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ABSTRACT
In this paper, we propose a two-stage method to estimate 3D human
pose, which focuses on the uncertainty of lifting 2D detected pose
to 3D pose. Firstly, a novel category map is introduced to predict the
ordinal depth category which depicts three kinds of depth ordering
relationship for linked joints. Compared with the common prob-
ability of vector, our category map can provide better association
between prediction with image appearance, and lead to a higher
classification accuracy. Secondly, taking predicted 2D pose and ordi-
nal depth category as input, we put forward a temporal convolution
network to regress 3D pose, which exploits the temporal context
to alleviate the 2D-to-3D uncertainty and reduce prediction errors
rate from single image further. Experimental results show that our
method can outperform promising results on several benchmarks.
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1 INTRODUCTION
Estimating 3D human pose from monocular images or video is an
important problem among the computer vision and graphics fields.
Since it provides enormous potential for numerous applications,
such as human-computer interaction, video game, medical analytics
and social behavior recognition, and so on.

To tackle this problem, many methods make attempts on a two-
stage route [1–3]. They usually locate the 2D joint position on
the image plane firstly, and then lift it into 3D pose. This route is
attractive. On the one hand, it can make full use of the well-studied
2D pose estimation and large images with labeled 2D poses. On
the other hand, the abstract 2D joint formulation makes 2D-to-3D
regression more focused on human pose itself, rather than complex
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lighting, background and various human image appearance. Recent
work [1] had witnessed the success of 3D pose estimation using
only detected 2D joint as input. However, this 2D-to-3D lifting
regression is an ill-posed problem inherently, since multiple 3D
poses will map a same 2D pose on the image.

To tackle the ambiguity issue, some methods embedded the kine-
matic priors of human structure into the regression module. For
instance, [4] represented human poses as a structure graph en-
coding, which easily enables the learning of related human joints.
In addition, several other methods attempted to exploit extra fea-
tures to reduce the ambiguity, like implicit image features [5, 23],
temporal context in videos [6, 7], pose attributes [2, 34].

In this paper, we attempt to combine the temporal information
and part ordinal depth category to estimate 3D pose. Part ordinal
depth category encodes rich 3D information, since it measures the
three kinds of depth ordering for two linked joints. Compared with
the full depth ordering of one joint with respect to all other joints [8],
which bears heavy labeling burden, it is easy to make an ordinal
depth label for human part. Inspired by semantic segmentation
[9], we propose a category map for each part, which records the
probability of ordinal depth category on the map. Category map
associates strongly part ordering information with 2D appearance
in the image. Our experiments witness its superior performance
compared with vector-like classification formulation in ImageNet
classification [10] and heatmap triplets formulation [11]. Taking
the predicted 2D pose and ordinal depth category as input, we
adopt the temporal convolution network [7] to regress 3D pose,
which exploits the temporal information to alleviate the 2D-to-3D
uncertainty and prediction errors from single image further.

The contributions of our methods are summarized as follows:

• We introduce a simple yet effective category map formula-
tion for human part ordinal depth category prediction, which
provides a tight association between prediction and image
appearance.

• We show that part ordinal depth category helps to resolve the
depth ambiguity which cannot be resolved by using temporal
context.

• Our method achieves the state-of-the-art performance on
both Human3.6M [12] dataset and HumanEva-I dataset [13].

2 RELATEDWORKS
Our work focuses on estimating 3D pose from images. And we
make a briefly review for two popular routes of 3D pose estimation,
one-stage approach and two-stage approach.

2.1 One-stage approach
One-stage approaches usually directly regress 3D pose from images
[14, 33, 35]. Pavlakos et al. [14] proposed a volumetric heatmap to
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depict the joint location probability in space, and used a coarse-to-
fine strategy to refine the volumetric heatmaps prediction. However,
this volumetric representation usually suffers from heavy storage
and computation cost. [15] addressed this issue by introducing a
learnable volumetric heatmap autoencoder to make a compression.
Popa et al. [16] designed amulti-task networkwhich exploits related
tasks (human parsing, 2D pose estimation) to boost the performance
of 3D pose prediction. [17] adopted the similar idea as [16], but
explored the relation of 3D pose estimation task and human action
recognition task.

Above methods heavily rely on large-scale images with ground
truth of 3D human poses. Existing 3D datasets, like Human3.6M
[12], lacks enough background, lighting and human cloth variations,
which brings a big domain gap with wild images. Recent works
have attempted to tackle this problem. Zhou et al. [18] proposed a
geometric loss which utilizes human structure prior like symmetry,
bone length proportion, to restrict wild images. Yang et al. [19]
introduced adversarial learning to adapt the domain difference
between indoor images and wild images. Sun et al. [20] proposed
soft argmax operation which allows 2D/3D mix training uniformly.
Although these methods achieve success, but they still easily fall
into overfitting, and are sensitive to irrelevant image features.

2.2 Two-stage approach
Two-stage approach is another popular strategy for 3D pose estima-
tion. It decouples the problem into two sub tasks, 2D joint detection
[21, 22, 24–26] and 2D-to-3D lifting regression [1, 3, 4]. Martinez
et al. [1] designed a simple yet effective network which maps 2D
detected joints into 3D joints. Zhao et al. [4] predicted 3D poses
from 2D joints through a semantic graph convolutional network,
which exploits human topological structure well. Our method also
falls into this category.

However, 2D-to-3D lifting is an ill-posed problem inherently.
Since many 3D poses share the same mapping of 2D pose in single
image. Recently, some works have investigated how to solve the
ambiguity problem. Tekin et al. [5] proposed a trainable feature
fusion scheme, which effectively fuses the image features and 2D
heatmap features to regress 3D joints. Wang et al. [2] predicted
additional pose attributes, which depict the relative location of a
limb with respect to the torso, and then fed them together with 2D
pose into a regression model. Our work also predicts auxiliary cues
from images through a multi-task network. Different from [2], we
model ordinal depth relation of human parts.

There are also some works have made efforts in 2D-to-3D pose
estimation by utilizing temporal context [6, 7, 27]. Hossain et al.
[27] introduced a method depicting how to use LSTM units to
capture the temporal consistency of 2D pose sequence input, and it
produced a sequence of 3D pose which has the same length as input.
On the contrary, Pavllo et al. [7] used effective 1D convolutions over
2D pose sequences to capture the temporal context. This model is
more effective than [27], due to the inherent parallel processing of
convolution operation. Liu [29] et al. added a graph convolution
operation to well exploit the local and global spatial information
of pose itself, but still used temporal convolution to capture the
temporal context. Above methods take only 2D joints sequence

as input, and our work proved that it is not sufficient for 3D pose
estimation even by utilizing temporal context.

3 METHOD
The overall framework is illustrated in Figure 1. Given a sequence
of image frames, a multi-task network is firstly used to predict
2D pose (section 3.1) and part ordinal depth category (section 3.2)
frame by frame. And then, a temporal convolution network (section
3.3) takes a series of consecutive predicted information as input,
and predicts a 3D human pose. More details are shown in following
sections.

3.1 2D pose estimation module
There are many works pay attention to 2D pose estimation
[21, 22, 25, 26]. In our works, we adopt a very simple network
in [25] as our 2D pose estimator. Given an RGB image I ∈ Rh×w

containing a human subject, we use ResNet-50 [30] to extract image
feature F ∈ Rh/32×w/32, and then followed by three sequential lay-
ers (Deconvolution-BatchNorm-ReLU) to increase the resolution of
feature maps, finally a 1×1 convolution layer is used to output a set
of J heatmaps. Please note that each deconvolution layer has 256
filters with 4 × 4 kernel. Heatmap Hj ∈ Rh/4×w/4,j = {0, 1, . . . , J }
models the probability of one joint j appearing on the map. The
whole network structure is shown in Figure 2

Same as [20], we use soft argmax loss to train this module, since
it can avoid introducing inevitable quantization errors introduced
by down sampling operations in convolutional neural network. Let
us define the predicted heatmap as Hj for joint j, the predicted 2D
coordinate [x j ,yj ], and ground truth 2D [x j

′,yj
′], the loss L2D is

defined as follows:

L2D =
J∑
j

(��x j − x j
′
�� + ��yj − yj

′
��) (1)

[
x j ,yj

]
=

∫
v

v · so f tmax
(
Hj

)
(2)

where v is the 2D grid coordinates on predicted heatmap.

3.2 Part ordinal depth classification module
Lifting 2D joint to 3D pose is uncertain. The motivation of our
method to this issue is to put more auxiliary cues into lifting regres-
sor. For this purpose, we consider adding the part ordinal depth
category, which models the depth ordinal relation of one joint with
respect to its parent joint. We set part ordinal depth as POD for
short.

Figure 3(a) illustrates our skeleton definition. The full skeleton
consists of J = 17 joints, and it is divided into P = 14 skeleton
parts. We define Bp as one skeleton part, where p = {1, 2, . . . , P}.
Each part Bp consists of two associate jointsmp (child joint) and np
(parent joint). Similar as [11], we define the part ordinal depth infor-
mation lp as the depth ordering ofmp and np , which is formulated
as a tri-state function φ(mp ,np ):

lp = φ
(
mp ,np

)
=


0

���zmp − znp

��� ≤ ε

1 zmp − znp > ε

2 zmp − znp < −ε

(3)
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Figure 1: The overview of our proposed method. It mainly consists of two parts: 1) a multi-task network which takes single
image as input, and predicts 2D pose and part ordinal depth category simultaneously. 2) a temporal convolution network
which takes the predicted 2D pose and part ordinal depth category above from consecutive frames as input, and then predicts
3D human pose.

Figure 2: The structure of our multi-task network.

Figure 3: a) Our skeleton consists of 17 joints and 14 parts. b) Tri-state categorymap configure for parts according to the ordinal
depth relationship of two associate joints. Please note thatmp is child joint, np is parent joint
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where z is the depth value of joint and ε is a sensitive threshold value
that controls the labeling sensitivity of depth ordering. We found
that setting ε = 20mm can achieve best result in our experiment.
Figure 3(b) shows three kinds of labeling for skeleton parts.

[11] modeled this part depth ordering as heatmap triplets, which
was used as intermediate features for predicting 3D pose end-to-
end together with image features. On the contrary, we model it
as a three-category classification problem for each part directly.
Rather than predict a vector-formulated probability for each part,
we propose a category map formulation for each part, which was
inspired by semantic segmentation. Figure 3(b) shows an example
for the ordinal depth category map for Bp , and we set ground truth
category on the map around the child jointmp . Specifically, the
predicted part ordinal depth lp on test phase is set to the category
with largest probability at the position of child joint mp on cor-
responding predicted probability map. This formulation is linked
prediction strongly to image appearance, and our experiments have
witnessed its prior performance.

We adopt the same branch structure as above 2D pose estimation
module for part depth ordering classification. The network structure
is shown in Figure 2. It is essential to split channel by interval 3 at
the top of final 1 × 1 convolutional layer for each part for category
loss calculation. Since we are only interested in part depth ordering
category of part Bp around child jointmp , we define the following
loss:

LPOD =

P∑
p

Mp ⊙ CrossEntropy
(
Op , Ôp

)
, (4)

whereOp ∈ R3×h/4×w/4 is the predicted depth ordering probability
map for part Bp , Ôp ∈ Rh/4×w/4 is the ground truth depth ordering
category map, and Mp is the Gaussian mask that indicates the
region of child jointmp nearby.

3.3 Temporal convolutional lifting module
There are two useful units to exploit temporal information, the
LSTM units [27] and temporal convolution units [7]. In our work,
we use temporal convolution model [7] due to its parallel process-
ing.

The main difference compared to [7] is that we combined de-
tected 2D joint positions and part ordinal category as input. We do
not explore the combination ways of these two input features, and
just concatenate joint position and part ordinal category in the last
axis. And we use L1 loss to train this temporal model.

3.4 Implementation details
We implement our two networks in PyTorch [31]. As for the multi-
task network, we first initialize the weights of 2D pose estimation
module using 2D dataset, as describe in [25], and then we fine tune
the full network on Human3.6M [12]. We train the network with
batches of 32 and step-wise decreasing learning rate of 5e-5 for
every 40k iterations, and 100k iterations for all. The training data
is augmented by scale (0.7, 1.35), rotation (±45o ), left-right flipping
(50% probability), and color distortions when training. As for the
temporal convolutional lifting module, we follow the training pro-
cedure in [7] by using predicted labels from our multi-task network
as training data.

4 EXPERIMENTS
In this section, we firstly describe the datasets and protocols of
benchmark we used, and then evaluate the performance quanti-
tatively. We make ablation studies to analyze the effectiveness of
proposed method finally.

4.1 Datasets and evaluation protocols
Human3.6M. Human 3.6M [12] is the most popular 3D human
dataset. It contains more than 3.6 million RGB images with corre-
sponding ground truth of 3D poses. About 7 female/male subjects
(S1, S5, S6, S7, S8, S9, S11) perform 15 different daily actions, like
walking, sitting, eating, waiting and so on, in indoor environment.
Following the standard protocols for 3D pose estimation [14] in Hu-
man3.6M, we use the first 5 subjects (S1, S5, S6, S7, S8) for training
and the last 2 subjects (S9, S11) for testing. We evaluate the perfor-
mance under two standard evaluation protocols in our experiments.
Protocol #1 evaluates the mean per joint position error (MPJPE),
while protocol #2 measures the MPJPE after procrustes alignment
for 3D pose. Both protocols are measured in millimeter.

HumanEva-I. HumanEva-I [13] is another 3D human dataset
captured in indoor environment. Compared with Human3.6M, it
contains fewer subjects and fewer actions. We evaluated on “Walk-
ing” and “Jogging” actions following [14].

4.2 Results and comparisons
Table 1 shows the quantitative comparison results of our method
with other related methods under two protocols. It is obvious that
our method achieves competitive performance on both protocols.
Please note that methods with (*) use temporal context and the
others are single-image based methods. Our method achieves near
the state-of-the-art results when using temporal context.

We also test our method on HumanEva-I [13], and the quanti-
tative results are presented in Table 2. Our method obtains prior
results over previous approaches.

4.3 Ablation study
Effect of depth ordering information. We perform an ablation
study to analyze the effect of part ordinal depth category.We use the
native work in [7] as baseline. The quantitative results are shown in
Table 1. Our method reduces the average error by 5% in protocol#1
and 11% in protocol#2 when compared with baseline [7]. Figure 4
shows a side-by-side comparison of our method with baseline. It
is obvious that depth ordering errors exist with only 2D joints as
input, like putting hands on back in Figure 4(c), and our method
recovers more accurate 3D pose.

Effect of category map formulation. We also analyze the ef-
fect of our ordinal depth categorymap formulation.We compare our
map formulation with other two formulations, vector-formulation
and heatmap triplets [11]. For vector-formulation, we add a fully-
connected layer on image feature F after a global average pooling,
to predict a probability vector v ∈ R42, and split it by interval 3
for loss computation. For heatmap triplets, we follow the config-
ure as [11] and use a up sampling branch like ours to predict the
heatmap triplets. We adopt the same fine tune procedure as ours
on Human3.6M [12] for both baseline training. Furthermore, we
evaluate the accuracy on classification of part ordinal depth and
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Table 1: Quantitative comparisons on Human3.6M [12] under Protocol #1 and Protocol #2. Best in bold.

Proto#1 Dir Disc Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WaklD Walk WalkT Avg.

[14] 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9
[18] 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6 75.2 111.6 64.1 66.0 63.2 51.4 55.3 64.9
[1] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
[32] 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2
[5] 44.7 48.9 47.0 49.0 56.4 67.7 48.7 47.0 63.0 78.1 51.1 50.1 54.5 40.1 43.0 52.6
[7]* 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8
[6]* 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
[28]* 41.4 44.0 41.6 42.6 46.4 53.4 41.7 41.3 53.6 60.4 45.8 41.7 45.6 32.2 33.6 44.3
Ours* 46.7 44.5 40.9 44.2 46.1 52.0 42.0 41.8 51.2 56.4 45.1 43.4 46.5 33.0 32.2 44.4

Protocol #1: Reconstruction errors

Proto#2 Dir Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WaklD. Walk WalkT. Avg.

[14] 47.5 50.5 48.3 49.3 50.7 55.2 46.1 48.0 61.1 78.1 51.1 48.3 52.9 41.5 46.4 51.9
[18] 42.1 44.3 45.0 45.4 51.5 53.0 43.2 41.3 59.3 73.3 51.0 44.0 48.0 38.3 44.8 48.3
[1] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7
[32] 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8
[5] 33.6 38.1 37.6 38.5 43.4 48.8 36.0 35.7 51.1 63.1 41.0 38.6 40.9 30.3 34.1 40.7
[7]* 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 39.0
[6]* 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
[28]* 32.1 35.0 33.5 34.9 36.3 40.9 32.2 31.8 42.4 49.0 37.1 32.4 35.6 25.0 27.4 35.0
Ours* 34.2 33.6 33.2 34.3 34.7 40.6 32.1 33.6 41.3 45.9 35.3 32.5 36.1 27.2 27.6 34.8

Protocol #2: Reconstruction errors after procrustes alignment

Table 2: Reconstruction errors on the HumanEva-I [13] dataset. All numbers are measured in mm.

Method Walking Jogging Avg
S1 S2 S3 S1 S2 S3

[14] 22.3 19.5 29.7 28.9 21.9 23.8 24.3
[2] 18.8 12.7 29.2 23.5 15.4 14.5 18.3
[3] 13.9 10.2 46.6 20.9 13.1 13.8 -
ours 13.1 10.1 45.7 19.8 12.8 13.2 -

Table 3: Quantitively result of three different formulations of part ordinal depth on Human3.6M

Representation Accuracy of POD (raw) ↑ Accuracy of POD (final) ↑ MPJPE ↓

Vector formulation 76.3 78.5 58.6
Heatmap triplets [11] 83.7 85.0 47.9
Category map (Ours) 86.2 87.6 44.4

mean per joint position error for 3D pose. The quantitative results
are shown in Table 3. We set part ordinal depth as POD for short.
The accuracy of POD (raw) indicates the classification accuracy
by single images as input, while accuracy of POD (final) indicates
the classification accuracy of temporal model which trained with
the 2D results from images by individual formulation. We can see
that our ordinal depth category map formulation works greater
than vector formulation and heatmap triplets for both accuracy of
POD and MPJPE. In addition, the accuracy POD has increased after
temporal model processing, which indicates temporal convolution

model helps to reduce the noise of part ordinal classification from
single images.

5 CONCLUSIONS
In this work, we present a two-state method for 3D pose estimation.
In the first stage, we adopt a multi-task network to predict 2D pose
and three kind of part ordinal depth category. The part ordinal
depth category, unlike the vector formulation, we model it as a cat-
egory map formulation which associates the prediction with image
appearance tightly. In the second stage, we use a temporal model
as 2D-to-3D regression which to alleviate the 2D prediction error
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Figure 4: Side-by-side comparisons of our method with baseline [7] on Human3.6M dataset.

and depth ambiguity further. We demonstrate the effectiveness of
our method on alleviating depth ambiguity, and achieve state-of-
the-art results on benchmarks. In the future, we would like to study
the feature combination of 2D joints and the part ordinal depth
category, and reduce the impact of part ordinal depth prediction
errors. How to improve the generalization performance for wild
images is another question we concern.
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