is therefore a large number
of iterations of this backpropagation learning, until at the end one
expects the loss to be minimized and the segmentation to be as
good as possible. It is however difficult for the loss function to be
perfect. In the next example of Figure 1 the final loss of the training
procedure was less than 2%, yet we can see an example of incorrect
segmentation.

Given the importance of the loss function in the training of the
networks, perhaps its choice has definite influence in the quality of
the results? Another important question is how perfect is segmenta-
tion using as good as possible loss function? For these reasons, it is a
relevant topic to experiment with different formulations. However,
it is also important to understand why there are limitations with
the loss function, which leads us to study metrics. Loss is a metric,
exactly as the metrics used to evaluate quality of segmentation. We
need to understand the limitations of metrics themselves, and then
the limitations of loss as a metric, in order to understand why a
solution with very small loss might in fact be visually imperfect.

In this paper we first study the metrics and loss alternatives,
highlighting the problems exhibited by each. Afterwards, we resort
to an experimental approach to study the effect of different loss
functions and variations on the quality of segmentation of MRI
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Figure 1: MRI segmentation of independent test images using DeepLabv3. The left shows the groundtruth, the right shows the
segmentation. It is visible that the segmentation is still not perfect.

sequences of abdominal organs. This allows us to better understand
the effect of loss in that context. We achieve a 6% improvement over
the default cross entropy loss function. We also define as future
challenge experimenting with other datasets and arriving at a set
of rules regarding the choice of best loss function depending on the
data. These results extend prior work in the detail of evaluating how
effective is a choice of loss function and some variations that can
be introduced. It also focuses on quantifying the quality achievable
by a choice of network and loss function, in the context of MRI of
abdominal organs.

2 RELATEDWORK
The segmentation network is a modified DCNN architecture that
classifies each pixel (with a segment label) instead of the image.
To achieve this, the fully connected layers are replaced by a de-
coder that successively de-convolves until the full image size is
restored. The Fully Convolutional Network (FCN) [10] was one
of the first well-structured segmentation network architectures. It
uses a DCNN as encoder (e.g. VGG) and replaces the final fully-
connected layers by up-sampling interpolation layers. U-Net intro-
duced further innovations [13], with de-convolution stages sym-
metric to the convolution stages (forming a U-shape) instead of
interpolation. De-convolutions combine feature and spatial infor-
mation through a sequence of up-convolutions and concatenations
with high-resolution features from the contracting path. DeepLab
[12] is another highly accurate segmentation network that intro-
duces important innovations. One such innovation is Atrous Spatial
Pyramid Pooling (ASPP), which improves segmentation at multi-
ple scales. Another innovation is the use of Conditional Random
Fields (CRF) that apply probabilistic graphical models for improved
determination of objects boundaries.

Recent works on segmentation of MRI and CT (computer tomog-
raphy) images include Zhou [13], which used a fully convolutional
networks (FCN) applying a majority voting scheme on the output of

segmentation of 2D slices taken from different image orientations
of CT. Then [14] applied a similar approach to segmentation of the
abdomen from MRI sequences, Larsson [15] proposed SeepSeg and
[16] proposed multi-slice 2D neural network designed in a way
that considers information of subsequent slices, plus augmented
data and multiview training. Groza [17] presents an ensemble of
DL networks with voting, and [18] tests different architectures (U-
Net, deeper U-Net with VGG-19, a cascade of two networks). In
[19] the authors propose a new MRI segmentation method using a
CNN-based correction network for MRI-guided adaptive radiother-
apy, having achieved high segmentation scores. In [20], Chlebus
et al. studied reducing inter-observer variability and interaction
time of MR liver volumetry by combining automatic CNN-based
liver segmentation and manual corrections, achieving jaccard seg-
mentation score of 0.9 for the liver. In [21] the authors proposed
automatic abdominal multi-organ segmentation using deep convo-
lutional neural network and time-implicit level sets. [22] proposes
an organ-attention networks and statistical fusion, and [23] pro-
poses a multi-scale pyramid of 3D fully convolutional networks for
abdominal multi-organ segmentation.

Compared to all thoseworkswe pose a different question, namely
how useful are loss function variations and how perfect is segmen-
tation with the best performing one. Although loss has not been
the centerpiece in approaches to improve segmentation quality,
some authors pay some attention to it. In particular, [24] proposed
improving deep pancreas segmentation in CT and MRI images
via recurrent neural contextual learning and “direct” loss function.
They propose a Jaccard Loss. [18] also replaced cross-entropy but
by the dice function to better deal with class imbalance. The loss
function is based on a metric, and the problem of metrics in gen-
eral is mentioned in [25]: “many scores are artificially high simply
because the background is huge and hence the term TN (true nega-
tives) is also huge”. These works have shown the importance of loss
and the limitations of metrics in general. In this paper we take these
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lessons to propose and experiment with different loss alternatives
in the context of MRI of abdominal organs.

3 MATERIALS AND METHODS
3.1 Influence of metrics and loss
In most bibliography, metrics are defined considering a binary
classification problem that classifies into two classes: positive (P),
with the meaning “is”, and negative (N), with the meaning “is not”.
The quantities TP, TN, FP and FN correspond to the number of
pixels that are true positives, true negatives, false positives and
false negatives, respectively. Given those quantities, some of the
most frequently used metrics are:

Accuracy (ac)= (TP + TN) //TP + TN + FP + FN); (1)

Sensitivity (se)= recall = TruePositiveRate (TPR)= TP/ (TP + FN)
(2)

Specificity (sp)= TN/ (TN + FP) (3)

Precision (p)= TP/ (TP + FP) (4)

False Positive Rate (fpr)= FP/ (FP + TN) (5)

ROC, a plot of TPR vs FPR, and AUC,
the area under the curve of ROC (6)

IoU = JI = TP/ (TP + FN + FP) (7)

Dice (dice) = DSC = 2TP/ (2TP + FP + FN)= 2JI/ (JI + 1)
,which is highly correlated with JI (8)

In multiclass problems we can apply the same formulas, but
considering the following quantities instead: a TP pixel is a pixel
that belongs to one class c different from background in groundtruth
and also in the segmentation; a TN pixel is a pixel that belongs to
background in both groundtruth and segmentation; an FP pixel is a
pixel that belongs to background in groundtruth but is classified
as some other class c in segmentation; an FN pixel is a pixel that
belongs to some class c different from background in groundtruth
but is then classified as background;

The following three observations are important reasons why the
metrics defined in equations (1) to (8) can fail to evaluate segmen-
tation correctly in many medical imaging contexts:

a) the number TP is always huge in all metrics, because TP
of background pixels is huge. As a consequence, all metrics
(1) to (8) report high scores regardless of the actual quality
of segmentation of individual organs if evaluated over all
pixels;

b) TN is also huge because it includes a huge number of back-
ground pixels that are well classified. It means that specificity
(SP), FPR, ROC and AUC do not evaluate the quality of seg-
mentation of organs well;

c) Sensitivity (a.k.a recall or TPR), although useful because it
quantifies the fraction of organ pixels classified correctly as
such, fails to capture very important possible deficiencies,
because it does not include FP (background classified as
organ) in the formula, a frequent occurrence.

Given the previous observations we conclude that metrics need
to be evaluated and reported separately for each class (TP, TN, FP
and FN replaced by TPc, TNc, FPc and FNc, where c is a class).

But the loss function, which is also a metric, needs to output
a single value to be used as delta in backpropagation learning,
therefore it must be averaged over the loss of each class, in spite of
the fact that there is a huge imbalance with class background. That
is the reason why the training and validation losses can be so low
in a quite imperfect segmentation.

Based on the previous discussion we define a set of loss functions
besides cross entropy, and a set of variations:

Cross entropy (crossE, the default to compare with): cross
entropy measures dissimilarity between pixel classification and
actual pixel class. If ti and si are the groundtruth and the CNN score
of each pixel for each class i respectively,

crossE = −

C∑
i
ti log si (9)

Intersect over the Union (IoU or JI):

IoU (loss) = 1 − IoU = 1 −
TP

TP + FP + FN
(10)

IoU over classes is ,

IoU (loss) = 1 −
∑C
I=1 IoUi

C
, IoUi = 1 −

TPi
TPi + FPi + FNi

(11)

Dice (dice): The dice (or DSC) is highly correlated to IoU,

dice (loss) = 1 − DSC = 1 −
2TP

2TP + FP + FN
(12)

dice (loss) = 1 −
∑C
I=1 dicei

C
,dicei = 1 −

2TPi
2TPi + FPi + FNi

(13)

Intersect over the Union with penalties (IoUxy): IoUxy is
similar to IoU but penalizes differently FP and FN in the de-
nominator of the formula:

IoUxy (loss) = 1−
∑C
I=1 IoUxyi

C
, IoUxyi = 1−

TPi
TPi + αFPi + βFNi

(14)
In these formulas α and β are such that α+β =2, α , β>=0.

3.2 dataset and experimental setup
The Magnetic Resonance Imaging data used in our experiments
is a set of scans available in [26]. It consists of (MRI) acquisitions
of 120 MRI sequences from 120 healthy patients (routine scans,
no tumors, lesions or any other diseases), capturing abdominal
organs (liver, kidneys and spleen), obtained using T1-DUAL fat
suppression protocol. The sequences were acquired by a 1.5T Philips
MRI, which produces 12-bit DICOM images with a resolution of
256 x 256. The ISDs varies between 5.5-9 mm (average 7.84 mm),
x-y spacing is between 1.36 - 1.89 mm (average 1.61 mm) and the
number of slices per scan is between 26 and 50 (average 36). Train,
test and validation data independent form each other were always
obtained by dividing the patients into those subsets. The proportion
was 80%/20% train/test. Data augmentation was defined based on
random translations of up to 10 pixels, random rotations up to 10
degrees, shearing up to 10 pixels and scaling up to 10%.
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Table 1: IoU of segmentation networkswith base crossE loss.

class DeepLabV3 FCN UNET

Background 99% 99% 98%
Liver 86% 86% 74%
Spleen 82% 74% 73%
rKidney 77% 78% 75%
lKidney 81% 77% 78%
Avg IoU 85% 83% 80%

We experimented with U-NET [11], FCN [10] and DeepLabV3
[12]. The experiments reported in this work were preceded by a
set of iterations tuning configurations to the best possible results.
The final network training parameters after tuning, to be used in
our experimental work, were: learning function Stochastic gra-
dient descent with momentum (SGDM), with an initial learning
rate=0.005, piecewise learning rate with drop period of 20 and learn
rate drop factor of 0.9 (i.e. the learn rate would decrease to 90% every
20 epochs). training iterations were 500 epochs; minibatch sz=32;
momentum= 0.9. The factor that most improved performance in
our initial tuning prior to experiments was data augmentation,
which we described before. A machine with a GPU NVIDEA G
Force GTX1070 was used for the experiments.

4 RESULTS
4.1 Choose best-performing network
Table 1 shows IoU (JI) of UNet, FCN and DeeplabV3 with crossE
loss. The best-performing network was DeepLabV3 (85% vag IoU
versus 80 to 83%). Our next experiments use that network.

4.2 Comparison of loss function variations
Table 2 shows the global scores of the different loss functions, and
table 3 details the results further by displaying loss scores for each
organ measured as IoU.

Given that IoU with different weights to false positives and false
negatives was superior to other choices, we also experimented
with varying the alpha coefficient in the denominator of IoU loss
function (αFPi + βFNi ).

5 DISCUSSION
In table 2 accuracy and weighted IoU always scored very high,
while the remaining metrics better reveal deficiencies and allow
us to compare the approaches better. IoU in table 2 shows that

Table 3: IoU of segmentation network DeepLabV3 with diff.
loss functions.

IoU crossE IoU IoU Iou dice

α
β

- 1
1

1.5
0.5

0.5
1.5

-

BackGround 0.99 0.99 0.99 1.00 0.99
liver 0.86 0.84 0.69 0.88 0.87
spleen 0.82 0.84 0.80 0.87 0.80
rkidney 0.77 0.82 0.77 0.88 0.81
lkidney 0.81 0.74 0.73 0.85 0.76
avg 0.84 0.86 0.82 0.90 0.85
rank 3 2 9 1 3

the best performing loss function was IoU0515, scoring 0.9 and
improving 6 percentage points (pp) when compared with the default
cross entropy (crossE) loss function (and 6 pp on sensitivity). Most
alternatives (i.e. crossE, IoU11, dice, dice no BK) had similar average
scores (IoU and dice are highly correlated metrics). Table 3 shows
the detail for each organ. IoU0515 achieved scores between 0.85
and 1 for the different classes. We conclude that IoU loss with
modified weights on FN and FP can improve segmentation quality
(IoU0515 assigns a weight of 25% (0.5/2) to false positives (FP) and
75% weight (1.5/2) to false negatives (FN)). Dice was the second
best alternative. The final conclusion from these observations is
that IoU or dice should be used to improve scores, but also that it is
worth experimenting with different combinations of IoU weights.

5.1 Results by other works
Although not focusing on loss function, some other authors also
ran segmentation on the same dataset that we used. Table 4 shows
scores of a few other approaches running on the same dataset as
ours (therefore directly comparable). Our best performing alterna-
tive was superior to those compared in the table.

Finally, Figure 2 shows visualizations of segmentation results
with our DeepLabV3 network, where we can see that the segmen-
tations succeed at finding the organs areas, although with some
imperfections.

6 CONCLUSIONS
In this work we have investigated loss function variations for the
problem of magnetic Resonance imaging (MRI) of abdominal or-
gans. We have argued that the loss function is fundamental due

Table 2: Global metrics for segmentation network DeepLabV3 with base crossE loss.

Accuracy Mean Sensitivity Mean IoU Weighted IoU Mean BFScore

crossE 0.99 0.88 0.84 0.99 0.90
iou11 0.99 0.88 0.86 0.99 0.90
iou1505 0.99 0.83 0.82 0.98 0.85
iou0515 1.00 0.94 0.90 0.99 0.92
dice 0.99 0.87 0.85 0.99 0.91

dice noBK 0.99 0.89 0.85 0.99 0.90
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Table 4: Comparing to IoU of related approaches (CHAOS dataset).

MRI JI=IoU Liver spleen R Kidney L kidney

[18] teamPK
U-Net 0.73 0.76 0.79 0.83

V19UNet 0.76 0.79 0.84 0.85
V19pUNet 0.85 0.83 0.85 0.86

V19pUnet1-1 0.86 0.83 0.86 0.87
deeplabV3 iou 0.5/1.5 0.88 0.87 0.88 0.85

Figure 2: Example slices with groundtruth and segmentation output (DeepLabV3).

to its role in backpropagation learning. We reviewed the problems
with metrics and formulated alternative loss functions, including
different weighting on false positives and negatives. We created an
experimental bench setup to compare and conclude regarding the
various loss functions and alternatives. We concluded that IoU and
dice and good choices, and that it can be worth experimenting with
different weights. Future work on this issue should generalize to
other datasets and problems and try to improve the formulation of
loss function itself.
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