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For present e-commerce platforms, it is important to accurately predict users’ preference for a timely next-item
recommendation. To achieve this goal, session-based recommender systems are developed, which are based
on a sequence of the most recent user-item interactions to avoid the influence raised from outdated historical
records. Although a session can usually reflect a user’s current preference, a local shift of the user’s intention
within the session may still exist. Specifically, the interactions that take place in the early positions within
a session generally indicate the user’s initial intention, while later interactions are more likely to represent
the latest intention. Such positional information has been rarely considered in existing methods, which
restricts their ability to capture the significance of interactions at different positions. To thoroughly exploit
the positional information within a session, a theoretical framework is developed in this paper to provide an
in-depth analysis of the positional information. We formally define the properties of forward-awareness and
backward-awareness to evaluate the ability of positional encoding schemes in capturing the initial and the latest
intention. According to our analysis, existing positional encoding schemes are generally forward-aware only,
which can hardly represent the dynamics of the intention in a session. To enhance the positional encoding
scheme for the session-based recommendation, a dual positional encoding (DPE) is proposed to account for
both forward-awareness and backward-awareness. Based on DPE, we propose a novel Positional Recommender
(PosRec) model with a well-designed Position-aware Gated Graph Neural Network module to fully exploit the
positional information for session-based recommendation tasks. Extensive experiments are conducted on two
e-commerce benchmark datasets, Yoochoose and Diginetica and the experimental results show the superiority
of the PosRec by comparing it with the state-of-the-art session-based recommender models.
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Fig. 1. lllustration of the relationship between positions and intention dynamics in a session. Although the
forward counting positions of vs in session S; and Sz are the same, their backward counting positions are
different, leading to different relative positions in a session.

1 INTRODUCTION

Nowadays, recommender systems (RS) play an essential role in e-commerce platforms. Traditional
RS [32-34] predict a user’s preference by equally taking the historical interactions into consideration,
e.g., clicks of items, listening to songs or watching movies. Generally, a user’s preference shifts as
time goes on, where the traditional RS are less capable of predicting it. To enable a model to deal
with this shift, session-based recommender systems (SBRS) have recently emerged, which predict
the users’ current preferences based on a session [13-15, 22, 26, 30, 35, 49, 51]. A session is defined
as a short sequence of user-item interactions within a certain period.

Although a session is assumed to imply the current preference, interactions happening at
different stages in a session usually represent different intentions. On one hand, interactions in
earlier positions may reflect the initial intention of a user. On the other hand, interactions closer
to the end of a session usually demonstrate a better alignment with the latest intention. Such a
difference is illustrated in Fig. 1 with two sample sessions. An item in a certain position in a session
carries the positional information that reflects the initial and the latest intention. They are referred
to as forward and backward positional information respectively in this work. A main purpose of
our paper is to develop a positional encoding scheme to capture these two types of information.

How to effectively represent these two types of positional information remains a challenge in
the session-based recommendation. For models using RNN as encoders [3, 13, 14], interactions
are fed in the model according to their time order. These models implicitly make use of the posi-
tional information by considering the interactions sequentially. They suffer from easily forgetting
the initial intention because the recurrent structure will potentially focus more on recent data.
Attention-based approaches [4, 22, 26] apply the self-attention mechanism to compute the ses-
sion representation. The attention mechanism utilizes the positional information in two ways: (1)
including a positional encoding; and (2) using the last interaction in a session to attend to other
interactions in the same session. When using the positional encoding [4], it captures the forward
positional information because the positional encoding determines the position by counting from
the beginning of a sequence. While for the latter case [22, 26], it neglects the positional information
of all other interactions except for the last one, which merely represents the most recent intention.
GNN-based methods [29-31, 47, 49, 51] firstly generate a session graph based on the relative posi-
tion between interactions and further apply the self-attention to generate session representations.
For example, for the session on the left in Fig. 1, there will be a directed edge connecting v;7 to vs.
While for the session on the right in Fig. 1, there will be edges connecting v; to both v5 and vg. In
terms of the forward and backward positional information, the model cannot tell which item is on
the first or the last position. Therefore, the positional information leveraged in the GNN model is
rather limited as the constructed session graphs tend to neglect both the forward and the backward
position information.
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Specifically for the attention mechanism in sequence modeling, positional encoding is the most
widely-used to capture the positional information, which is introduced to represent the absolute
position of words in a sentence for natural language processing [42]. It is expected to extract the
positional information for words appearing in a specific position counted from the beginning
of a sentence. However, in language modeling, the relative positions between words are more
important than the absolute positions in a sentence, which makes the original positional encoding
deprecated in recent language models [9, 36, 52]. Recent recommender systems that use the attention
mechanism usually involve a learnable version of the absolute positional encoding [4, 6, 17, 38].
Similar to the fixed positional encoding, a learnable one can only capture the forward positional
information as well.

In this paper, the positional information in SBRS is firstly formally defined in terms of the
forward and the backward positional information. Besides, the abilities of models in capturing
this information are further analyzed. Forward-awareness and backward-awareness are mainly
investigated as the properties of existing position encoding schemes to represent the positional
information. More importantly, based on the theoretical analysis, we propose a novel dual positional
encoding scheme, which can capture the positional information with forward-awareness and
backward-awareness in the session-based recommendation. In attention to the dual positional
encoding scheme, a well-designed Position-aware Gated Graph Neural Network module is proposed
to further incorporate the positional information in the session representation learning.

In summary, the main contributions of this paper are as follows:

o Atheoretical framework is developed to analyze the ability of different positional encoding
schemes in representing the positional information for SBRS.

e A Dual Positional Encoding (DPE) scheme is proposed to represent the positional infor-
mation for SBRS, which can be extended to a learnable version, denoted as LDPE.

o A Positional Recommender model (PosRec) is proposed based on (L)DPE, in which a
Position-aware Gated Graph Neural Network (PGGNN) module is designed to further exploit
the positional information in SBRS.

¢ Extensive experiments are conducted on two real-world benchmark SBRS datasets, Yoo-
choose! and Diginetica®. The empirical results demonstrate the superiority of the proposed
PosRec andd (L)DPE compared with baselines.

This paper is structured as follows: in Section 2, the related work about SBRS and the positional
encoding is briefly reviewed. In Section 3, the theoretical framework is elaborated, followed by the
explanation of the proposed (L)DPE and PosRec model in Section 4. In Section 5, experiments are
conducted to evaluate the effectiveness of our method.

2 RELATED WORK

In this section, we review three main topics of previous research: the session-based recommendation,
the positional encoding, and the graph neural networks.

2.1 Session-based Recommendation

Markov chain is applied by many models [35, 55] to learn the dependency of items in sequential
data. Using probabilistic decision-tree models, Zimdars et al. [55] proposed to encode the state of
the transition pattern of items. Shani et al. [35] made use of a Markov Decision Process (MDP) to
compute item transition probabilities.

https://2015.recsyschallenge.com/challenge.html
http://cikm2016.cs.iupui.edu/cikm-cup/
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Deep learning models become popular since the widely use of recurrent neural networks [1,
13, 14, 22-24, 26, 28]. There are three main branches of methods to perform the representation
learning of the session, i.e., recurrent models [13, 14, 22], attention models [12, 26, 39] and graph
models [29-31, 47, 49-51]. (1) For recurrent models, e.g., GRU4REC [13, 14] and NARM [22], Gated
Recurrent Unit [8] and Long Short-Term Memory [16] are applied respectively and the positional
information is implicitly modeled by the recurrent computing procedure. The recurrent structure
includes a strong inductive bias that the relationship between items is linear along with the position.
(2) For attention models, e.g., NARM (a self-attention layer is applied after the recurrent layer) and
STAMP [26] utilizes self-attention [42] over the last item to capture the relationship between the
last item and the rest in the session. These attention-based methods only consider the importance
of the last position while neglecting other positions. (3) In graph modeling, e.g., SR-GNN [49],
GC-SAN [51], FGNN [30] and MGNN-SPred [47], a session is converted into a graph and Graph
Neural Networks (GNN) [19, 25, 43] captures the connectivity of items. Afterward, a readout
function is applied to compute a session representation with the processed item representations.
For SR-GNN and GC-SAN, the readout function is similar to attention-based models by performing a
self-attention over the last item. While FGNN uses a Set2Set [44] module and computes a descriptive
vector, which is considered as a latent description of items. MGNN-SPred makes use of the mean
feature of the whole sequence to represent the user modeling. Consequently, these GNN-based
methods only capture the relative position for the connected items, which does not satisfy the
forward-awareness and backward-awareness. The proposed PosRec falls into the category of graph-
based model. To enhance the exploitation of the positional information of the graph representation
learning, the (L)DPE is included in the embedding of the items and the graph neural network is
redesigned to have a position-aware module.

Sequential recommendation is a close research field to SBRS. In recent years, deep learning
models are very popular [7, 11, 17, 38, 41, 46, 54]. Caser [41] applies convolutional layers to process
the embeddings of items in a sequence. SASRec [17] and BERT4Rec [38] use the Transformer [42]
in a single direction style and a bidirection style respectively to model the sequential pattern in the
interaction sequence.

2.2 Positional Encoding

Absolute positional encoding is firstly introduced with the attention structure to provide the
access of sequential information for the permutation invariant computation [42]. It assigns a
fixed vector to each position in a sequence. The vector is computed either in a sinusoidal way
or a learned style. For example, the language model BERT [10] and the recommendation model
BERT4Rec [38], they both use the learned positional encoding. Relative positional encoding is
later proposed to encode the relative position of two words, which is more meaningful for the
natural language [9, 36, 45, 52]. For example, the language model XLNet [52] and Transformer-
XL [9] propose different types of relative position encodings to represent the relative positional
information between words in a sentence. Other positional encodings include different positional
encoding schemes that are suitable for data structures other than one-dimensional sequence. For
example, to apply the attention to images, there are 2D positional encoding schemes [2, 5, 21, 27, 48]
that provide either the absolute or the relative encoding. For example, the attention augmented
network [2] designs a 2D relative positional encoding to encode the positional information in the
activation map. For tree structures, Shiv and Quirk [37] proposed a specific scheme to encode the
relationship between the root node and children nodes.
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2.3 Graph Neural Networks

Recently, to enable neural networks to work on structured data (e.g., graph, point cloud, etc.),
Graph Neural Networks (GNN) are widely investigated [19, 25, 43, 53]. Generally, the computation
flow of GNN is called message passing, which is based on neighborhood aggregation. For example,
GCN [19], GAT [43] and GGNN [25] are majorly different in the aggregation method. However,
these GNN models could easily fall into a lack of representative ability since the message passing is
performed on a narrow scope of nodes. Thus, PGNN [53] is proposed to include the information
from randomly chosen anchor nodes to utilize extra structural information.

3 THEORETICAL FRAMEWORK FOR POSITIONAL ENCODING

In this section, we build up the theoretical framework to analyze the property of different positional
encoding schemes and what is needed to represent the positional information for SBRS.

3.1 Positional Encoding

The positional encoding (PE) is introduced by [42] to enable the self-attention module to utilize the
positional information of languages. Here, the sinusoidal positional encoding (SDE) P € R¥! of a
token at position pos in the session of length [ is defined as:

Pl sz = sin(pos/f (i),
Pl s i1 = cos(pos/f (i),

where i € {0,1,...,d/2 — 1}, d is the dimension of the feature vector and f(i) = 100002/4, In the
following, all pos € {0,1,...,] — 1} if not specified.

(1)

3.2 Property of Positional Encoding

DEFINITION 3.1 (FORWARD-AWARENESS). A positional encoding P is forward-aware in positional
information ifVp,q € Z*,3A € {0, 1,...,d—1}, A # @, for two positions pos, and posy, if posq = posp,

P — p4 ; P q
then Prosan = Ppos, and if pos, # posy, then P osar T Ppos, a°

DEFINITION 3.2 (BACKWARD-AWARENESS). A positional encoding P is backward-aware in positional
information if Vp,q € Z*,3B € {0, 1,...,d — 1}, B # @, for two positions pos, and posy, if p — pos, =

— p ; q
q — posp, then P;[;osa,B = Pposb,B and if p — posqa # q — posp, then Pgosa,B + Pposb’B.

To investigate the representation ability of a PE in a session, we define two features: forward-
awareness and backward-awareness. If a PE is forward-aware, the PE of the first token is the same
for all sequences. Furthermore, if a position pos exists in any sequence, the PE for pos is the same
across these sequences. For example, if we assign the position itself as the PE, i.e., Pé =0, P{ =1...,
then it is forward-aware. In contrast, if a PE is backward-aware, the PE of the last token is the
same for all sequences. Furthermore, if an h-th last position pos exists in any sequence, the PE for
pos is the same across these sequences. For example, if we assign the reverse position as the PE,
ie., Pll_1 =0, Pl’_2 =1..., then it is backward-aware. A demonstration of forward-awareness and
backward-awareness can be found in Fig. 1.

PrROPERTY 3.1. If a positional encoding P is forward-aware, Y0 < pos, < pos, < min(p,q), 3f :
RIxRIXR! s RX1 JA st PP A= f(PﬁosmA,posa,posb), then PZOSZ”A = f(Pgosu’A, DOSq, POSE).

pos
Proor. Following Definition 3.1, because items are at the same position pos,, Pﬁosu, u= P‘Zosa’ A
Similarly for position posy, PﬁOSb’ 4= PZos;,, 4 Then PZOSb’ A=f (Pgosw 4> POSa, posp) holds for the
function f(, -, -). O
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If there is a mapping between two PE in a session, the mapping also applies to other sessions
that contain same positions. Similarly, the property of backward-aware PE is as the following:

PROPERTY 3.2. If a positional encoding P is backward-aware, VO < pos, < pos, < p,0 <

pose < posqg < q, If : R xR x R! + R 3B, s.t. Pﬁ_posa,B = f(Pﬁ_pOSb,B,POSa,POSb), if

P — pos, = q — pos. and p — posp = q — posy, then P;I_posc,B = f(PZ_POSd’B,posa,posb).

Proor. Following Definition 3.2, because item at pos;, for length p and item at posy for length

q are at the reverse position p — posp, Pgosb,B = PEOSd’B. Similarly for position pos, and pos,,
Pﬁosa,B = Pgosc, B Then Pgosc, 5= f (PZOSd’ s POSas posyp) holds for the function f(-, -, ). m]

These Definitions and Properties together give another important Properties of an absolute PE.
PROPERTY 3.3. An absolute positional encoding is unique for each position.

Proor. If there are duplicate PE for different positions, Definition 3.1 and 3.2 are violated. O

3.3 Positional Information for Session-based Recommendation

DEFINITION 3.3. A positional encoding that can represent the positional information in SBRS is
both forward-aware and backward-aware.

As discussed in the Introduction, the position in a session carries specific positional information in
SBRS. The first item reflects the initial intention of the user while the last item is always considered
more relevant to the latest preference of the user. And the items in-between usually represent the
preference shift inside the session. For the forward-aware requirement, following Definition 3.1,
two items at the same position of two different sessions always have the same slice of their PE.
Following Property 3.1, the relationship between any position and the first position is the same
across different sessions. As for the backward-aware requirement, the position in forward-aware
requirement is changed into the reverse position following Definition 3.2 and Property 3.2.

THEOREM 3.4. The sinusoidal positional encoding cannot represent the positional information in
SBRS because it is forward-aware but not backward-aware.

Proor. We first prove that SPE is forward-aware and then SPE is not backward-aware. (1) Ac-
cording to Eq. (1), SPE directly follows Definition 3.1 for forward-aware. (2) Take the last item of
two sessions w.r.t. length 1 and 2 as example. For length 1 session, P&,zl' =0and Pé,2i+1 = 1.IfSPE is
backward-aware, for length 2 session, there should be a slice of Pi 518 the same as P(},Zi and Pé,z;' P

For 2i dimension of SPE, P}, = P?, = sin(1/10000%/4). 1t is clear that 1/10000%/4 € [0.00001, 1].
Then P}, # P2,.. Similarly, P} .., # P2,..,. Therefore, SPE is not backward-aware. O

This Theorem states that the sinusoidal positional encoding is not informative for positional
information in session-based recommendation. As proved above, SPE is forward-aware because it
is exactly calculated based on the position. Using SPE in any SBRS can only indicate how far an
item is from the user’s initial intention. However, SPE is not backward-aware as it simply cannot
tell if an item is at the last position of a session. In SBRS, it is crucial to know the preference shift
within the session [14, 35]. Because SPE is not backward-aware, if a model uses SPE, there is no
information about the closeness between an item and the user’s latest preference (i.e., the item at
the last position).

COROLLARY 3.5. The relative positional encoding cannot represent the positional information in
SBRS because it is neither forward-aware nor backward-aware.
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Proor. The RPE is explored by recent language models [9, 36, 52]. During the attention score
calculation, the absolute positional encoding P, e.g., SPE, is included as:

A= (Xi+ P)Wyr W, (X, + P))T, (2)

where X is the input feature and W is trainable weights.
For RPE in different work, they basically follow a format:

A= XiquyW];reyX;'r + g(Pij)» (3)

where P only represents the relative position between i and j. Because P;; does not provide any
information about the absolute position of a token, for different center tokens i; and iy, P;,j # P;,;.
Because j can be before or after i in position, RPE simultaneously is not forward-aware and
backward-aware. O

Relative positional encoding (RPE) is designed to relax the assumption in language models that a
word in an absolute position has the same meaning. RPE focuses more on the meaning of the relative
position between two words. As proved above, RPE is neither forward-aware nor backward-aware,
thus failing to meet both requirements of SBRS.

Empirically, the closer an item is to the last item, the more accurate it can reflect the user’s
latest preference. As discussed in the Introduction, many methods consider the last item as the
representation of the latest preference (usually referred to as short-term or local preference).
Meanwhile, other items are treated with less importance (usually referred to as long-term or global
preference). Following Theorem 3.4, SPE only contains the forward-awareness. Intuitively, we can
modify the SPE to a reverse sinusoidal positional encoding (RSPE):

P|_pos-12: = sin((L = pos = 1) /£ (i),
Pl pos-1is1 = C08((1 = pos = 1) /£(i).

COROLLARY 3.6. The reverse sinusoidal positional encoding cannot represent the positional informa-
tion in SBRS because it is backward-aware but not forward-aware.

4)

Proor. Similar to the proof of Theorem 3.4, we firstly prove RSPE is backward-aware and then is
not forward-aware. (1) According to Eq. (4), RSPE directly follows Definition 3.2 for backward-aware.
(2) Take the first item of two sessions w.r.t. length 1 and 2 as example. For length 1 session, P(},Zi =0
and Pé,Zi +1 = 1. If RSPE is forward-aware, for length 2 session, there should be a slice of Pg) 4 1s

and P} For 2i dimension of RSPE, P!,. = P2 . = sin(1/10000%/4). It is clear

1
the same as Pp,z:’ 0,2i+1° 0,2i = Yo,2i
that 1/10000%/¢ € [0.00001,1]. Then P;,; # P2,.. Similarly, P{ .., # PZ,.,,. Therefore, RSPE is not

0,2i 2i+1
forward-aware. O

With RSPE rather than SPE, a model is theoretically able to utilize the positional information
that can reflect how an item is different from the latest preference in the session. But obviously,
RSPE neglects the positional information representing the relationship between an item and the
initial intention.

3.4 Beyond Single Directional Positional Encoding

In the content above, we focus on the positional encoding that only rolls out in a single direction.
In the following, we will discuss the additional positional encoding and 2D positional encoding.

Direct addition of SPE and RSPE fails in this situation. Such an addition will create a symmetric
positional encoding that for pos, and pos, in a length [ session, if pos, — 0 = [ — posp — 1, lemsa =
Pj’)_ posy—1- This will break the Property 3.3.
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If we exchange the 2i and 2i + 1 dimensions of RSPE in Eq. (4), and do the addition of SPE
and RSPE, the resulted additional sinusoidal positional encoding (ASPE) follows Property 3.3 for
uniqueness, but it is inconsistent with Definition 3.1 and Definition 3.2. Therefore, there is no
guarantee on the positional information in SBRS according to Definition 3.3.

An interesting property about this ASPE is that the pattern of uniqueness is insufficient so that
the attention model cannot easily infer the positions but only to memorize. In SPE and RSPE, there
is a linear combination property between two positions [37, 42]. But the ASPE breaks this property,
which leads to the attention model cannot learn the relationship between different positions. We
prove this difference in Appendix A.

In the literature of computer vision that utilizes attention mechanism, there is a type of encoding
for images called 2D sinusoidal positional encoding (2DSPE) [2, 5, 21, 27, 48]. If pos and [ are
considered as the height and width, then 2DSPE is similar to the ASPE that the encoding of each
pair (pos, 1) is totally unique and thus, it does not follow the forward-aware and backward-aware
requirements. Therefore, they are not eligible for SBRS. Detail of an example of 2DSPE is presented
in Appendix B.

4 BUILDING POSITIONAL RECOMMENDER MODEL

In this section, we will derive a (learned) dual positional encoding ((L)DPE) to improve the represen-
tation ability of positional information and utilize (L)DPE to develop our Positional Recommender
model for session-based recommendation.

4.1 Problem Definition

In SBRS, an item is denoted as v and there is a unique item set V = {v1,0,,03,...,0,,}, with m
being the number of items. A session sequence from an anonymous user is defined as an order list
S = [051, 052,053, - - -, Vs 1], Us« € V. 1is the length of the session S. In this paper, a sequence has
at least one item and ! € Z*. The goal of our model is to take an anonymous session S as input,
and predict the next item v, 4 that matches the current preference.

4.2 Dual Positional Encoding

We propose a dual positional encoding (DPE) by concatenating of half of the SPE and half of the
RSPE positional encoding. The DPE is defined as:

Pl sz = sin(pos/f(i)),
Pl ys i1 = cos(pos/f (i),

. . (5)
le)os,2i+d/2 = SIH((I — pos — 1)/f(l))5
P;05,2i+1+d/2 = COS((Z — pos — 1)/f(l))’
where i € {0,1,...,d/4} and for clarity, we assume d/4 € Z and all our results can be easily

generalized to other cases.

THEOREM 4.1. Dual positional encoding can represent the positional information of SBRS because it
is both forward-aware and backward-aware.

ProoF. (1) Vp,q € Z*,Vpos < min(p, q), JA ={0,1,...,d/2—1},s.t. Pﬁos’A = Pgos’A. This follows

Definition 3.1 and DPE is forward-aware. (2) ¥p, q € Z*,Vpos,, posy = {a,blp—a=q—b,0 < a <

p,0<b<gq},d3B={d/2,d/2+1,...,d — 1}, s.t. pr =pe . This follows Definition 3.2 and
posa,B posp,B
DPE is backward-aware. Therefore, DPE can represent the positional information of SBRS. O
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This theorem states that the proposed DPE can represent the positional information of SBRS.
For the A = {0,1,...,d/2 — 1} dimensions of DPE, it is forward-aware. While for the rest B =
{d/2,d/2 +1,...d — 1} dimensions, it is backward-aware. For example, for the first item of any
session with length p and g, Pg 4= Pg , is always true while no guarantee that Pg 5= Pg 5 But

pP o =p? s always true for DPE.
p-1B q-1B

The proposed DPE has met the requirements of SBRS. This encoding scheme is parameter-free.
In this situation, positions in a session can be considered linear because they are ordered with a
consistent interval. However, in the real world, the position of each item actually comes from the
timestamp of the interaction. The time intervals between interactions are neither consistent nor
linear. Therefore, we propose the following learned dual positional encoding (LDPE) to improve

the inductive bias injected into a session-based recommendation model:

)
PPos,O:d/Z—l = Embed|pos], ©)
P;ms’d/w_1 = Embed[! — pos — 1],

where Embed € R™*(0Xd stands for a learned embedding matrix and [-] is the same as the slice
operation for a list in Python. Similar to DPE, LDPE follows the Definition 3.1 and 3.2, and thus 3.3.

4.3 Positional Recommender Model

With DPE and LDPE ((L)DPE), we now build our Positional Recommender model (PosRec) based
on the Position-aware Gated Graph Neural Network (PGGNN) and the bidirectional Transformer.
Similar to GNN-based models [30, 49, 51], a session is firstly converted into a weighted and
directed session graph. Then PGGNN is applied to calculate the position-aware item embedding
as the input of the bidirectional Transformer layer. (L)DPE is incorporated into the bidirectional
Transformer layer to enhance the positional information. In the end, a single vector is computed as
the representation of the session and used to predict the user’s next click.

4.3.1 Session Graph. To utilize the neighboring information, a session is converted into a weighted
directed session graph. Similar to [30, 49, 51], the conversion procedure basically abides by the
following process. If an item v, is immediately followed by the next item v, in the session
S, then a directed edge (ws 41, s, Ust+1) from this item to the next item with the edge weight
ws t.++1 indicating the frequency of occurrence of such an edge in S, is added to the session graph
Gs(V,, Es). Vs includes all items in the session S, and we refer to an item as a node in the following
without specific indication. Each node feature x,, € R is initialized by the corresponding ID of
the item v, and a lookup embedding matrix. E; stands for all generated edges.

4.3.2  Position-aware Gated Graph Neural Network. The Position-aware Gated Graph Neural Net-
work (PGGNN) is designed to process the session graph to obtain the updated item embedding.
PGGNN consists of two node aggregation steps, a neighboring node aggregation based on Gated
Graph Neural Network (GGNN) [25] and an anchor node aggregation based on position-aware
Graph Neural Network (PGNN) [53].

GGNN for the weighted and directed session graph is defined as:

Xp = Z Wt’,tXt’WinH Z Wt,t’Xt'Wouts (7)
Oy EMn(Ut) (2% ENout(Ut)
x; = GRU(x;, %), (8)

where x;, € R™? is the message from all neighbors of v;, Niy (0;) is the set of nodes targeting at v,
Nout (v;) is the set of nodes targeted by vy, Wiy, Woy € R are trainable weights and || stands for
the concatenation along the feature dimension. x; is the updated node feature of v;.
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Fig. 2. The pipeline of PosRec. A session S is firstly converted into a session graph Gs. PGGNN aggregates
neighboring (solid edges) and anchor (dashed edges) nodes to update node features in Gs. Bidirectional
Transformer uses updated node features and (L)DPE to compute a session representation h. & stands for
element-wise addition.

The anchor node is first introduced in PGNN by [53] with random sampling on all nodes in
a graph. In the context of the session graph, nodes with notable importance, e.g., the first item,
the last item and re-appearing items, can be chosen as anchor nodes. Therefore, to improve the
inductive bias in the GGNN, for each node v; in a session, we add the first item vy to Ny, (v;) and
the last item v;_; to Nyt (v;). In addition, for all items v, appearing more than once in a session,
v, are added to both Ni,(v;) and Ny (v;). Therefore, we substitute Ni,(v;) and Noy(v;) in Eq.
(7) with N/ (v;) = {Nin(vs) + 0o + 0.} and N, (0;) = {Nout(9;) + 071 + v.}. The corresponding
weights between any anchor node and other nodes are defined as the distance of these two nodes
on an unweighted and undirected graph converted from G5 by omitting the weight and direction
associated with every edge. Examples of these edges are shown as dashed edges in Fig. 2.

4.3.3 Bidirectional Transformer Readout Function with (L)DPE. With the updated item features and
(L)DPE, the bidirectional Transformer layer serves as the readout function to generate a feature
vector for the session. The bidirectional Transformer layer operates at the graph level rather than
the sequence level of the session, which will lower the noisy signal of repetitive items. Consider
X’ € R™4 which includes all updated node features, where n is the number of unique items in
the session. Let P represent (L)DPE of corresponding items of nodes in the session. The feature

vector h € R™? representing the session can be defined as:
H = Transformer(X’ + P), 9)
h= AOX;—] + /‘llHl—l + /12H0, (10)

where H € R™ carries all output states of the bidirectional Transformer and subscripts [ — 1 and 0
represent the corresponding entries in X’ and H of items vy and v;_;. A, are pre-defined weights.

Note that, if a session does not contain duplicated items, every interaction will have a unique
(L)DPE. When there are repeated items, the node for such an item will adopt the forward-aware
part of (L)DPE of the earliest appearance and the backward-aware part of (L)DPE of the latest
appearance.

4.3.4  Objective Function. After having a representation h of a session, we can compare h with the
whole item set to decide what to recommend to the user. Let X € R be the initial embedding of
the whole item set. The score of recommendation § € R™*! and the Cross-Entropy loss function
are defined as:

¥ = Softmax(Xh"), (11)
M

L==->"y] log (¥, (12)
i=1
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where y; € R™¥! is the one-hot label of training sample data i and M is the batch size.

4.4 Discussion

We will discuss the relationship and difference between the proposed PosRec model and existing
recommendation methods as well as the position encoding schemes.

4.4.1 Comparisons with Existing Recommendation Methods. The proposed PosRec model makes use
of a newly designed GNN module for the item representation learning and a Transformer module
equipped with the (L)DPE for the session representation learning. Compared with previous GNN
based methods, e.g., SR-GNN [49], GC-SAN [51], FGNN [29, 30], and MGNN-SPred [47], PosRec
has a newly designed GNN module, PGGNN, which is position aware. The position awareness is
the main difference between the GNN modules. In these previous work, the main contributions are
including the direction information and the behavioral information in the edges. PGGNN introduces
the position information in the edges, which approaches the item representation learning from
a novel perspective. In addition, as these research work indicates, there is a sparsity issue in the
graph construction and propagation for sessions since there could be no repeated items in the same
session to construct a graph rather than a simple link list of items. Different methods try to add
more connections by self-loops [30] and using the cross-session information [29]. In the proposed
PGGNN method, the anchor nodes are chosen to be the first and the last item, which develops extra
meaningful edges due to the requirement of calculating the relationship between normal nodes
and the anchor nodes.

4.4.2 Comparisons with Existing Position Encoding Schemes. The proposed PosRec model incor-
porates both the forward and backward positional information with the (L)DPE. For existing
recommendation models [17, 38], the most popular position encoding scheme is the LPE intro-
duced in Attention [42]. As analyzed above, LPE is a forward-aware position encoding scheme.
These research work has also investigated the performance of SPE, which is shown to be inferior
to the LPE. It could be due to the SPE can only represent the initial intention, a less important
factor compared with the latest preference. While LPE still has a possibility of learning an implicit
positional information with the learnable embeddings. There are other methods to incorporate the
positional information in recommendation, for example, NARM [22], STAMP [26], SR-GNN [49],
and GC-SAN [51] have an attention module using the last item as the query to all other items in the
session to emphasize on the last position. Such a strategy for the positional information can only
consider the positional information of the last interaction, and neglect the positional information of
all other interactions. While for the GNN-based methods [29, 30, 47, 49, 51], the relative positional
information is contained in the direction of edges. But the relative positional information cannot
reflect the absolute positional information, e.g., the latest preference and the initial intention. The
proposed (L)DPE simultaneously provides the property of being both forward and backward-aware,
and the learnability for a more representative embedding scheme.

5 EXPERIMENTS

In this section, we present how extensive experiments are conducted to evaluate the effectiveness
of our proposed PosRec model, (L)DPE and the PGGNN module. We will answer the following
research questions:

e RQ1: How does PosRec perform in the session-based recommendation task? (Section 5.2)

e RQ2: How does (L)DPE perform compared with other positional encoding schemes? (Sec-
tion 5.3)

e RQ3: Does anchor node aggregation in PGGNN improve the recommendation? (Section 5.4)
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Table 1. Statistic of datasets. (Yoo. is short for Yoochoose.)

Dataset Clicks  f#Train f§ Test Items Avg.length

Yoo. 1/64 557248 369859 55898 16766 6.16
Yoo. 1/4 8326407 5917746 55898 29618 5.71
Diginetica 982961 719470 60858 43097 5.12

e RQ4: What is the visualization of DPE? (Section 5.5)
e RQ5: How sensitive is PosRec w.r.t. the hyper-parameters? (Section 5.6)

5.1 Setup

In this section, we will describe the experimental setup in terms of datasets (Section 5.1.1), the
preprocessing procedure (Section 5.1.2), baselines (Section 5.1.3), evaluation metrics (Section 5.1.4)
and the implementation (Section 5.1.5).

5.1.1 Dataset. Experiments are conducted on two benchmark datasets Yoochoose and Diginetica,
which is consistent with previous methods [22, 26, 30, 49].

e Yoochoose is used as a challenge dataset for RecSys Challenge 2015. It is obtained by recording
click-streams from an e-commerce website within 6 months. Since Yoochoose is a huge dataset,
we follow previous methods [22, 26, 30, 49] to further divide this dataset into two subsets
according to the timestamp. Yoo. 1/64 stands for the most recent ﬁ of the whole dataset and
Yoo. 1/4 for i correspondingly.

e Diginetica is used as a challenge dataset for CIKM cup 2016. It contains the transaction data
which is suitable for session-based recommendation.

The detailed statistics of each dataset can be found in Table 1.

5.1.2  Preprocessing. For the fairness and the convenience of comparison, we follow [22, 26, 30, 49]
to filter out sessions of length 1 and items which occur less than 5 times in each dataset respectively.
After the preprocessing step, there are 7,981,580 sessions and 37,483 items remaining in Yoochoose
dataset, while 204,771 sessions and 43097 items in Diginetica dataset. Similar to [40], we split a
session of length n into n — 1 partial sessions of length ranging from 2 to n to augment the datasets.
For the partial session of length i in the session S, it is defined as [vsy, . . ., 05 ;1] With the last item
Us,i—1 aS Vjgpel- Following [22, 26, 30, 49], for Yoochoose dataset, the most recent portions 1/64 and
1/4 of the training sequence are used as two split datasets respectively.

5.1.3 Baselines. In order to demonstrate the advantage of the proposed PosRec model, we compare
it with the following representative methods:

e POP is a popularity-based method that always recommends the most popular items in the
whole training set, which serves as a strong baseline in some situations although it is simple.

e S-POP is a popularity-based method that always recommends the most popular items for
the individual session.

e Item-KNN [34] computes the similarity of items by the cosine distance of two item vectors
in sessions. Regularization is also introduced to avoid the rare high similarities for unvisited
items.

e BPR-MF [32] proposes a BPR objective function which utilizes a pairwise ranking loss to
train the ranking model. Following [22], Matrix Factorization is modified to session-based
recommendation by using mean latent vectors of items in a session.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.



Exploiting Positional Information for Session-based Recommendation 1:13

e FPMC [33] is a hybrid model for the next-basket recommendation and it achieves state-of-
the-art results. For anonymous session-based recommendation, following [22], we omit the
user feature directly because of the unavailability.

e GRU4REC [14] stacks multiple GRU layers to encode the session sequence into a final state.
It also applies a ranking loss to train the model.

e NARM [22] extends to use an attention layer to combine all of the encoded states of RNN,
which enables the model to explicitly emphasize on the more important parts of the input.

o STAMP [26] uses attention layers to replace all RNN encoders in previous work to even

make the model more powerful by fully relying on the self-attention of the last item in a

sequence. STAMP does not use any kind of positional encoding.

SR-GNN [49] applies a gated graph convolutional layer [25] to obtain item embeddings,

followed by a self-attention of the last item as STAMP does to compute the sequence level

embeddings.

FGNN [30] is also a graph-based recommender system, which uses the attention mecha-

nism [42] in both the item representation learning and the item order learning.

GC-SAN [51] substitutes the simple attention in the graph embedding learning of SR-GNN

with multi-layer Transformers [42].

Although SASRec [17] is originally used in the sequential recommendation task rather than the
SBRS task, we can still make this state-of-the-art method adapt to our experiment.
e SASRec is highly similar to STAMP that stacks attention layers and use the last hidden layer
to predict a user’s preference. SASRec makes use of LPE in its original model.

5.1.4  Evaluation metrics. For each time step, a recommender system should give out a full ranking
over the whole item set. According to [20], such a ranking result will lead to a fairer comparison
than sampling-based ranking methods for different models. Additionally to keep the same setting
as previous baselines, we mainly choose to use two metrics, Recall and Mean Reciprocal Ranking.
For both of them, we use top-5 and top-10 result to make comparisons.

¢ R@K (Recall calculated over top-K items). The R@K score is the metric that calculates the
proportion of test cases which recommends the correct items in a top K position in a ranking
list,
Mhit
R@K = —, 13
@K =2 (13)

where N represents the number of test sequences Sies; in the dataset and nj;; counts the
number that the desired items are in the top K position in the ranking list, which is named
the hit. R@K is also known as the hit ratio.

e M@K (Mean Reciprocal Rank calculated over top-K items). The reciprocal is set to 0 when
the desired items are not in the top K position and the calculation is as follows,

1 1
M@K N Ulabelze;stest Rank(vlabel) - (14)

The Mean Reciprocal Rank is a normalized ranking of hit, the higher the score, the better the
quality of the recommendation because it indicates a higher ranking position of the desired
item.

5.1.5 Implementation. We apply one layer of PGGNN and one layer of the attention module for our
PosRec. Unless indicated otherwise, we use Adam [18] to train our model with an initial learning
rate 0.001 that decreases at the rate 0.1 for every 3 epochs. The batch size and the embedding size
are set to 100. To reduce the overfitting, we apply an I, regularization for all parameters and early
stop at the end of the 4-th epoch. For weights in Eq. (10), Ay and A; are both set to 1. For Yoochoose,
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Table 2. Overall performance.

Yoo. 1/64
Method R@5 R@10 M@5 M@10
POP 2.37 456 0.56 1.13
S-POP 9.96 20.18 15.25 17.96
Item-KNN | 28.35+0.13  41.82+0.08 19.37+0.12 21.24+0.07
BPR-MF | 7.64+0.18  20.47+0.14  858+0.15 11.65+0.11
FPMC | 22.93+0.09 35.38+0.19 11.83+0.17 14.57+0.10
GRU4REC | 37.81£0.08  50.30+0.13  20.13+£0.09 22.81+0.05
NARM | 44.69+0.12 57.56+0.09 25.43+0.05 27.16+0.08
STAMP | 46.42+0.13 58.67+0.07 28.05+0.08 29.66+0.10
SR-GNN | 47.33+0.07 60.04+0.11 28.32+0.10  30.08+0.12
FGNN | 47.1240.10  60.13+0.08  28.45+0.06 30.17+0.09
GC-SAN | 46.48+0.08 59.47+0.11 27.58+0.18 29.33+0.06
SASRec | 46.65+0.16 58.98+0.10 28.13+0.12 29.87+0.13
PosRec | 47.96+0.15 60.90+0.07 28.83+0.12 30.57+0.09
Yoo. 1/4
Method R@5 R@10 M@5 M@10
POP 0.76 0.98 0.09 0.15
S-POP 8.69 18.57 14.84 16.87
Item-KNN | 30.16+0.15 41.86+0.13  18.54+0.09 20.29+0.14
BPR-MF | 1.1540.11  2.61£0.06  0.79+0.05  1.13+0.07
FPMC - - - -
GRU4REC | 36.80+0.10  49.60+0.12 19.71+0.08 21.43+0.05
NARM | 44.95+0.08 57.73+0.07 25.60+0.09 27.39+0.11
STAMP | 4538+0.12 58.03+0.10 27.38+0.12  29.08+0.09
SR-GNN | 47.71£0.09  60.64+0.09  28.33£0.07 30.24+0.06
FGNN | 47.63+0.14 60.68+0.13 28.43+0.10 30.19+0.08
GC-SAN | 46.97+0.07 59.86+0.14 28.12+0.08 29.72+0.09
SASRec | 45.21+0.18 57.88+0.108 27.46+0.17 29.23+0.15
PosRec | 47.97+0.12 60.92+0.18 29.29+0.07 31.03+0.08
Diginetica
Method R@5 R@10 M@5 M@10
POP 0.34 0.68 0.06 0.13
S-POP 2.67 9.95 9.32 11.79
Item-KNN | 11.75+0.09 24.09+0.08  8.34+0.12  10.63+0.18
BPR-MF | 0.78+0.10  2.28+0.14  0.0740.03  0.83+0.06
FPMC | 4.49+0.07 15.7140.012 