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Abstract

We study the two-dimensional geometric knapsack problem (2DK) in which we are given a set of n
axis-aligned rectangular items, each one with an associated profit, and an axis-aligned square knapsack.
The goal is to find a (non-overlapping) packing of a maximum profit subset of items inside the knapsack
(without rotating items). The best-known polynomial-time approximation factor for this problem (even
just in the cardinality case) is 2 + ε [Jansen and Zhang, SODA 2004]. In this paper we break the 2
approximation barrier, achieving a polynomial-time 17

9 + ε < 1.89 approximation, which improves to
558
325 + ε < 1.72 in the cardinality case.

Essentially all prior work on 2DK approximation packs items inside a constant number of rectangu-
lar containers, where items inside each container are packed using a simple greedy strategy. We deviate
for the first time from this setting: we show that there exists a large profit solution where items are packed
inside a constant number of containers plus one L-shaped region at the boundary of the knapsack which
contains items that are high and narrow and items that are wide and thin. The items of these two types
possibly interact in a complex manner at the corner of the L.

The above structural result is not enough however: the best-known approximation ratio for the sub-
problem in the L-shaped region is 2 + ε (obtained via a trivial reduction to one-dimensional knapsack
by considering tall or wide items only). Indeed this is one of the simplest special settings of the problem
for which this is the best known approximation factor. As a second major, and the main algorithmic
contribution of this paper, we present a PTAS for this case. We believe that this will turn out to be useful
in future work in geometric packing problems.

We also consider the variant of the problem with rotations (2DKR), where items can be rotated
by 90 degrees. Also in this case the best-known polynomial-time approximation factor (even for the
cardinality case) is 2 + ε [Jansen and Zhang, SODA 2004]. Exploiting part of the machinery developed
for 2DK plus a few additional ideas, we obtain a polynomial-time 3/2 + ε-approximation for 2DKR,
which improves to 4/3 + ε in the cardinality case.

∗The authors from IDSIA are partially supported by ERC Starting Grant NEWNET 279352 and SNSF Grant APXNET
200021_159697/1. Arindam Khan is supported in part by the European Research Council, Grant Agreement No. 691672, the
work was primarily done when the author was at IDSIA. Sandy Heydrich is in part supported by the Google Europe PhD Fellow-
ship.
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1 Introduction

The (two-dimensional) geometric knapsack problem (2DK) is the geometric variant of the classical (one-
dimensional) knapsack problem. We are given a set of n items I = {1, . . . , n}, where each item i ∈ I is an
axis-aligned open rectangle (0, w(i))× (0, h(i)) in the two-dimensional plane, and has an associated profit
p(i). Furthermore, we are given an axis-aligned square knapsack K = [0, N ] × [0, N ]. W.l.o.g. we next
assume that all values w(i), h(i), p(i) and N are positive integers. Our goal is to select a subset of items
OPT ⊆ I of maximum total profit opt = p(OPT ) :=

∑
i∈OPT p(i) and to place them so that the selected

rectangles are pairwise disjoint and fully contained in the knapsack. More formally, for each i ∈ OPT
we have to define a pair of coordinates (left(i), bottom(i)) that specify the position of the bottom-left
corner of i in the packing. In other words, i is mapped into a rectangle R(i) := (left(i), right(i)) ×
(bottom(i), top(i)), with right(i) = left(i) + w(i) and top(i) = bottom(i) + h(i). For any two i, j ∈
OPT , we must have R(i) ⊆ K and R(i) ∩R(j) = ∅.

Besides being a natural mathematical problem, 2DK is well-motivated by practical applications. For
instance, one might want to place advertisements on a board or a website, or cut rectangular pieces from
a sheet of some material. Also, it models a scheduling setting where each rectangle corresponds to a job
that needs some “consecutive amount” of a given resource (memory storage, frequencies, etc.). In all these
cases, dealing with rectangular shapes only is a reasonable simplification and often the developed techniques
can be extended to deal with more general instances.

2DK is NP-hard [29], and it was intensively studied from the point of view of approximation algorithms.
The best known polynomial time approximation algorithm for it is due to Jansen and Zhang and yields a
(2 + ε)-approximation [25]. This is the best known result even in the cardinality case (with all profits
being 1). However, there are reasons to believe that much better polynomial time approximation ratios
are possible: there is a QPTAS under the assumption that N = npoly(logn) [3], and there are PTASs if
the profit of each item equals its area [4], if the size of the knapsack can be slightly increased (resource
augmentation) [14, 21], if all items are relatively small [13] and if all input items are squares [22, 19]. Note
that, with no restriction on N , the current best approximation for 2DK is 2 + ε even in quasi-polynomial
time1.

All prior polynomial-time approximation algorithms for 2DK implicitly or explicitly exploit a container-
based packing approach. The idea is to partition the knapsack into a constant number of axis-aligned rect-
angular regions (containers). The sizes (and therefore positions) of these containers can be guessed in
polynomial time. Then items are packed inside the containers in a simple way: either one next to the other
from left to right or from bottom to top (similarly to the one-dimensional case), or by means of the simple
greedy Next-Fit-Decreasing-Height algorithm. Indeed, also the QPTAS in [3] can be cast in this frame-
work, with the relevant difference that the number of containers in this case is poly-logarithmic (leading to
a quasi-polynomial running time).

One of the major bottlenecks to achieve approximation factors better than 2 (in polynomial-time) is
that items that are high and narrow (vertical items) and items that are wide and thin (horizontal items) can
interact in a very complicated way. Indeed, consider the following seemingly simple L-packing problem:
we are given a set of items i with either w(i) > N/2 (horizontal items) or h(i) > N/2 (vertical items).
Our goal is to pack a maximum profit subset of them inside an L-shaped region L = ([0, N ] × [0, hL]) ∪
([0, wL] × [0, N ]), so that horizontal (resp., vertical) items are packed in the bottom-right (resp., top-left)
of L. To the best of our knowledge, the best-known approximation ratio for L-packing is 2 + ε: Remove
either all vertical or all horizontal items, and then pack the remaining items by a simple reduction to one-

1The role of N in the running time is delicate, as shown by recent results on the related strip packing problem [1, 16, 18, 20, 30].
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dimensional knapsack (for which an FPTAS is known). It is unclear whether a container-based packing can
achieve a better approximation factor, and we conjecture that this is not the case. As we will see, a better
understanding of L-packing will play a major role in the design of improved approximation algorithms for
2DK.

1.1 Our contribution

In this paper we break the 2-approximation barrier for 2DK. In order to do that, we substantially deviate
for the first time from pure container-based packings, which are, either implicitly or explicitly, at the hearth
of prior work. Namely, we consider L&C-packings that combine Oε(1) containers plus one L-packing of
the above type (see Fig.1.(a)), and show that one such packing has large enough profit.

While it is easy to pack almost optimally items into containers, the mentioned 2 + ε approximation for
L-packings is not sufficient to achieve altogether a better than 2 approximation factor: indeed, the items
of the L-packing might carry all the profit! The main algorithmic contribution of this paper is a PTAS for
the L-packing problem. It is easy to solve this problem optimally in pseudo-polynomial time (Nn)O(1) by
means of dynamic programming. We show that a 1 + ε approximation can be obtained by restricting the
top (resp., right) coordinates of horizontal (resp., vertical) items to a proper set that can be computed in
polynomial time nOε(1). Given that, one can adapt the above dynamic program to run in polynomial time.

Theorem 1. There is a PTAS for the L-packing problem.

In order to illustrate the power of our approach, we next sketch a simple 16
9 +O(ε) approximation for the

cardinality case of 2DK (details in Section 3). By standard arguments2 it is possible to discard large items
with both sides longer than ε·N . The remaining items have height or width smaller than ε·N (horizontal and
vertical items, resp.). Let us delete all items intersecting a random vertical or horizontal strip of width ε ·N
inside the knapsack. We can pack the remaining items into Oε(1) containers by exploiting the PTAS under
one-dimensional resource augmentation for 2DK in [21]3. A vertical strip deletes vertical items with O(ε)
probability, and horizontal ones with probability roughly proportional to their width, and symmetrically for
a horizontal strip. In particular, let us call long the items with longer side larger than N/2, and short the
remaining items. Then the above argument gives in expectation roughly one half of the profit optlong of long
items, and three quarters of the profit optshort of short ones. This is already good enough unless optlong is
large compared to optshort.

At this point L-packings and our PTAS come into play. We shift long items such that they form 4 stacks
at the sides of the knapsack in a ring-shaped region, see Fig.1.(b)-(c): this is possible since any vertical long
item cannot have a horizontal long item both at its left and at its right, and vice versa. Next we delete the
least profitable of these stacks and rearrange the remaining long items into an L-packing, see Fig.1.(d). Thus
using our PTAS for L-packings, we can compute a solution of profit roughly three quarters of optlong. The
reader might check that the combination of these two algorithms gives the claimed approximation factor.

Above we used either Oε(1) containers or one L-packing: by combining the two approaches together
and with a more sophisticated case analysis we achieve the following result (see Section B).

Theorem 2. There is a polynomial-time 558
325 + ε < 1.72 approximation algorithm for cardinality 2DK.

2There can be at most Oε(1) such items in any feasible solution, and if the optimum solution contains only Oε(1) items we can
solve the problem optimally by brute force.

3Technically this PTAS is not container-based, however in Section F we show that it can be cast in that framework. Our version
of the PTAS simplifies the algorithms and works also in the case with rotations: this might be a handy black-box tool.
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(a) (b) (c) (d)

Figure 1: (a) An L&C-packing with 4 containers, where the top-left container is packed by means of Next-
Fit-Decreasing-Height. (b) A subset of long items. (c) Such items are shifted into 4 stacks at the sides of the
knapsack, and the top stack is deleted. (d) The final packing into an L-shaped region.

For weighted 2DK we face severe technical complications for proving that there is a profitable L&C-
packing. One key reason is that in the weighted case we cannot discard large items since even one such item
might contribute a large fraction to the optimal profit. In order to circumvent these difficulties, we exploit the
corridor-partition at the hearth of the QPTAS for 2DK in [3] (in turn inspired by prior work in [2]). Roughly
speaking, there exists a partition of the knapsack into Oε(1) corridors, consisting of the concatenation of
Oε(1) (partially overlapping) rectangular regions (subcorridors). In [3] the authors partition the corridors
into a poly-logarithmic number of containers. Their main algorithm then guesses these containers in time
npoly(logn). However, we can only handle a constant number of containers in polynomial time. Therefore,
we present a different way to partition the corridors into containers: here we lose the profit of a set of thin
items, which in some sense play the role of long items in the previous discussion. These thin items fit in a
very narrow ring at the boundary of the knapsack and we map them to an L-packing in the same way as in
the cardinality case above. Some of the remaining non-thin items are then packed into Oε(1) containers that
are placed in the (large) part of the knapsack not occupied by the L-packing. Our partition of the corridors
is based on a somewhat intricate case analysis that exploits the fact that long consecutive subcorridors are
arranged in the shape of rings or spirals: this is used to show the existence of a profitable L&C-packing.

Theorem 3. There is a polynomial-time 17
9 + ε < 1.89 approximation algorithm for (weighted) 2DK.

Rotation setting. In the variant of 2DK with rotations (2DKR), we are allowed to rotate any rectan-
gle i by 90 degrees. This means that i can also be placed in the knapsack as a rectangle of the form
(left(i), left(i) +h(i))× (bottom(i), bottom(i) +w(i)). The best known polynomial time approximation
factor for 2DKR (even for the cardinality case) is again 2 + ε due to [25] and the mentioned QPTAS in [3]
works also for this case.

By using the techniques described above and exploiting a few more ideas, we are also able to improve
the approximation factor for 2DKR (see Sections C and D for the cardinality and general case, resp.). The
basic idea is that any thin item can now be packed inside a narrow vertical strip (say at the right edge of the
knapsack) by possibly rotating it. This way we do not lose one quarter of the profit due to the mapping to an
L-packing and instead place all items from the ring into the mentioned strip (while we ensure that their total
width is small). The remaining short items are packed by means of a novel resource contraction lemma:
unless there is one huge item that occupies almost the whole knapsack (a case that we consider separately),
we can pack almost one half of the profit of non-thin items in a reduced knapsack where one of the two
sides is shortened by a factor 1 − ε (hence leaving enough space for the vertical strip). We remark that
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here we heavily exploit the possibility to rotate items. Thus, roughly speaking, we obtain either all profit of
non-thin items, or all profit of thin items plus one half of the profit of non-thin items: this gives a 3/2 + ε
approximation. A further refinement of this approach yields a 4/3+ε approximation in the cardinality case.
We remark that, while resource augmentation is a well-established notion in approximation algorithms,
resource contraction seems to be a rather novel direction to explore.

Theorem 4. For any constant ε > 0, there exists a polynomial-time 3
2 + ε approximation algorithm for

2DKR. In the cardinality case the approximation factor can be improved to 4
3 + ε.

1.2 Other related work

The mentioned (2 + ε)-approximation for two-dimensional knapsack [25] works in the weighted case of
the problem. However, in the unweighted case a simpler (2 + ε)-approximation is known [24]. If one can
increase the size of the knapsack by a factor 1 + ε in both dimensions then one can compute a solution
of optimal weight, rather than an approximation, in time f(1/ε) · nO(1) where the exponent of n does not
depend on ε [19] (for some suitable function f ). Similarly, for the case of squares there is a (1 + ε)-
approximation algorithm known with such a running time, i.e., an EPTAS [19]. This improves previous
results such as a (5/4 + ε)-approximation [17] and the mentioned PTAS [22]. Two-dimensional knapsack is
the separation problem when we want to solve the configuration-LP for two-dimensional bin-packing. Even
though we do not have a PTAS for the former problem, Bansal et al. [4] show how to solve the latter LP to
an (1 + ε)-accuracy using their PTAS for two-dimensional knapsack for the special case where the profit
of each item equals its area. The best known (asymptotic) result for two-dimensional bin packing is due
to Bansal and Khan and it is based on this configuration-LP, achieving an approximation ratio of 1.405 [6]
which improves a series of previous results [21, 5, 7, 26, 10]. See also the recent survey in [9] and [27].

2 A PTAS for L-packings

In this section we present a PTAS for the problem of finding an optimal L-packing. In this problem we are
given a set of horizontal items Ihor with width larger than N/2, and a set of vertical items Iver with height
larger than N/2. Furthermore, we are given an L-shaped region L = ([0, N ]× [0, hL])∪ ([0, wL]× [0, N ]).
Our goal is to pack a subset OPT ⊆ I := Ihor ∪ Iver of maximum total profit opt = p(OPT ) :=∑

i∈OPT p(i), such that OPThor := OPT ∩ Ihor is packed inside the horizontal box [0, N ] × [0, hL] and
OPTver := OPT∩Iver is packed inside the vertical box [0, wL]×[0, N ]. We remark that packing horizontal
and vertical items independently is not possible due to the possible overlaps in the intersection of the two
boxes: this is what makes this problem non-trivial, in particular harder than standard (one-dimensional)
knapsack.

Observe that in an optimal packing we can assume w.l.o.g. that items in OPThor are pushed as far
to the right/bottom as possible. Furthermore, the items in OPThor are packed from bottom to top in non-
increasing order of width. Indeed, it is possible to permute any two items violating this property while
keeping the packing feasible. A symmetric claim holds for OPTver. See Fig. 1.(d) for an illustration.

Given the above structure, it is relatively easy to define a dynamic program (DP) that computes an
optimal L-packing in pseudo-polynomial time (Nn)O(1). The basic idea is to scan items of Ihor (resp. Iver)
in decreasing order of width (resp., height), and each time guess if they are part of the optimal solution
OPT . At each step either both the considered horizontal item i and vertical item j are not part of the
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optimal solution, or there exist a guillotine cut4 separating i or j from the rest of OPT . Depending on the
cases, one can define a smaller L-packing sub-instance (among N2 choices) for which the DP table already
contains a solution.

In order to achieve a (1 + ε)-approximation in polynomial time nOε(1), we show that it is possible (with
a small loss in the profit) to restrict the possible top coordinates ofOPThor and right coordinates ofOPTver
to proper polynomial-size subsets T andR, resp. We call such an L-packing (T ,R)-restricted. By adapting
the above DP one obtains:

Lemma 5. An optimal (T ,R)-restricted L-packing can be computed in time polynomial in m := n+ |T |+
|R| using dynamic programming.

Proof. For notational convenience we assume 0 ∈ T and 0 ∈ R. Let h1, . . . , hn(h) be the items in Ihor in
decreasing order of width and v1, . . . , vn(v) be the items in Iver in decreasing order of height (breaking ties
arbitrarily). For w ∈ [0, wL] and h ∈ [0, hL], let L(w, h) = ([0, w] × [0, N ]) ∪ ([0, N ] × [0, h]) ⊆ L. Let
also ∆L(w, h) = ([w,wL]× [h,N ]) ∪ ([w,N ]× [h, hL]) ⊆ L. Note that L = L(w, h) ∪∆L(w, h).

We define a dynamic program table DP indexed by i ∈ [1, n(h)] and j ∈ [1, n(v)], by a top coordinate
t ∈ T , and a right coordinate r ∈ R. The value ofDP (i, t, j, r) is the maximum profit of a (T ,R)-restricted
packing of a subset of {hi, . . . , hn(h)} ∪ {vj , . . . , vn(v)} inside ∆L(r, t). The value of DP (1, 0, 1, 0) is the
value of the optimum solution we are searching for. Note that the number of table entries is upper bounded
by m4.

We fill in DP according to the partial order induced by vectors (i, t, j, r), processing larger vectors first.
The base cases are given by (i, j) = (n(h) + 1, n(v) + 1) and (r, t) = (wL, hL), in which case the table
entry has value 0.

In order to compute any other table entry DP (i, t, j, r), with optimal solution OPT ′, we take the maxi-
mum of the following few values:

• If i ≤ n(h), the value DP (i+ 1, t, j, r). This covers the case that hi /∈ OPT ′;
• If j ≤ n(v), the value DP (i, t, j + 1, r). This covers the case that vj /∈ OPT ′;
• Assume that there exists t′ ∈ T such that t′ − h(hi) ≥ t and that w(hi) ≤ N − r. Then for

the minimum such t′ we consider the value p(hi) + DP (i + 1, t′, j, r). This covers the case that
hi ∈ OPT ′, and there exists a (horizontal) guillotine cut separating hi from OPT ′ \ {hi}.
• Assume that there exists r′ ∈ R such that r′ − w(vj) ≥ r and that h(vj) ≤ N − t. Then for

the minimum such r′ we consider the value p(vj) + DP (i, t, j + 1, r′). This covers the case that
vj ∈ OPT ′, and there exists a (vertical) guillotine cut separating vj from OPT ′ \ {vj}.

We observe that the above cases (which can be explored in polynomial time) cover all the possible configu-
rations inOPT ′. Indeed, if the first two cases do not apply, we have that hi, vj ∈ OPT ′. Then either the line
containing the right side of vj does not intersect hi (hence any other item in OPT ′) or the line containing
the top side of hi does not intersect vj (hence any other item in OPT ′). Indeed, the only remaining case is
that vj and hi overlap, which is impossible since they both belong to OPT ′.

We will show that there exists a (T ,R)-restricted L-packing with the desired properties.

Lemma 6. There exists a (T ,R)-restricted L-packing solution of profit at least (1− 2ε)opt, where the sets
T and R have cardinality at most nO(1/ε1/ε) and can be computed in polynomial time based on the input
(without knowing OPT ).

4A guillotine cut is an infinite, axis-parallel line ` that partitions the items in a given packing in two subsets without intersecting
any item.
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Figure 2: Illustration of the delete&shift procedure with rhor = 2. The dashed lines indicate the value
of the new baselines in the different stages of the algorithm. (Left) The starting packing. Dark and light grey
items denote the growing sequences for the calls with r = 2 and r = 1, resp. (Middle) The shift of items at
the end of the recursive calls with r = 1. Note that light grey items are all deleted, and dark grey items are
not shifted. (Right) The shift of items at the end of the process. Here we assume that the middle dark grey
item is deleted.

Lemmas 5 and 6 together immediately imply a PTAS for L-packings (showing Theorem 1). The rest of
this section is devoted to the proof of Lemma 6.

We will describe a way to delete a subset of items Dhor ⊆ OPThor with p(Dhor) ≤ 2εp(OPThor), and
shift down the remaining itemsOPThor\Dhor so that their top coordinate belongs to a set T with the desired
properties. Symmetrically, we will delete a subset of items Dver ⊆ OPTver with p(Dver) ≤ 2εp(OPTver),
and shift to the left the remaining items OPTver \Dver so that their right coordinate belongs to a setR with
the desired properties. We remark that shifting down (resp. to the left) items of OPThor (resp., OPTver)
cannot create any overlap with items of OPTver (resp., OPThor). This allows us to reason on each such set
separately.

We next focus on OPThor only: the construction for OPTver is symmetric. For notational convenience
we let 1, . . . , nhor be the items of OPThor in non-increasing order of width and from bottom to top in the
starting optimal packing. We remark that this sequence is not necessarily sorted (increasingly or decreas-
ingly) in terms of item heights: this makes our construction much more complicated.

Let us first introduce some useful notation. Consider any subsequence B = {bstart, . . . , bend} of
consecutive items (interval). For any i ∈ B, we define topB(i) :=

∑
k∈B,k≤i h(k) and bottomB(i) =

topB(i)− h(i). The growing subsequence G = G(B) = {g1, . . . , gh} of B (with possibly non-contiguous
items) is defined as follows. We initially set g1 = bstart. Given the item gi, gi+1 is the smallest-index (i.e.,
lowest) item in {gi+1, . . . , bend} such that h(gi+1) ≥ h(gi). We halt the construction ofG when we cannot
find a proper gi+1. For notational convenience, define gh+1 = bend+1. We letBG

i := {gi+1, . . . , gi+1−1}
for i = 1, . . . , h. Observe that the sets BG

i partition B \ G. We will crucially exploit the following simple
property.

Lemma 7. For any gi ∈ G and any j ∈ {bstart, . . . , gi+1 − 1}, h(j) ≤ h(gi).

Proof. The items j ∈ BG
i = {gi+1, . . . , gi+1−1} have h(j) < h(gi). Indeed, any such j with h(j) ≥ h(gi)

would have been added to G, a contradiction.
Consider next any j ∈ {bstart, . . . gi − 1}. If j ∈ G the claim is trivially true by construction of G.

Otherwise, one has j ∈ BG
k for some gk ∈ G, gk < gi. Hence, by the previous argument and by construction

of G, h(j) < h(gk) ≤ h(gi).
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The intuition behind our construction is as follows. Consider the growing sequence G = G(OPThor),
and suppose that p(G) ≤ ε · p(OPThor). Then we might simply delete G, and shift the remaining items
OPThor \ G = ∪jBG

j as follows. Let dxey denote the smallest multiple of y not smaller than x. We
consider each set BG

j separately. For each such set, we define a baseline vertical coordinate basej =
dbottom(gj)eh(gj)/2, where bottom(gj) is the bottom coordinate of gj in the original packing. We next
round up the height of i ∈ BG

j to ĥ(i) := dh(i)eh(gj)/(2n), and pack the rounded items of BG
j as low as

possible above the baseline. The reader might check that the possible top coordinates for rounded items fall
in a polynomial size set (using Lemma 7). It is also not hard to check that items are not shifted up.

We use recursion in order to handle the case p(G) > ε·p(OPThor). Rather than deletingG, we consider
each BG

j and build a new growing subsequence for each such set. We repeat the process recursively for
rhor many rounds. Let Gr be the union of all the growing subsequences in the recursive calls of level r.
Since the sets Gr are disjoint by construction, there must exist a value rhor ≤ 1

ε such that p(Grhor) ≤
ε · p(OPThor). Therefore we can apply the same shifting argument to all growing subsequences of level
rhor (in particular we delete all of them). In the remaining growing subsequences we can afford to delete 1
out of 1/ε consecutive items (with a small loss of the profit), and then apply a similar shifting argument.

We next describe our approach in more detail. We exploit a recursive procedure delete&shift.
This procedure takes as input two parameters: an interval B = {bstart, . . . , bend}, and an integer round
parameter r ≥ 1. Procedure delete&shift returns a setD(B) ⊆ B of deleted items, and a shift function
shift : B \D(B) → N. Intuitively, shift(i) is the value of the top coordinate of i in the shifted packing
w.r.t. a proper baseline value which is implicitly defined. We initially call delete&shift(OPThor, rhor),
for a proper rhor ∈ {1, . . . , 1ε} to be fixed later. Let (D, shift) be the output of this call. The desired set
of deleted items is Dhor = D, and in the final packing top(i) = shift(i) for any i ∈ OPThor \Dhor (the
right coordinate of any such i is N ).

The procedure behaves differently in the cases r = 1 and r > 1. If r = 1, we compute the growing
sequence G = G(B) = {g1 = bstart, . . . , gh}, and set D(B) = G(B). Consider any set BG

j = {gj +

1, . . . , gj+1 − 1}, j = 1, . . . , h. Let basej := dbottomB(gj)eh(gj)/2. We define for any i ∈ BG
j ,

shift(i) = basej +
∑

k∈BGj ,k≤i

dh(k)eh(gj)/(2n).

Observe that shift is fully defined since ∪hj=1B
G
j = B \D(B).

If instead r > 1, we compute the growing sequence G = G(B) = {g1 = bstart, . . . , gh}. We next
delete a subset of items D′ ⊆ G. If h < 1

ε , we let D′ = D′(B) = ∅. Otherwise, let Gk = {gj ∈ G :
j = k (mod 1/ε)} ⊆ G, for k ∈ {0, . . . , 1/ε − 1}. We set D′ = D′(B) = {d1, . . . , dp} = Gx where
x = arg mink∈{0,...,1/ε−1} p(Gk).

Proposition 8. One has p(D′) ≤ ε · p(G). Furthermore, any subsequence {gx, gx+1, . . . , gy} of G with at
least 1/ε items contains at least one item from D′.

Consider each set BG
j = {gj + 1, . . . , gj+1 − 1}, j = 1, . . . , h: We run delete&shift(BG

j , r − 1).
Let (Dj , shiftj) be the output of the latter procedure, and shiftmaxj be the maximum value of shiftj . We
set the output set of deleted items to D(B) = D′ ∪ (∪hj=1Dj).

It remains to define the function shift. Consider any set BG
j , and let dq be the deleted item in D′ with

largest index (hence in topmost position) in {bstart, . . . , gj}: define baseq = dbottomB(dq)eh(dq)/2. If there
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is no such dq, we let dq = 0 and baseq = 0. For any i ∈ BG
j we set:

shift(i) = baseq +
∑

gk∈G,dq<gk≤gj h(gk)

+
∑

gk∈G,dq≤gk<gj shift
max
k + shiftj(i).

Analogously, if gj 6= dq, we set

shift(gj) = baseq +
∑

gk∈G,dq<gk≤gj h(gk)

+
∑

gk∈G,dq≤gk<gj shift
max
k .

This concludes the description of delete&shift. We next show that the final packing has the desired
properties. Next lemma shows that the total profit of deleted items is small for a proper choice of the starting
round parameter rhor.

Lemma 9. There is a choice of rhor ∈ {1, . . . , 1ε} such that the final set Dhor of deleted items satisfies
p(Dhor) ≤ 2ε · p(OPThor).

Proof. Let Gr denote the union of the sets G(B) computed by all the recursive calls with input round
parameter r. Observe that by construction these sets are disjoint. Let alsoDr be the union of the sets D′(B)
on those calls (the union of sets D(B) for r = rhor). By Proposition 8 and the disjointness of sets Gr one
has

p(Dhor) =
∑

1≤r≤rhor p(D
r)

≤ ε ·∑r<rhor
p(Gr) + p(Drhor)

≤ ε · p(OPThor) + p(Drhor).
Again by the disjointness of sets Gr (hence Dr), there must exists a value of rhor ∈ {1, . . . , 1ε} such that
p(Drhor) ≤ ε · p(OPThor). The claim follows.

Next lemma shows that, intuitively, items are only shifted down w.r.t. the initial packing.

Lemma 10. Let (D, shift) be the output of some execution of delete&shift(B, r). Then, for any
i ∈ B \D, shift(i) ≤ topB(i).

Proof. We prove the claim by induction on r. Consider first the case r = 1. In this case, for any i ∈ BG
j :

shift(i)

=dbottomB(gj)eh(gj)/2 +
∑

k∈BGj ,k≤i

dh(k)eh(gj)/(2n)

≤topB(gj)−
1

2
h(gj) +

∑
k∈BGj ,k≤i

h(k) + n · h(gj)

2n

=topB(i).

Assume next that the claim holds up to round parameter r − 1 ≥ 1, and consider round r. For any i ∈ BG
j

8



with baseq = dbottomB(dq)eh(dq)/2, one has

shift(i)

=dbottomB(dq)eh(dq)/2 +
∑

gk∈G,dq<gk≤gj

h(gk)

+
∑

gk∈G,dq≤gk<gj

shiftmaxk + shiftj(i)

≤topB(dq) +
∑

gk∈G,dq<gk≤gj

h(gk)

+
∑

gk∈G,dq≤gk<gj

topBGk
(gk+1 − 1) + topBGj

(i)

=topB(i).

An analogous chain of inequalities shows that shift(gj) ≤ topB(gj) for any gj ∈ G \D′. A similar proof
works for the special case baseq = 0.

It remains to show that the final set of values of top(i) = shift(i) has the desired properties. This
is the most delicate part of our analysis. We define a set T r of candidate top coordinates recursively in
r. Set T 1 contains, for any item j ∈ Ihor, and any integer 1 ≤ a ≤ 4n2, the value a · h(j)2n . Set T r, for
r > 1 is defined recursively w.r.t. to T r−1. For any item j, any integer 0 ≤ a ≤ 2n − 1, any tuple of
b ≤ 1/ε− 1 items j(1), . . . , j(b), and any tuple of c ≤ 1/ε values s(1), . . . , s(c) ∈ T r−1, T r contains the
sum a · h(j)2 +

∑b
k=1 h(j(k)) +

∑c
k=1 s(k). Note that sets T r can be computed based on the input only

(without knowing OPT ). It is easy to show that T r has polynomial size for r = Oε(1).

Lemma 11. For any integer r ≥ 1, |T r| ≤ (2n)
r+2+(r−1)ε

εr−1 .

Proof. We prove the claim by induction on r. The claim is trivially true for r = 1 since there are n choices
for item j and 4n2 choices for the integer a, hence altogether at most n · 4n2 < 8n3 choices. For r > 1, the
number of possible values of T r is at most

n · 2n · (
1/ε−1∑
b=0

nb) · (
1/ε∑
c=0

|T r−1|c) ≤ 4n2 · n 1
ε
−1 · |T r−1| 1ε

≤ (2n)
1
ε
+1((2n)

r+1+(r−2)ε

εr−2 )
1
ε ≤ (2n)

r+2+(r−1)ε

εr−1 .

Next lemma shows that the values of shift returned by delete&shift for round parameter r belong
to T r, hence the final top coordinates belong to T := T rhor .

Lemma 12. Let (D, shift) be the output of some execution of delete&shift(B, r). Then, for any
i ∈ B \D, shift(i) ∈ T r.
Proof. We prove the claim by induction on r. For the case r = 1, recall that for any i ∈ BG

j one has

shift(i) = dbottomB(gj)eh(gj)/2
+

∑
k∈BGj ,k≤i

dh(k)eh(gj)/(2n).
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By Lemma 7, bottomB(gj) =
∑

k∈B,k<gj h(k) ≤ (n− 1) ·h(gj). By the same lemma,
∑

k∈BGj ,k≤i
h(k) ≤

(n− 1) · h(gj). It follows that

shift(i) ≤ 2(n− 1) · h(gj) +
h(gj)

2
+ (n− 1) · h(gj)

2n

≤ 4n2 · h(gj)

2n
.

Hence shift(i) = a · h(gj)2n for some integer 1 ≤ a ≤ 4n2, and shift(i) ∈ T 1 for j = gj and for a proper
choice of a.

Assume next that the claim is true up to r − 1 ≥ 1, and consider the case r. Consider any i ∈ BG
j , and

assume 0 < baseq = dbottomB(dq)eh(dq)/2. One has:

shift(i) = dbottomB(dq)eh(dq)/2 +
∑

gk∈G,dq<gk≤gj

h(gk)

+
∑

gk∈G,dq≤gk<gj

shiftmaxk + shiftj(i).

By Lemma 7, bottomB(dq) ≤ (n − 1)h(dq), therefore dbottomB(dq)eh(dq)/2 = a · h(dq)2 for some in-
teger 1 ≤ a ≤ 2(n − 1) + 1. By Proposition 8, |{gk ∈ G, dq < gk ≤ gj}| ≤ 1/ε − 1. Hence∑

gk∈G,dq<gk≤gj h(gk) is a value contained in the set of sums of b ≤ 1/ε− 1 item heights. By inductive hy-
pothesis shiftmaxk , shiftj(i) ∈ T r−1. Hence by a similar argument the value of

∑
gk∈G,dq≤gk<gj shift

max
k +

shiftj(i) is contained in the set of sums of c ≤ 1/ε − 1 + 1 values taken from T r−1. Altogether,
shift(i) ∈ T r. A similar argument, without the term shiftj(i), shows that shift(gj) ∈ T r for any
gj ∈ G \D′. The proof works similarly in the case baseq = 0 by setting a = 0. The claim follows.

Proof of Lemma 6. We apply the procedure delete&shift to OPThor as described before, and a sym-
metric procedure to OPTver. In particular the latter procedure computes a set Dver ⊆ OPTver of deleted
items, and the remaining items are shifted to the left so that their right coordinate belongs to a set R :=
Rrver , defined analogously to the case of T := T rhor , for some integer rver ∈ {1, . . . , 1/ε} (possibly
different from rhor, though by averaging this is not critical).

It is easy to see that the profit of non-deleted items satisfies the claim by Lemma 9 and its symmetric
version. Similarly, the sets T and R satisfy the claim by Lemmas 11 and 12, and their symmetric versions.
Finally, w.r.t. the original packing non-deleted items in OPThor and OPTver can be only shifted to the
bottom and to the left, resp., by Lemma 10 and its symmetric version. This implies that the overall packing
is feasible.

3 A Simple Improved Approximation for Cardinality 2DK

In this section we present a simple improved approximation for the cardinality case of 2DK. We can assume
that the optimal solution OPT ⊆ I satisfies that |OPT | ≥ 1/ε3 since otherwise we can solve the problem
optimally by brute force in time nO(1/ε3). Therefore, we can discard from the input all large items with
both sides larger than ε ·N : any feasible solution can contain at most 1/ε2 such items, and discarding them
decreases the cardinality of OPT at most by a factor 1 + ε. Let OPT denote this slightly sub-optimal
solution obtained by removing large items.

We will need the following technical lemma, that holds also in the weighted case (see also Fig.1.(b)-(d)).
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Lemma 13. Let H and V be given subsets of items from some feasible solution with width and height
strictly larger than N/2, resp. Let hH and wV be the total height and width of items of H and V , resp.
Then there exists an L-packing of a set APX ⊆ H ∪ V with p(APX) ≥ 3

4(p(H) + p(V )) into the area
L = ([0, N ]× [0, hH ]) ∪ ([0, wV ]× [0, N ]).

Proof. Let us consider the packing of H ∪ V . Consider each i ∈ H that has no j ∈ V to its top (resp.,
to its bottom) and shift it up (resp. down) until it hits another i′ ∈ H or the top (resp, bottom) side of the
knapsack. Note that, since h(j) > N/2 for any j ∈ V , one of the two cases above always applies. We
iterate this process as long as possible to move any such i. We perform a symmetric process on V . At the
end of the process all items in H ∪ V are stacked on the 4 sides of the knapsack5.

Next we remove the least profitable of the 4 stacks: by a simple permutation argument we can guarantee
that this is the top or right stack. We next discuss the case that it is the top one, the other case being
symmetric. We show how to repack the remaining items in a boundary L of the desired size by permuting
items in a proper order. In more detail, suppose that the items packed on the left (resp., right and bottom)
have a total width of wl (resp., total width of wr and total height of hb). We next show that there exists a
packing into L′ = ([0, N ] × [0, hb]) ∪ ([0, wl + wr] × [0, N ]). We prove the claim by induction. Suppose
that we have proved it for all packings into left, right and bottom stacks with parameters w′l, w

′
r, and h′ such

that h′ < hb or w′l + w′r < wl + wr or w′l + w′r = wl + wr and w′r < wr.
In the considered packing we can always find a guillotine cut `, such that one side of the cut contains

precisely one lonely item among the leftmost, rightmost and bottommost items. Let ` be such a cut. First
assume that the lonely item j is the bottommost one. Then by induction the claim is true for the part above `
since the part of the packing above ` has parameters wl, wr, and h− h(j). Thus, it is also true for the entire
packing. A similar argument applies if the lonely item j is the leftmost one.

It remains to consider the case that the lonely item j is the rightmost one. We remove j temporarily and
move all other items by w(j) to the right. Then we insert j at the left (in the space freed by the previous
shifting). By induction, the claim is true for the resulting packing since it has parameters wl + w(j),
wr − w(j), and h, resp.

For our algorithm, we consider the following three packings. The first uses an L that occupies the full
knapsack, i.e., wL = hL = N . Let OPTlong ⊆ OPT be the items in OPT with height or width strictly
larger than N/2 and define OPTshort = OPT \ OPTlong. We apply Lemma 13 to OPTlong and hence
obtain a packing for this L with a profit of at least 3

4p(OPTlong). We run our PTAS for L-packings from
Theorem 1 on this L, the input consisting of all items in I having one side longer than N/2. Hence we
obtain a solution with profit at least (34 −O(ε))p(OPTlong).

For the other two packings we employ the one-sided resource augmentation PTAS from [21]. We apply
this algorithm to the slightly reduced knapsacks [0, N ] × [0, N/(1 + ε)] and [0, N/(1 + ε)] × [0, N ] such
that in both cases it outputs a solution that fits in the full knapsack [0, N ] × [0, N ] and whose profit is by
at most a factor 1 + O(ε) worse than the optimal solution for the respective reduced knapsacks. We will
prove in Theorem 14 that one of these solutions yields a profit of at least (12 − O(ε))p(OPT ) + (14 −
O(ε))p(OPTshort) and hence one of our packings yields a (169 + ε)-approximation.

Theorem 14. There is a 16
9 + ε approximation for the cardinality case of 2DK.

Proof. Let OPT be the considered optimal solution with opt = p(OPT ). Recall that there are no large
items. Let also OPTvert ⊆ OPT be the (vertical) items with height more than ε ·N (hence with width at

5It is possible to permute items in the left stack so that items appear from left to right in non-increasing order of height, and
symmetrically for the other stacks. This is not crucial for this proof, but we implemented this permutation in Fig.1.(c).
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most ε · N ), and OPThor = OPT \ OPTver (horizontal items). Note that with this definition both sides
of a horizontal item might have a length of at most ε · N . We let optlong = p(OPTlong) and optshort =
p(OPTshort).

As mentioned above, our L-packing PTAS achieves a profit of at least (34 − O(ε))optlong which can
be seen by applying Lemma 13 with H = OPTlong ∩ OPThor and V = OPTlong ∩ OPTver. In order
to show that the other two packings yield a good profit, consider a random horizontal strip S = [0, N ] ×
[a, a+ ε ·N ] (fully contained in the knapsack) where a ∈ [0, (1− ε)N) is chosen unformly at random. We
remove all items of OPT intersecting S. Each item in OPThor and OPTshort ∩ OPTver is deleted with
probability at most 3ε and 1

2 + 2ε, resp. Therefore the total profit of the remaining items is in expectation
at least (1 − 3ε)p(OPThor) + (12 − 2ε)p(OPTshort ∩ OPTvert). Observe that the resulting solution can
be packed into a restricted knapsack of size [0, N ] × [0, N/(1 + ε)] by shifting down the items above the
horizontal strip. Therefore, when we apply the resource augmentation algorithm in [21] to the knapsack
[0, N ]× [0, N/(1 + ε)], up to a factor 1− ε, we will find a solution of (deterministically!) at least the same
profit. In other terms, this profit is at least (1− 4ε)p(OPThor) + (12 − 5

2ε)p(OPTshort ∩OPTvert).
By a symmetric argument, we obtain a solution of profit at least (1−4ε)p(OPTver)+(12−5

2ε)p(OPTshort∩
OPThor) when we apply the algorithm in [21] to the knapsack [0, N/(1 + ε)]× [0, N ]. Thus the best of the
latter two solutions has profit at least (12−2ε)optlong+(34− 13

4 ε)optshort = (12−2ε)opt+(14− 5
4ε)optshort.

The best of our three solutions has therefore value at least ( 9
16 −O(ε))opt where the worst case is achieved

for roughly optlong = 3 · optshort.

In the above result we use either an L-packing or a container packing. The 558
325 + ε approximation

claimed in Theorem 2 is obtained by a careful combination of these two packings. In particular, we consider
configurations where long items (or a subset of them) can be packed into a relatively small L, and pack
part of the remaining short items in the complementary rectangular region (using container packings and
Steinberg’s algorithm [32]). See Section B for details.

4 Open Problems

The main problem that we left open is to find a PTAS, if any, for 2DK and 2DKR. This would be interesting
even in the cardinality case. We believe that a better understanding of natural generalizations of L-packings
might be useful. For example, is there are PTAS for ring-packing instances arising by shifting of long items?
This would directly lead to an improved approximation factor for 2DK (though not to a PTAS). Is there a
PTAS for L-packings with rotations? Our improved approximation algorithms for 2DKR are indeed based
on a different approach. Is there a PTAS for O(1) instances of L-packing? This would also lead to an
improved approximation factor for 2DK, and might be an important step towards a PTAS.
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A Weighted Case Without Rotations

In this section we show how to extend the reasoning of the unweighted case to the weighted case. This
requires much more complicated technical machinery than the algorithm presented in Section 3.

Our strategy is to start with a partition of the knapsack into thin corridors as defined in [3]. Then, we
partition these corridors into a set of rectangular boxes and an L-packing. We first present a simplified
version of our argumentation in which we assume that we are allowed to drop Oε(1) many items at no cost,
i.e., we pretend that we have the right to remove Oε(1) items from OPT and compare the profit of our
computed solution with the remaining set. Building on this, we give an argumentation for the general case
which will involve some additional shifting arguments.

A.1 Item classification

We start with a classification of the input items according to their heights and widths. For two given constants
1 ≥ εlarge > εsmall > 0, we classify an item i as:

• small if hi, wi ≤ εsmallN ;

• large if hi, wi > εlargeN ;

• horizontal if wi > εlargeN and hi ≤ εsmallN ;

• vertical if hi > εlargeN and wi ≤ εsmallN ;

• intermediate otherwise (i.e., at least one side has length in (εsmallN, εlargeN ]).

We also call skewed items that are horizontal or vertical. We let Ismall, Ilarge, Ihor, Iver, Iskew, and Iint
be the items which are small, large, horizontal, vertical, skewed, and intermediate, respectively. The cor-
responding intersection with OPT defines the sets OPTsmall, OPTlarge, OPThor, OPTver, OPTskew,
OPTint, respectively.

Observe that |OPTlarge| = O(1/ε2large) and since we are allowed to drop Oε(1) items from now on we
ignore OPTlarge. The next lemma shows that we can neglect also OPTint.

Lemma 15. For any constant ε > 0 and positive increasing function f(·), f(x) > x, there exist constant
values εlarge, εsmall, with ε ≥ εlarge ≥ f(εsmall) ≥ Ωε(1) and εsmall ∈ Ωε(1) such that the total profit of
intermediate rectangles is bounded by εp(OPT ). The pair (εlarge, εsmall) is one pair from a set of Oε(1)
pairs and this set can be computed in polynomial time.

Proof. Define k + 1 = 2/ε + 1 constants ε1, . . . , εk+1, such that ε = f(ε1) and εi = f(εi+1) for each i.
Consider the k ranges of widths and heights of type (εi+1N, εiN ]. By an averaging argument there exists
one index j such that the total profit of items inOPT with at least one side length in the range (εj+1N, εjN ]
is at most 2 ε2p(OPT ). It is then sufficient to set εlarge = εj and εsmall = εj+1.

We transform now the packing of the optimal solution OPT . To this end, we temporarily remove the
small items OPTsmall. We will add them back later. Thus, the reader may now assume that we need to pack
only the skewed items from OPTskew.
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A

B

Figure 3: Illustration of two specific types of corridors: spirals (A) and rings (B)..

A.2 Corridors, Spirals and Rings

We build on a partition of the knapsack into corridors as used in [3]. We define an open corridor to be a
face on the 2D-plane bounded by a simple rectilinear polygon with 2k edges e0, . . . , e2k−1 for some integer
k ≥ 2, such that for each pair of horizontal (resp., vertical) edges ei, e2k−i, i ∈ {1, ..., k − 1} there exists a
vertical (resp., horizontal) line segment `i such that both ei and e2k−i intersect `i and `i does not intersect
any other edge. Note that e0 and ek are not required to satisfy this property: we call them the boundary
edges of the corridor. Similarly a closed corridor (or cycle) is a face on the 2D-plane bounded by two
simple rectilinear polygons defined by edges e0, . . . , ek−1 and e′0, . . . , e

′
k−1 such that the second polygon is

contained inside the first one, and for each pair of horizontal (resp., vertical) edges ei, e′i, i ∈ {0, ..., k− 1},
there exists a vertical (resp., horizontal) line segment `i such that both ei and e′i intersect `i and `i does not
intersect any other edge. See Figures 3 and 4 for examples. Let us focus on minimum length such `i’s:
then the width α of the corridor is the maximum length of any such `i. We say that an open (resp., closed)
corridor of the above kind has k − 2 (resp., k) bends. A corridor partition is a partition of the knapsack into
corridors.

Lemma 16 (Corridor Packing Lemma [3]). There exists a corridor partition and a setOPTcorr ⊆ OPTskew
such that:

1. there is a subset OPT crosscorr ⊆ OPTcorr with |OPT crosscorr | ≤ Oε(1) such that each item i ∈ OPTcorr \
OPT crosscorr is fully contained in some corridor,

2. p(OPTcorr) ≥ (1−O(ε))p(OPTskew),

3. the number of corridors is Oε,εlarge(1) and each corridor has width at most εlargeN and has at most
1/ε bends.

Since we are allowed to drop Oε(1) items from now on we ignore OPT crosscorr . We next identify some
structural properties of the corridors that are later exploited in our analysis. Observe that an open (resp.,
closed) corridor of the above type is the union of k − 1 (resp., k) boxes, that we next call subcorridors
(see also Figure 4). Each such box is a maximally large rectangle that is contained in the corridor. The
subcorridor Si of an open (resp., closed) corridor of the above kind is the one containing edges ei, e2k−i
(resp., ei, ei′) on its boundary. The length of Si is the length of the shortest such edge. We say that a
subcorridor is long if its length is more than N/2, and short otherwise. The partition of subcorridors into
short and long will be crucial in our analysis.
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We call a subcorridor horizontal (resp., vertical) if the corresponding edges are so. Note that each rect-
angle in OPTcorr is univocally associated with the only subcorridor that fully contains it: indeed, the longer
side of a skewed rectangle is longer than the width of any corridor. Consider the sequence of consecutive
subcorridors S1, . . . , Sk′ of an open or closed corridor. Consider two consecutive corridors Si and Si′ , with
i′ = i + 1 in the case of an open corridor and i′ = (i + 1) (mod k′) otherwise. First assume that Si′
is horizontal. We say that Si′ is to the right (resp., left) of Si if the right-most (left-most) boundary of Si′
is to the right (left) of the right-most (left-most) boundary of Si. If instead Si′ is vertical, then Si must be
horizontal and we say that Si′ is to the right (left) of Si if Si is to the left (right) of Si′ . Similarly, if Si′
is vertical, we say that Si′ is above (below) Si if the top (bottom) boundary of Si′ is above (below) the top
(bottom) boundary of Si. If Si′ is horizontal, we say that it is above (below) Si if Si (which is vertical) is
below (above) Si′ . We say that the pair (Si, Si′) forms a clockwise bend if Si is horizontal and Si′ is to its
bottom-right or top-left, and the complementary cases if Si is vertical. In all the other cases the pairs form
a counter-clockwise bend. Consider a triple (Si, Si′ , Si′′) of consecutive subcorridors in the above sense. It
forms a U -bend if (Si, Si′) and (Si′ , Si′′) are both clockwise or counterclockwise bends. Otherwise it forms
a Z-bend. In both cases Si′ is the center of the bend, and Si, Si′′ its sides. An open corridor whose bends
are all clockwise (resp., counter-clockwise) is a spiral. A closed corridor with k = 4 is a ring. Note that in a
ring all bends are clockwise or counter-clockwise, hence in some sense it is the closed analogue of a spiral.
We remark that a corridor whose subcorridors are all long is a spiral or a ring6. As we will see, spirals and
rings play a crucial role in our analysis. In particular, we will exploit the following simple fact.

Lemma 17. The following properties hold:

1. The two sides of a Z-bend cannot be long. In particular, an open corridor whose subcorridors are all
long is a spiral.

2. A closed corridor contains at least 4 distinct (possibly overlapping) U -bends.

Proof. (1) By definition of long subcorridors and Z-bend, the 3 subcorridors of the Z-bend would otherwise
have total width or height larger than N . (2) Consider the left-most and right-most vertical subcorridords,
and the top-most and bottom-most horizontal subcorridors. These 4 subcorridors exist, are distinct, and are
centers of a U -bend.

A.3 Partitioning Corridors into Rectangular Boxes

We next describe a routine to partition the corridors into rectangular boxes such that each item is contained
in one such box. We remark that to achieve this partitioning we sometimes have to sacrifice a large fraction
of OPTcorr, hence we do not achieve a 1 + ε approximation as in [2]. On the positive side, we generate
only a constant (rather than polylogarithmic) number of boxes. This is crucial to obtain a polynomial time
algorithm in the later steps.

Recall that each i ∈ OPTcorr is univocally associated with the only subcorridor that fully contains
it. We will say that we delete a sub-corridor, when we delete all rectangles univocally associated with the
subcorridor. Note that in deletion of a sub-corridor we do not delete rectangles that are partially contained
in that subcorridor but completely contained in a neighbor sub-corridor. Given a corridor, we sometimes
delete some of its subcorridors, and consider the residual corridors (possibly more than one) given by the
union of the remaining subcorridors. Note that removing any subcorridor from a closed corridor turns it into
an open corridor. We implicitly assume that items associated with a deleted subcorridor are also removed
(and consequently the corresponding area can be used to pack other items).

6We leave the simple proof for the ring case to the reader since we do not explicitly need this claim.
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Figure 4: Left: The subcorridors S1 and S3 are vertical, S2 and S4 are horizontal. The subcorridor S3
is on the top-right of S2. The curve on the bottom left shows the boundary curve between S1 and S2.
The pair (S3, S4) forms a clockwise bend and the pair (S2, S3) forms a counter-clockwise bend. The triple
(S1, S2, S3) forms a U -bend and the triple (S2, S3, S4) forms a Z-bend. Right: Our operation that divides a
corridor intoOε(1) boxes andOε(1) shorter corridors. The dark gray items show thin items that are removed
in this operation. The light gray items are fat items that are shifted to the box below their respective original
box. The value α denotes the width of the depicted corridor.

Given two consecutive subcorridors Si and Si′ , we define the boundary curve among them as follows
(see also Figure 4). Suppose that Si′ is to the top-right of Si, the other cases being symmetric. Let Si,i′ =
Si ∩ Si′ be the rectangular region shared by the two subcorridors. Then the boundary curve among them is
any simple rectilinear polygon inside Si,i′ that decreases monotonically from its top-left corner to its bottom-
right one and that does not cut any rectangle in these subcorridors. For a boundary horizontal (resp., vertical)
subcorridor of an open corridor (i.e., a subcorridor containing e0 or e2k−1) we define a dummy boundary
curve given by the vertical (resp., horizontal) side of the subcorridor that coincides with a (boundary) edge
of the corridor.

Remark 1. Each subcorridor has two boundary curves (including possibly dummy ones). Furthermore,
all its items are fully contained in the region delimited by such curves plus the two edges of the corridor
associated with the subcorridor (private region).

Given a corridor, we partition its area into a constant number of boxes as follows (see also Figure 4, and
[2] for a more detailed description of an analogous construction). Let S be one of its boundary subcorridors
(if any), or the central subcorridor of a U -bend. Note that one such S must exist (trivially for an open
corridor, otherwise by Lemma 17.2). In the corridor partition, there might be several subcorridors fulfilling
the latter condition. We will explain later in which order to process the subcorridors, here we explain only
how to apply our routine to one subcorridor, which we call processing of subcorridor.

Suppose that S is horizontal with height b, with the shorter horizontal associated edge being the top one.
The other cases are symmetric. Let εbox > 0 be a sufficiently small constant to be defined later. If S is the
only subcorridor in the considered corridor, S forms a box and all its items are marked as fat. Otherwise,
we draw 1/εbox horizontal lines that partition the private region of S into subregions of height εboxb. We
mark as thin the items of the bottom-most (i.e., the widest) such subregion, and as killed the items of the
subcorridor cut by these horizontal lines. All the remaining items of the subcorridor are marked as fat.

For each such subregion, we define an associated (horizontal) box as the largest axis-aligned box that
is contained in the subregion. Given these boxes, we partition the rest of the corridor into 1/εbox corridors
as follows. Let S′ be a corridor next to S, say to its top-right. Let P be the set of corners of the boxes
contained in the boundary curve between S and S′. We project P vertically on the boundary curve of S′ not
shared with S, hence getting a set P ′ of 1/εbox points. We iterate the process on the pair (S′, P ′). At the end
of the process, we obtain a set of 1/εbox boxes from the starting subcorridor S, plus a collection of 1/εbox
new (open) corridors each one having one less bend with respect to the original corridor. Later, we will
also apply this process on the latter corridors. Each newly created corridor will have one bend less than the
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original corridor and thus this process eventually terminates. Note that, since initially there are Oε,εlarge(1)
corridors each one with O(1/ε) bends, the final number of boxes is Oε,εlarge,εbox(1). See Figure 4 for an
illustration.

Remark 2. Assume that we execute the above procedure on the subcorridors until there is no subcorridor
left on which we can apply it. Then we obtain a partition of OPTcorr into disjoint sets OPTthin, OPTfat,
and OPTkill of thin, fat, and killed items, respectively. Note that each order to process the subcorridors
leads to different such partition. We will define this order carefully in our analysis.

Remark 3. By a simple shifting argument, there exists a packing ofOPTfat into the boxes. Intuitively, in the
above construction each subregion is fully contained in the box associated with the subregion immediately
below (when no lower subregion exists, the corresponding items are thin).

We will from now on assume that the shifting of items as described in Remark 3 has been done.
The following lemma summarises some of the properties of the boxes and of the associated partition of

OPTcorr (independently from the way ties are broken). Let Ihor and Iver denote the set of horizontal and
vertical input items, respectively.

Lemma 18. The following properties hold:

1. |OPTkill| = Oε,εlarge,εbox(1);

2. For any given constant εring > 0 there is a sufficiently small εbox > 0 such that the total height (resp.,
width) of items in OPTthin ∩ Ihor (resp., OPTthin ∩ Iver) is at most εringN .

Proof. (1) Each horizontal (resp., vertical) line in the construction can kill at most 1/εlarge items, since
those items must be horizontal (resp., vertical). Hence we kill Oε,εlarge,εbox(1) items in total.

(2) The mentioned total height/width is at most εboxN times the number of subcorridors, which is
Oε,εlarge(1). The claim follows for εbox small enough.

A.4 Containers

Assume that we applied the routine described in Section A.3 above until each corridor is partitioned into
boxes. We explain how to partition each box into Oε(1) subboxes, to which we refer to as containers in the
sequel. Hence, we apply the routine described below to each box.

Consider a box of size a × b coming from the above construction, and on the associated set OPTbox
of items from OPTfat. We will show how to pack a set OPT ′box ⊆ OPTbox with p(OPT ′box) ≥ (1 −
ε)p(OPTbox) into Oε(1) containers packed inside the box, such that both the containers and the packing of
OPT ′box inside them satisfy some extra properties that are useful in the design of an efficient algorithm. This
part is similar in spirit to prior work, though here we present a refined analysis that simplifies the algorithm
(in particular, we can avoid LP rounding).

A container is a box labelled as horizontal, vertical, or area. A container packing of a set of items I ′

into a collection of non-overlapping containers has to satisfy the following properties:

• Items in a horizontal (resp., vertical) container are stacked one on top of the other (resp., one next to
the other).

• Each i ∈ I ′ packed in an area container of size a× b must have wi ≤ εa and hi ≤ εb.
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Our main building block is the following resource augmentation packing lemma essentially taken from
[23]7.

Lemma 19 (Resource Augmentation Packing Lemma). Let I ′ be a collection of items that can be packed
into a box of size a× b, and εra > 0 be a given constant. Then there exists a container packing of I ′′ ⊆ I ′

inside a box of size a× (1 + εra)b (resp., (1 + εra)a× b) such that:

1. p(I ′′) ≥ (1−O(εra))p(I
′);

2. The number of containers is Oεra(1) and their sizes belong to a set of cardinality nOεra (1) that can be
computed in polynomial time.

Applying Lemma 19 to each box yields the following lemma.

Lemma 20 (Container Packing Lemma). For a given constant εra > 0, there exists a set OPT contfat ⊆
OPTfat such that there is a container packing for all apart from Oε(1) items in OPT contfat such that:

1. p(OPT contfat ) ≥ (1−O(ε))p(OPTfat);

2. The number of containers isOε,εlarge,εbox,εra(1) and their sizes belong to a set of cardinality nOε,εlarge,εbox,εra (1)

that can be computed in polynomial time.

Proof. Let us focus on a specific box of size a × b from the previous construction in Section A.3, and on
the items OPTbox ⊆ OPTfat inside it. If |OPTbox| = Oε(1) then we can simply create one container
for each item and we are done. Otherwise, assume w.l.o.g. that this box (hence its items) is horizontal. We
obtain a setOPTbox by removing fromOPTbox all items intersecting a proper horizontal strip of height 3εb.
Clearly these items can be repacked in a box of size a × (1 − 3ε)b. By a simple averaging argument, it is
possible to choose the strip so that the items fully contained in it have total profit at most O(ε)p(OPTbox).
Furthermore, there can be at most O(1/εlarge) items that partially overlap with the strip (since items are
skewed). We drop these items and do not pack them.

At this point we can use the Resource Augmentation Lemma 19 to pack a large profit subset OPT ′box ⊆
OPTbox into Oεra(1) containers that can be packed in a box of size a× (1−3ε)(1 + εra)b ≤ a× (1−2ε)b.
We perform the above operation on each box of the previous construction and define OPT contfat to be the
union of the respective sets OPT ′box. The claim follows.

A.5 A Profitable Structured Packing

We next prove our main structural lemma which yields that there exists a structured packing which is parti-
tioned into Oε(1) containers and an L. We will refer to such a packing as an L&C packing (formally defined
below). Note that in the previous section we did not specify in which order we partition the subcorridors
into boxes. In this section, we give several such orders which will then result in different packings. The last
such packing is special since we will modify it a bit to gain some space and then reinsert the thin items that
were removed in the process of partitioning the corridors into containers. Afterwards, we will show that one
of the resulting packings will yield an approximation ratio of 17/9 + ε.

A boundary ring of width N ′ is a ring having as external boundary the edges of the knapsack and as
internal boundary the boundary of a square box of size (N −N ′)× (N −N ′) in the middle of the knapsack.

7In Appendix F we reprove this lemma in a container-based form, rather than using LP-based arguments, since this is more
convenient for our final algorithm. Our version of the lemma might also be a handy tool for future work.
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A boundary L of width N ′ is the region covered by two boxes of size N ′ ×N and N ×N ′ that are placed
on the left and bottom boundaries of the knapsack.

An L&C packing is defined as follows. We are given two integer parameters N ′ ∈ [0, N/2] and ` ∈
(N/2, N ]. We define a boundary L of width N ′, and a collection of non-overlapping containers contained
in the space not occupied by the boundary L. The number of containers and their sizes are as in Lemma
20. We let Ilong ⊆ I be the items whose longer side has length longer than ` (hence longer than N/2), and
Ishort = I \ Ilong be the remaining items. We can pack only items from Ilong in the boundary L, and only
items from Ishort in the containers (satisfying the usual container packing constraints). See also Figure 1.

Remark 4. In the analysis sometimes we will not need the boundary L. This case is captured by setting
N ′ = 0 and ` = N (degenerate L case).

Lemma 21. LetOPTL&C be the most profitable solution that is packed by an L&C packing. Then p(OPTL&C) ≥
( 9
17 −O(ε))p(OPT ).

In the remainder of this section we prove Lemma 21, assuming that we can drop Oε(1) items at no cost.
Hence, formally we will prove that there is an L&C packing I ′ and a set of Oε(1) items Idrop such that
p(I ′)+p(Idrop) ≥ ( 9

17 −O(ε))p(OPT ). Subsequently, we will prove Lemma 21 in full generality (without
dropping any items).

The proof of Lemma 21 involves some case analysis. Recall that we classify subcorridors into short
and long, and horizontal and vertical. We further partition short subcorridors as follows: let S1, . . . , Sk′ be
the subcorridors of a given corridor, and let Ss1, . . . , S

s
k′′ be the subsequence of short subcorridors (if any).

Mark Ssi as even if i is so, and odd otherwise. Note that corridors are subdivided into several other corridors
during the box construction process (see the right side of Figure 4), and these new corridors might have
fewer subcorridors than the initial corridor. However, the marking of the subcorridors (short, long, even,
odd, horizontal, vertical) is inherited from the marking of the original subcorridor.

We will describe now 7 different ways to partition the subcorridors into boxes, for some of them
we delete some of the subcorridors. Each of these different processing orders will give different sets
OPTthin, OPTkill and OPT contfat , and based on these, we will partition the items into three sets. We will
then prove three different lower bounds on p(OPTL&C) w.r.t. the sizes of these three sets using averaging
arguments about the seven cases.

Cases 1a, 1b, 2a, 2b: Short horizontal/short vertical subcorridors. We delete either all vertical short
(case 1) or all horizontal short subcorridors (case 2). We first process all short subcorridors, then either all
vertical (subcases a) or horizontal long ones (subcases b), and finally the remaining (horizontal or vertical,
resp.) long ones. We can start by processing all short corridors. Indeed, any such corridor cannot be the
center of a Z-bend by Lemma 17.1 since its two sides would be long, hence it must be boundary or the center
of a U -bend. After processing short subcorridors, by the same argument the residual (long) subcorridors are
the boundary or the center of a U -bend. So we can process the long subcorridors in any order. This gives in
total four cases. See Fig. 5 for deletion/processing of subcorridors for these cases.

Cases 3a, 3b: Even/odd short subcorridors. We delete the odd (or even) short subcorridors and then
process even (resp., odd) short subcorridors last. We exploit the fact that each residual corridor contains at
most one short subcorridor. Then, if there is another (long) subcorridor, there is also one which is boundary
(trivially for an open corridor) or the center of a U -bend (by Lemma 17, Property 2). Hence we can always
process some long subcorridor leaving the unique short subcorridor as last one. This gives two cases.
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Figure 5: Figure for Case 1 and 2. The knapsack on the left contains two corridors, where short subcorridors
are marked light grey and long subcorridors are marked dark grey. In case 1, we delete vertical short
subcorridors and then consider two processing orders in subcases a and b. In case 2, we delete horizontal
short subcorridors and again consider two processing orders in subcases a and b.

Case 4: Fat only. Do not delete any short subcorridor. Process subcorridors in any feasible order.
In each of the cases, we apply the procedure described in Section A.4 to partition each box into Oε(1)

containers. We next label items as follows. Consider the classification of items into OPT contfat , OPTthin,
and OPTkill in each one of the 7 cases above. Then:

• OPTT is the set of items which are in OPTthin in at least one case;

• OPTK is the set of items which are in OPTkill in at least one case;

• OPTF is the set of items which are in OPT contfat in all the cases.

Remark 5. Consider the subcorridor of a given corridor that is processed last in one of the above cases.
None of its items are assigned to OPTthin in that case and thus essentially all its items are packed in one of

22



the constructed containers. In particular, for an item in set OPTT , in some of the above cases it might be in
such a subcorridor and thus marked fat and packed into a container.

Lemma 22. One has p(OPTF∪OPTT )+p(OPTK)+p(OPTlarge)+p(OPT crosscorr ) ≥ (1−O(ε))p(OPT ).

Proof. Let us initializeOPTF = OPT contfat ,OPTT = OPTthin, andOPTK = OPTkill by considering one
of the above cases. Next we consider the aforementioned cases, hence moving some items inOPTF to either
OPTT or OPTK . Note that initially p(OPTF ∪OPTT ) + p(OPTkill) + p(OPTlarge) + p(OPT crosscorr ) ≥
(1−O(ε))p(OPT ) by Lemma 16 and hence we keep this property.

Let Ilc and Isc denote the items in long and short corridors, respectively. We also let OPTLF = Ilc ∩
OPTF , and define analogously OPTSF , OPTLT , and OPTLF . The next three lemmas provide a lower
bound on the case of a degenerate L.

Lemma 23. p(OPTL&C) ≥ p(OPTLF ) + p(OPTSF ).

Proof. Follows immediately since we pack a superset of OPTF in case 4.

Lemma 24. p(OPTL&C) ≥ p(OPTLF ) + p(OPTLT )/2 + p(OPTSF )/2.

Proof. Consider the sum of the profit of the packed items corresponding to the in total four subcases of
cases 1 and 2. Each i ∈ OPTLF appears 4 times in the sum (as items in OPTF are fat in all cases
and all long subcorridors get processed), and each i ∈ OPTLT at least twice by Remark 5: If a long
subcorridor L neighbors a short subcorridor, the short subcorridor is either deleted or processed first. Further,
all neighboring long subcorridors are processed first in case 1a and 2a (if L is horizontal, then its neighbors
are vertical) or 1b and 2b (if L is vertical and its neighbors are horizontal). Thus, L is the last processed
subcorridor in at least two cases. Additionally, each item i ∈ OPTSF also appears twice in the sum, as it
gets deleted either in case 1 (if it is vertical) or in case 2 (if it is horizontal) and is fat otherwise.

The claim follows by an averaging argument.

Lemma 25. p(OPTL&C) ≥ p(OPTLF ) + p(OPTSF )/2 + p(OPTST )/2.

Proof. Consider the sum of the number of packed items corresponding to cases 3a and 3b. Each i ∈ OPTLF
appears twice in the sum as it is fat and all long subcorridors get processed. Each i ∈ OPTSF ∪ OPTST
appears at least once in the sum by Remark 5: An item i ∈ OPTSF is deleted in one of the two cases
(depending on whether it is in an even or odd subcorridor) and otherwise fat. An item i ∈ OPTST is also
deleted in one of the two cases and otherwise its subcorridor is processed last. The claim follows by an
averaging argument.

There is one last (and slightly more involving) case to be considered, corresponding to a non-degenerate
L.

Lemma 26. p(OPTL&C) ≥ 3
4p(OPTLT ) + p(OPTST ) + 1−O(ε)

2 p(OPTSF ).

Proof. Recall that εlargeN is the maximum width of a corridor. We consider an execution of the algorithm
with boundary L width N ′ = εringN , and threshold length ` = (12 + 2εlarge)N . We remark that this length
guarantees that items in Ilong are not contained in short subcorridors.

By Lemma 13, we can pack a subset of OPTT ∩ Ilong of profit at least 3
4p(OPTT ∩ Ilong) in a boundary

L of width εringN . By Lemma 18 the remaining items in OPTT can be packed in two containers of size
`× εringN and εringN × ` that we place on the two sides of the knapsack not occupied by the boundary L.
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In the free area we can identify a square region K ′′ with side length (1 − ε)N . We next show that
there exists a feasible solution OPT ′SF ⊆ OPTSF with p(OPT ′SF ) ≥ (1−O(ε))p(OPTSF )/2 that can be
packed in a square of side length (1− 3ε)N . We can then apply the Resource Augmentation Lemma 19 to
pack OPT ′′SF ⊆ OPT ′SF of cardinality p(OPT ′′SF ) ≥ (1−O(ε))p(OPT ′SF ) inside a central square region
of side length (1− 3ε)(1 + εra)N ≤ (1− 2ε)N using containers according to Lemma 20.

Consider the packing of OPTSF as in the optimum solution. Choose a random vertical (resp., hori-
zontal) strip in the knapsack of width (resp., height) 3εN . Delete from OPTSF all the items intersecting
the vertical and horizontal strips: clearly the remaining items OPT ′SF can be packed into a square of side
length (1−3ε)N . Consider any i ∈ OPTSF , and assume i is horizontal (the vertical case being symmetric).
Recall that it has height at most εsmallN ≤ εN and width at most ` ≤ 1/2 + 2ε. Therefore i intersects the
horizontal strip with probability at most 5ε and the vertical strip with probability at most 1/2 + 8ε. Thus
by the union bound i ∈ OPT ′SF with probability at least 1/2 − 13ε. The claim follows by linearity of
expectation.

Combining the above Lemmas 22, 23, 24, 25, and 26 we achieve the desired approximation factor,
assuming that the (dropped) Oε(1) items in OPTkill ∪ OPTlarge ∪ OPT crosscorr have zero profit. The worst
case is obtained, up to 1 − O(ε) factors, for p(OPTLT ) = p(OPTSF ) = p(OPTST ) and p(OPTLF ) =
5p(OPTLT )/4. This gives p(OPTLT ) = 4/17 · p(OPTT ∪OPTF ) and a total profit of 9/17 · p(OPTT ∪
OPTF ).

A.6 Adding small items

Note that up to now we ignored the small items OPTsmall. In this section, we explain how to pack a large
fraction of these items.

We described above how to pack a large enough fraction ofOPTskew into containers. We next refine the
mentioned analysis to bound the total area of such containers. It turns out that the residual area is sufficient
to pack almost all the items of OPTsmall into a constant number of area containers (not overlapping with
the previous containers) for εsmall small enough.

To this aim we use a refined version of the Resource Augmentation Lemma 19, i.e., Lemma 55. Es-
sentially, besides the other properties, we can guarantee that the total area of the containers is at most
a(I ′) + εra a · b, where a× b and I ′ are the size of the box and the initial set of items in the claim of Lemma
19, respectively.

Lemma 27. In the packings due to Lemmas 23, 24, 25, and 26 the total area occupied by containers is at
most min{(1− 2ε)N2, a(OPTcorr) + εraN

2}.

Proof. Consider the first upper bound on the area. We have to distinguish between the containers considered
in Lemma 26 and the remaining cases. In the first case, there is a region not occupied by the boundary L
nor by the containers of area at least 4εN2 − 4ε2N2 − 4εringN

2 ≥ 2εN2 for εring small enough, e.g.,
εring ≤ ε2 suffices. The claim follows. For the remaining cases, recall that in each horizontal box of size
a× b we remove a horizontal strip of height 3εb, and then use the Resource Augmentation Packing Lemma
to pack the residual items in a box of size a × b(1 − 3ε)(1 + εra) ≤ a × b(1 − 2ε) for εra ≤ ε. Thus the
total area of the containers is at most a fraction 1−2ε of the area of the original box. A symmetric argument
applies to vertical boxes. Thus the total area of the containers is at most a fraction 1− 2ε of the total area of
the boxes, which in turn is at most N2. This gives the first upper bound in the claim.
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For the second upper bound, we just apply the area bound in Lemma 55 to get that the total area of the
containers is at most a(OPTcorr) plus εra a · b for each box of size a× b. Summing the latter terms over the
boxes one obtains at most εraN2.

We are now ready to state a lemma that provides the desired packing of small items. By slightly adapting
the analysis we can guarantee that the boundary L that we use to prove the claimed approximation ratio has
width at most ε2N .

Lemma 28 (Small Items Packing Lemma). Suppose we are given a packing of non small items of the
above type into k containers of total area A and, possibly, a boundary L of width at most ε2N . Then for
εsmall small enough it is possible to define Oεsmall(1) area containers of size εsmall

ε N × εsmall
ε N neither

overlapping with the containers nor with the boundary L (if any) such that it is possible to packOPT ′small ⊆
OPTsmall of profit p(OPT ′small) ≥ (1−O(ε))p(OPTsmall) inside these new area containers.

Proof. Let us build a grid of width ε′N = εsmall
ε ·N inside the knapsack. We delete any cell of the grid that

overlaps with a container or with the boundary L, and call the remaining cells free. The new area containers
are the free cells.

The total area of the deleted grid cells is, for εsmall and εra small enough, at most

(ε2N2 +A) + (2N + 4Nk)
1

ε′N
· (ε′N)2 ≤ A+ 2ε2N2

Lem.27
≤ min{(1− ε)N2, a(OPTcorr) + 3ε2N2}

For the sake of simplicity, suppose that any empty space in the optimal packing of OPTcorr ∪ OPTsmall
is filled in with dummy small items of profit 0, so that a(OPTcorr ∪ OPTsmall) = N2. We observe
that the area of the free cells is at least (1 − O(ε))a(OPTsmall): Either, a(OPTsmall) ≥ εN2 and then
the area of the free cells is at least a(OPTsmall) − 3ε2N2 ≥ (1 − 3ε)a(OPTsmall); otherwise, we have
that the area of the free cells is at least εN2 > a(OPTsmall). Therefore we can select a subset of small
items OPT ′small ⊆ OPTsmall, with p(OPT ′small) ≥ (1 − O(ε))p(OPTsmall) and area a(OPTsmall) ≤
(1−O(ε))a(OPTsmall) that can be fully packed into free cells using classical Next Fit Decreasing Height
algorithm (NFDH) according to Lemma 52 described later. The key argument for this is that each free cell
is by a factor 1/ε larger in each dimension than each small item.

Thus, we have proven now that if the items in OPTkill ∪ OPTlarge ∪ OPT crosscorr had zero profit, then
there is an L&C-packing for the skewed and small items with a profit of at least 9/17 · p(OPTcorr) + (1−
O(ε))(OPTsmall) ≥ (9/17−O(ε))p(OPT ).

A.7 Shifting argumentation

We remove now the assumption that we can drop Oε(1) items from OPT . We will add a couple of shifting
steps to the argumentation above to prove Lemma 21 without that assumption.

It is no longer true that we can neglect the large rectangles OPTlarge since they might contribute a large
amount towards the objective, even though their total number is guaranteed to be small. Also, in the process
of constructing the boxes, we killed up toOε(1) rectangles (the rectangles inOPTkill). Similarly, we can no
longer drop the constantly many items in OPT crosscorr . Therefore, we apply some careful shifting arguments
in order to ensure that we can still use a similar construction as above, while losing only a factor 1 + O(ε)
due to some items that we will discard.
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The general idea is as follows: For t = 0, . . . , k (we will later argue that k < 1/ε), we define disjoint
sets K(t) recursively, each containing at most Oε(1) items. Each set K(t) =

⋃t
j=0K(j) is used to define

a grid G(t) in the knapsack. Based on an item classification that depends on this grid, we identify a set of
skewed items and create a corridor partition w.r.t. these skewed items as described in Lemma 16. We then
create a partition of the knapsack into corridors and a constant (depending on ε) number of containers (see
Section A.7.1). Next, we decompose the corridors into boxes (Section A.7.2) and these boxes into containers
(section A.7.3) similarly as we did in Sections A.3 and A.4 (but with some notable changes as we did not
delete small items from the knapsack and thus need to handle those as well). In the last step, we add small
items to the packing (Section A.7.4). During this whole process, we define the set K(i+ 1) of items that are
somehow “in our way” during the decomposition process (e.g., items that are not fully contained in some
corridor of the corridor partition), but which we cannot delete directly as they might have large profit. These
items are similar to the killed items in the previous argumentation. However, using a shifting argument we
can simply show that after at most k < 1/ε steps of this process, we encounter a setK(k) of low total profit,
that we can remove, at which point we can apply almost the same argumentation as in Lemmas 23, 24, and
25 to obtain lower bounds on the profit of an optimal L&C packing (Section A.7.5).

We initiate this iterative process as follows: Denote byK(0) a set containing all items that are killed in at
least one of the cases arising in Section A.5 (the set OPTK in that Section) and additionally the large items
OPTlarge and the Oε(1) items in OPT crosscorr (in fact OPTlarge ⊆ OPT crosscorr ). Note that |K(0)| ≤ Oε(1). If
p(K(0)) ≤ ε · p(OPT ) then we can simply remove these rectangles (losing only a factor of 1 + ε) and then
apply the remaining argumentation exactly as above and we are done. Therefore, from now on suppose that
p(K(0)) > ε · p(OPT ).

A.7.1 Definition of grid and corridor partition

Assume we are in round t of this process, i.e., we defined K(t) in the previous step (unless t = 0, then K(t)
is defined as specified above) and assume that p(K(t)) > εOPT (otherwise, see Section A.7.5). We are now
going to define the non-uniform gridG(t) and the induced partition of the knapsack into a collection of cells
Ct. The x-coordinates (y-coordinates) of the grid cells are the x-coordinates (y-coordinates, respectively) of
the items in K(t). This yields a partition of the knapsack into Oε(1) rectangular cells, such that each item
of K(t) covers one or multiple cells. Note that an item might intersect many cells.

Similarly as above, we define constants 1 ≥ εlarge ≥ εsmall ≥ Ωε(1) and apply a shifting step such that
we can assume that for each item i ∈ OPT touching some cellC we have thatw(i∩C) ∈ (0, εsmallw(C)]∪
(εlargew(C), w(C)] and h(i ∩ C) ∈ (0, εsmallh(C)] ∪ (εlargeh(C), h(C)], where h(C) and w(C) denote
the height and the width of the cell C and w(i ∩ C) and h(i ∩ C) denote the height and the width of the
intersection of the rectangle i with the cell C, respectively. For a cell C denote by OPT (C) the set of
rectangles that intersect C in OPT . We obtain a partition of OPT (C) into OPTsmall(C), OPTlarge(C),
OPThor(C), and OPTver(C):

• OPTsmall(C) contains all items i ∈ OPT (C) with h(i ∩ C) ≤ εsmallh(C) and w(i ∩ C) ≤
εsmallw(C),

• OPTlarge(C) contains all items i ∈ OPT (C) with h(i ∩ C) > εlargeh(C) and w(i ∩ C) >
εlargew(C),

• OPThor(C) contains all items i ∈ OPT (C) with h(i∩C) ≤ εsmallh(C) andw(i∩C) > εlargew(C),
and

• OPTver(C) contains all items i ∈ OPT (C) with h(i∩C) > εlargeh(C) andw(i∩C) ≤ εsmallw(C).
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We call a rectangle i intermediate if there is a cell C such that w(i ∩ C) ∈ (εsmallw(C), εlargew(C)] or
h(i∩C) ∈ (εsmallw(C), εlargew(C)]. Note that a rectangle i is intermediate if and only if the last condition
is satisfied for one of the at most four cells that contain a corner of i.

Lemma 29. For any constant ε > 0 and positive increasing function f(·), f(x) > x, there exist constant
values εlarge, εsmall, with ε ≥ εlarge ≥ f(εsmall) ≥ Ωε(1) and εsmall ∈ Ωε(1) such that the total profit of
intermediate rectangles is bounded by εp(OPT ).

For each cell C that is not entirely covered by some item in K(t) we add all rectangles in OPTlarge(C)
that are not contained in K(t) to K(t + 1). Note that here, in contrast to before, we do not remove small
items from the packing but keep them.

Based on the items OPTskew(Ct) := ∪C∈CtOPThor(C) ∪ OPTver(C) we create a corridor decom-
position and consequently a box decomposition of the knapsack. To make this decomposition clearer, we
assume that we first stretch the non-uniform grid into a uniform [0, 1] × [0, 1] grid. After this operation,
for each cell C and for each element of OPThor(C) ∪ OPTver(C) we know that its height or width is
at least εlarge · 1

1+2|K(t)| . We apply Lemma 16 on the set OPTskew(Ct) which yields a decomposition of
the [0, 1] × [0, 1] square into at most Oε,εlarge,K(t)(1) = Oε,εlarge(1) corridors. The decomposition for the
stretched [0, 1] × [0, 1] square corresponds to the decomposition for the original knapsack, with the same
items being intersected. Since we can assume that all items of OPT are placed within the knapsack so that
they have integer coordinates, we can assume that the corridors of the decomposition also have integer co-
ordinates. We can do that, because shifting the edges of the decomposition to the closest integral coordinate
will not make the decomposition worse, i.e., no new items of OPT will be intersected.

We add all rectangles inOPTskew(Ct) that are not contained in a corridor (at mostOε(1) many) and that
are not contained in K(t) to K(t + 1). The corridor partition has the following useful property: we started
with a fixed (optimal) solution OPT for the overall problem with a fixed placement of the items in this
solution. Then we considered the items in OPTskew(Ct) and obtained the sets OPTcorr ⊆ OPTskew(Ct)
and OPT crosscorr ⊆ OPTcorr. With the mentioned fixed placement, apart from the Oε(1) items in OPT crosscorr ,
each item in OPTcorr is contained in one corridor. In particular, the items in OPTcorr do not overlap the
items in K(t). We construct now a partition of the knapsack into Oε(1) corridors and Oε(1) containers
where each container contains exactly one item from K(t). The main obstacle is that there can be an item
i ∈ K(t) that overlaps a corridor (see Figure 6). We solve this problem by applying the following lemma on
each such corridor.

Lemma 30. Let S be an open corridor with b(S) bends. Let I ′ ⊆ OPT be a collection of items which
intersect the boundary of S with I ′ ∩ OPTskew(Ct) = ∅. Then there is a collection of |I ′| · b(S) line
segments L within S which partition S into corridors with at most b(S) bends each such that no item from
I ′ is intersected by L and there are at mostOε(|I ′|·b(S)) items ofOPTskew(Ct) intersected by line segments
in L.

Proof. Let i ∈ I ′ and assume w.l.o.g. that i lies within a horizontal subcorridor Si of the corridor S. If the
top or bottom edge e of i lies within Si, we define a horizontal line segment ` which contains the edge e and
which is maximally long so that it does not intersect the interior of any item in I ′, and such that it does not
cross the boundary curve between Si and an adjacent subcorridor, or an edge of the boundary of S (we can
assume w.l.o.g. that e does not intersect the boundary curve between Si and some adjacent subcorridor). We
say that ` crosses a boundary curve c (or an edge e of the boundary of S) if c \ ` (or e \ `) has two connected
components.

We now “extend” each end-point of ` which does not lie at the boundary of some other item of I ′ or at
the boundary of S, we call such an end point a loose end. For each loose end x of ` lying on the boundary
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Figure 6: Circumventing the items in I ′, shown in black. The connected components between the dashed
lines show the resulting new corridors.

curve cij partitioning the subcorridors Si and Sj , we introduce a new line `′ perpendicular to `, starting at
x and crossing the subcorridor Sj such that the end point of `′ is maximally far away from x subject to the
constraint that `′ does not cross an item in I ′, another boundary curve inside S, or the boundary of S. We
continue iteratively. Since the corridor has b(S) bends, after at most b(S) iterations this operation will finish.
We repeat the above operation for every item i ∈ I ′, and we denote by L the resulting set of line segments,
see Figure 6 for a sketch. Notice that |L| = b(S) · |I ′|. By construction, if an item i ∈ OPTskew(Ct) is
intersected by a line in L then it is intersected parallel to its longer edge. Thus, each line segment in L can
intersect at most Oε(1) items of OPTskew(Ct). Thus, in total there are at most Oε,εlarge(|I ′| · b(S)) items of
OPTskew(Ct) intersected by line segments in L.

We apply Lemma 30 to each open corridor that intersects an item in K(t). We add all items of Iskew(Ct)
that are intersected by line segments in L to K(t + 1). This adds Oε(1) items in total to K(t + 1) since
|K(t)| ∈ Oε(1) and b(S) ≤ 1/ε for each corridor S. For closed corridors we prove the following lemma.

Lemma 31. Let S be a closed corridor with b(S) bends. LetOPTskew(S) denote the items inOPTskew(Ct)
that are contained in S. Let I ′ ⊆ OPT be a collection of items which intersect the boundary of S with
I ′ ∩ OPTskew(Ct) = ∅. Then there is a collection of Oε(|I ′|2/ε) line segments L within S which partition
S into a collection of closed corridors with at most 1/ε bends each and possibly an open corridor with b(S)
bends such that no item from I ′ is intersected by L and there is a set of items OPT ′skew(S) ⊆ OPTskew(S)
with |OPT ′skew(S)| ≤ Oε(|I ′|2) such that the items in OPTskew(S) \ OPT ′skew(S) intersected by line
segments in L have a total profit of at most O(ε) · p(OPTskew(Ct)).

Proof. Similarly as for the case of open corridors, we take each item i ∈ I ′ whose edge e is contained in
S, and we create a path containing e that partitions S. Here the situation is a bit more complicated, as our
newly created paths could extend over more than 1

ε bends inside S. In this case we will have to do some
shortcutting, i.e., some items contained in S will be crossed parallel to their shorter edge and we cannot
guarantee that their total number will be small. However, we will ensure that the total weight of such items
is small. We proceed as follows (see Figure 6 for a sketch).

Consider any item i ∈ I ′ and assume w.l.o.g. that i intersects a horizontal subcorridor Si of the closed
corridor S. Let e be the edge of i within Si. For each endpoint of e we create a path p as for the case of
closed corridors. If after at most b(S) ≤ 1/ε bends the path hits an item of I ′ (possibly the same item i), the
boundary of S or another path created earlier, we stop the construction of the path. Otherwise, if p is the first
path inside of S that did not finish after at most b(S) bends, we proceed with the construction of the path,
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only now at each bend we check the total weight of the items of OPTskew(S) that would be crossed parallel
to their shorter edge, if, instead of bending, the path would continue at the bend to hit itself. From the
construction of the boundary curves in the intersection of two subcorridors we know that for two bends of
the constructed path, the sets of items that would be crossed at these bends of the path are pairwise disjoint.
Thus, after O(|I ′|/ε) bends we encounter a collection of items OPT ′′skew(S) ⊆ OPTskew(S) such that
p(OPT ′′skew(S)) ≤ ε

|I′|p(OPTskew(S)), and we end the path p by crossing the items of OPT ′′skew(S). This
operation creates an open corridor with up to O(|I ′|/ε) bends. We divide it into up to O(|I ′|) corridors with
up to 1/ε bends each. Via a shifting argument we can argue that this loses at most a factor of 1+ε in the profit
due to these items. When we perform this operation for each item i ∈ I ′ the total weight of items intersected
parallel to their shorter edge (i.e., due to the above shortcutting) is bounded by |I ′| · ε

|I′|p(OPTskew(S)) =

ε · p(OPTskew(S)). This way, we introduce at most O(|I ′|2/ε) line segments. Denote them by L. They
intersect at mostOε(|I ′|2) items parallel to their respective longer edge, denote them byOPT ′skew(S). Thus,
the set L satisfies the claim of the lemma.

Similarly as for Lemma 30 we apply Lemma 31 to each closed corridor. We add all items in the respec-
tive setOPT ′skew(S) to the setK(t+1) which yieldsOε(1) many items. The items inOPTskew(S)\OPT ′skew(S)
are removed from the instance, as their total profit is small.

A.7.2 Partitioning corridors into boxes

Then we partition the resulting corridors into boxes according to the different cases described in Section A.5.
There is one difference to the argumentation above: we define that the setOPTfat contains not only skewed
items contained in the respective subregions of a subcorridor, but all items contained in such a subregion. In
particular, this includes items that might have been considered as small items above. Thus, when we move
items from one subregion to the box associated to the subregion below (see Remark 3) then we move every
item that is contained in that subregion. If an item is killed in one of the orderings of the subcorridors to
apply the procedure from Section A.3 then we add it to K(t + 1). Note that |K(t + 1)| ∈ Oε,εlarge,εbox(1)
and K(t)∩K(t+ 1) = ∅. Also note here that we ignore for the moment small items that cross the boundary
curves of the subcorridors; they will be taken care of in Section A.7.4.

A.7.3 Partitioning boxes into containers

Then we subdivide the boxes into containers. We apply Lemma 20 to each box with a slight modification.
Assume that we apply it to a box of size a × b containing a set of items Ibox. Like above we first remove
the items in a thin strip of width 3εb such that via a shifting argument the items (fully!) contained in this
strip have a small profit of O(ε)p(Ibox). However, in contrast to the setting above the set Ibox contains
not only skewed items but also small items. We call an item i small if there is no cell C such that i ∈
OPTlarge(C) ∪ OPThor(C) ∪ OPTver(C) and denote by OPTsmall(Ct) the set of small items. When we
choose the strip to be removed we ensure that the profit of the removed skewed and small items is small.
There are Oε(1) skewed items that partially (but not completely) overlap the strip whose items we remove.
We add those Oε(1) items to K(t+ 1). Small items that partially overlap the strip are taken care of later in
Section A.7.4, we ignore them for the moment. Then we apply Lemma 19. In contrast to the setting above,
we do not only apply it to the skewed items but apply it also to small items that are contained in the box.
Denote by OPT ′small(Ct) the set of small items that are contained in some box of the box partition.

Thus, we obtain an L&C packing for the items inK(t), for a set of itemsOPT ′skew(Ct) ⊆ OPTskew(Ct),
and for a set of items OPT ′′small(Ct) ⊆ OPT ′small(Ct) such that p(OPT ′skew(Ct)) + p(OPT ′′small(Ct)) +
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p(K(t+ 1)) ≥ (1−O(ε))p(OPTskew(Ct) ∪OPT ′small(Ct)).

A.7.4 Handling small items

So far we ignored the small items in OPT ′′small(Ct) := OPTsmall(Ct) \OPT ′small(Ct). This set consists of
small items that in the original packing intersect a line segment of the corridor partition, the boundary of a
box, or a boundary curve within a corridor. We describe now how to add them into the empty space of the
so far computed packing. First, we assign each item in OPT ′′small(Ct) to a grid cell. We assign each small
item i ∈ OPT ′′small(Ct) to the cell C such that in the original packing i intersects with C and the area of
i ∩ C is not smaller than i ∩ C ′ for any cell C ′ (i ∩ C ′ denotes the part of i intersecting C ′ in the original
packing for any grid cell C ′).

Consider a grid cell C and let OPT ′′small(C) denote the small items in OPT ′′small(Ct) assigned to C.
Intuitively, we want to pack them into the empty space in the cell C that is not used by any of the containers,
similarly as above. We first prove an analog of Lemma 27 of the setting above.

Lemma 32. Let C be a cell. The total area of C occupied by containers is at most (1− 2ε)a(C).

Proof. In our construction of the boxes we moved some of the items (within a corridor). In particular, it
can happen that we moved some items into C that were originally in some other grid cell C ′. This reduces
the empty space in C for the items in OPT ′′small(C). Assume that there is a horizontal subcorridor H
intersecting C such that some items or parts of items within H were moved into C that were not in C
before. Then such items were moved vertically and the corridor containing H must intersect the upper or
lower boundary of C. The part of this subcorridor lying within C has a height of at most εlarge · h(C).
Thus, the total area of C lost in this way is bounded by O(εlargea(C)) which includes analogous vertical
subcorridors.

Like in Lemma 27 we argue that in each horizontal box of size a × b we remove a horizontal strip of
height 3εb and then the created containers lie in a box of height (1 − 3ε)(1 + εra)b. In particular, if the
box does not intersect the top or bottom edge of C then within C its containers use only a box of dimension
a′ × (1 − 3ε)(1 + εra)b where a′ denotes the width of the box within C, i.e., the width of the intersection
of the box with C. If the box intersects the top or bottom edge of C then we cannot guarantee that the
free space lies within C. However, the total area of such boxes is bounded by O(εlargea(C)). We can
apply a symmetric argument to vertical boxes. Then, the total area of C used by containers is at most
(1− 3ε)(1 + εra)a(C) +O(εlargea(C)) ≤ (1− 2ε)a(C). This gives the claim of the lemma.

Next, we argue that the items in OPT ′′small(C) have very small total area. Recall that they are the items
intersecting C that are not contained in a box. The total number of boxes and boundary curves intersecting
C is Oε,εlarge(1) and in particular, this quantity does not depend on εsmall. Hence, by choosing εsmall
sufficiently small, we can ensure that a(OPT ′′small(C)) ≤ εa(C). Then, similarly as in Lemma 28 we can
argue that if εsmall is small enough then we can pack the items inOPT ′′small(C) using NFDH into the empty
space within C.

A.7.5 L&C packings

We iterate the above construction, obtaining pairwise disjoint sets K(1),K(2), ... until we find a set K(k)
such that p(K(k)) ≤ ε · OPT . Since the sets K(0),K(1), ... are pairwise disjoint there must be such a
value k with k ≤ 1/ε. Thus, |K(k − 1)| ≤ Oε(1). We build the grid given by the x- and y-coordinates of
K(k − 1), giving a set of cells Ck. As described above we define the corridor partition, the partition of the
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corridors into boxes (with the different orders to process the subcorridors as described in Section A.3) and
finally into containers. Denote by OPTsmall(Ck) the resulting set of small items.

We consider the candidate packings based on the grid Ck. For each of the six candidate packings with a
degenerate L we can pack almost all small items of the original packing. We define Ilc and Isc the sets of
items in long and short subcorridors in the initial corridor partition, respectively. Exactly as in the cardinality
case, a subcorridor is long if it is longer than N/2 and short otherwise. As before we divide the items into
fat and thin items and define the sets OPTSF , OPTLT , and OPTST accordingly. Moreover, we define the
set OPTLF to contain all items in Ilc that are fat in all candidate packings plus the items in K(k − 1).

Thus, we obtain the respective claims of Lemmas 23, 24, and 25 in the weighted setting. For the
following lemma let OPTsmall := OPTsmall(Ck).

Lemma 33. Let OPTL&C the most profitable solution that is packed by an L&C packing.

(a) p(OPTL&C) ≥ (1−O(ε))(p(OPTLF ) + p(OPTSF ) + p(OPTsmall))

(b) p(OPTL&C) ≥ (1−O(ε))(p(OPTLF ) + p(OPTSF )/2 + p(OPTLT )/2 + p(OPTsmall))

(c) p(OPTL&C) ≥ (1−O(ε))(p(OPTLF ) + p(OPTSF )/2 + p(OPTST )/2 + p(OPTsmall)).

For the candidate packing for the non-degenerate-L case (Lemma 26 in Section A.5) we first add the
small items as described above. Then we remove the items in K(k − 1). Then, like above, with a random
shift we delete items touching a horizontal and a vertical strip of width 3εN . Like before, each item i is still
contained in the resulting solution with probability 1/2 − 15ε (note that we cannot make such a claim for
the items in K(k− 1)). For each small item we can even argue that it still contained in the resulting solution
with probability 1 − O(ε) (since it is that small in both dimensions). We proceed with the construction of
the boundary L and the assignment of the items into it like in the unweighted case.

Lemma 34. For the solutionOPTL&C we have that p(OPTL&C) ≥ (1−O(ε))(34p(OPTLT )+p(OPTST )+
1−O(ε)

2 p(OPTSF ) + p(OPTsmall)).

When we combine Lemmas 33 and 34 we conclude that p(OPTL&C) ≥ (17/9 + O(ε))p(OPT ).
Similarly as before, the worst case is obtained, up to 1 − O(ε) factors, when we have that p(OPTLT ) =
p(OPTSF ) = p(OPTST ), p(OPTLF ) = 5p(OPTLT )/4, and p(OPTsmall) = 0. This completes the proof
of Lemma 21.

A.8 Main algorithm

In this Section we present our main algorithm for the weighted case of 2DK. It is in fact an approximation
scheme for L&C packings. Its approximation factor therefore follows immediately from Lemma 21.

Given ε > 0, we first guess the quantities εlarge, εsmall, the proof of Lemma 15 reveals that there are
only 2/ε + 1 values we need to consider. We choose εring := ε2 and subsequently define εbox accord-
ing to Lemma 18. Our algorithm combines two basic packing procedures. The first one is the following
standard PTAS to pack items into a constant number of containers. The same basic approach works also
with rotations. The basic idea is to reduce the problem to an instance of the Maximum Generalized Assign-
ment Problem (GAP) with one bin per container, and then use a PTAS for the latter problem plus Next Fit
Decreasing Height to repack items in area containers.

Lemma 35. There is a PTAS for the problem of computing a maximum profit packing of a subset of items of
a given set I ′ into a given set of containers of constant cardinality, both with and without rotations.
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The second packing procedure is the PTAS for the L-packing problem, see Theorem 1.
To use these packing procedures, we first guess whether the optimal L&C-packing due to Lemma 21

uses a non-degenerate boundary L. If yes, we guess a parameter ` which denotes the minimum height of
the vertical items in the boundary L and the minimum width of the horizontal items in the boundary L. For
` we allow all heights and widths of the input items that are larger than N/2, i.e., at most 2n values. Let
Ilong be the items whose longer side has length at least ` (hence longer than N/2). We set the width of the
boundary L to be ε2N and solve the resulting instance (L, Ilong) optimally using the PTAS for L-packings
due to Theorem 1. Then we enumerate all the possible subsets of non-overlapping containers in the space
not occupied by the boundary L (or in the full knapsack, in the case of a degenerate L), where the number
and sizes of the containers are defined as in Lemma 20. In particular, there are at most Oε(1) containers
and there is a set of size nOε(1) that we can compute in polynomial time such that the height and the width
of each container is contained in this set. We compute an approximate solution for the resulting container
packing instance with items Ishort = I \ Ilong using the PTAS from Lemma 35. Finally, we output the most
profitable solution that we computed.

B Cardinality case without rotations

In this section, we present a refined algorithm with approximation factor of 558
325 + ε < 1.717 for the cardi-

nality case when rotations are not allowed.

Theorem 36. There exists a polynomial-time 558
325 + ε < 1.717-approximation algorithm for cardinality

2DK.

Along this section, since the profit of each item is equal to 1, instead of p(I) for a set of items I we will
just write |I|. We will use most of the notation defined in Section A. Recall that for two given constants
0 < εsmall < εlarge ≤ 1, we partition the instance into:

• Ismall, the set of rectangles with hi, wi ≤ εsmallN , and we denote them as small rectangles;

• Ilarge, the set of rectangles with hi, wi > εlargeN , and we denote them as large rectangles;

• Ihor, the set of rectangles with wi > εlargeN and hi ≤ εsmallN , and we denote them as horizontal
rectangles;

• Iver, the set of rectangles with hi > εlargeN and wi ≤ εsmallN , and we denote them as vertical
rectangles;

• Iint, the set of remaining rectangles, and we denote them as intermediate rectangles.

The corresponding intersection with OPT defines the sets OPTsmall, OPTlarge, OPThor, OPTver and
OPTint, respectively. As discussed in Section 3, since any feasible solution contains at most 1

ε2large
large

rectangles, we can assume in this case that OPTlarge = ∅. Furthermore, thanks to Lemma 15, εsmall and
εlarge can be chosen in such a way that εsmall ≤ εlarge ≤ ε, εsmall differs from εlarge by a large factor and
|OPTint| ≤ ε|OPT |. Building upon the corridors decomposition from [2], we will again consider OPTT
(thin rectangles), OPTF (fat rectangles) and OPTK (killed rectangles) as defined in Section A.5. Thanks to
Lemma 18, |OPTK | = Oε(1) and all the involved parameters can be fixed in such a way that the total height
(resp. width) of OPTT ∩ Ihor (resp. OPTT ∩ Iver) is at most εN . Recall that a subcorridor is called long if
its shortest edge has length at least N2 and short otherwise. In the analysis of the algorithm we will again use
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sets OPTLF , OPTLT , OPTSF and OPTST as defined in Section A.3, corresponding to rectangles from
OPTF inside long corridors, rectangles from OPTT inside long corridors, rectangles from OPTF inside
short corridors and rectangles from OPTT inside short corridors respectively. For a given ` ∈ (N2 , N ], we
let Ilong ⊆ I be the rectangles whose longest side has length longer than ` and Ishort = I \ Ilong. We
will assume as in the proof of Lemma 26 that ` =

(
1
2 + 2εlarge

)
N . That way we make sure that no long

rectangle belongs to a short subcorridor (however it is worth remarking that long corridors may contain short
rectangles).

Let us define OPTlong := Ilong ∩OPT and OPTshort := Ishort ∩OPT . Let us define εL =
√
ε. Note

that εL ≥ ε ≥ εlarge ≥ εsmall. For simplicity and readability of the section, sometimes we will slightly
abuse the notation and for any small constant depending on ε, εlarge, εsmall, we will just use O(εL). Now
we give a brief informal overview of the refinement and the cases before we go to the details.
Overview of the refined packing. For the refined packing we will consider several L&C packings. Some
of the packings are just extensions of previous constructions (such as from Theorem 14 and Lemma 33).
Then we consider several other new L&C packings where an L-region is packed with items from Ilong and
the remaining region is used for packing items from Ishort using Steinberg’s theorem (See Theorem 38).
Note that in the definition of L&C packing in Section A, we assumed the height of the horizontal part of
L-region and width of the vertical part of L-region to be the same. However, for these new packings we will
consider L-regions where the height of the horizontal part and width of vertical part may differ. Now several
cases arise depending on the structure and profit of the L-region. To pack items in OPTshort we have three
options:
1. We can pack items in Ishort using Steinberg’s theorem into one rectangular region. Then we need both
sides of the region to be greater than 1

2 + 2εlarge.
2. We can pack items in Ishort using Steinberg’s theorem such that vertical and horizontal items are packed
separately into different vertical and horizontal rectangular regions inside the knapsack.
3. If a(OPTshort) is large, we might pack only a small region with items in OPTlong, and use the remaining
larger space in the knapsack to pack a significant fraction of profit from OPTshort.
Now depending on the structure of the L-packing and a(OPTshort), we arrive at several different cases. If
the L-region has very small width and height, we have case (1). Else if the L-region has very large width
(or height), we have case (2B), where we pack nearly 1

2 |OPTlong| in the L-region and then pack items from
Ishort in one large rectangular region. Otherwise, we have case (2A), where either we pack only items from
OPTlong ∩ OPTT (See Lemma 40, used in case: (2Ai)) or nearly 3/4|OPTlong| (See Lemma 41, used
in cases (2Aii), (2Aiiia)) or in another case, we pack the vertical and horizontal items in OPTshort in two
different regions through a more complicated packing (See case (2Aiiib)). The details of these cases can be
found in the proof of Theorem 36.

Now first, we start with some extensions of previous packings. Note that by using analogous argu-
ments as in the proof of Theorem 14, we can derive the following inequalities leading to a

(
16
9 +O(εL)

)
-

approximation algorithm.

|OPTL&C | ≥
3

4
|OPTlong| (1)

|OPTL&C | ≥
(

1

2
−O(εL)

)
|OPTlong|+

(
3

4
−O(εL)

)
|OPTshort| (2)

Now from Lemma 18, items in OPTshort ∩ OPTT can be packed into two containers of size ` × εN
and εN × `. We can adapt part of the results in Lemma 33 to obtain the following inequalities.
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Proposition 37. The following inequalities hold:

|OPTL&C | ≥ (1−O(εL))(|OPTlong \OPTT |+ |OPTshort \OPTT |). (3)

|OPTL&C | ≥ (1−O(εL))(|OPTlong \OPTT |+
1

2
(|OPTshort \OPTT |+ |OPTlong ∩OPTT |)). (4)

Proof. Inequality (3) follows directly from Lemma 33 since OPTLF ∪OPTSF ∪OPTsmall = (OPTlong \
OPTT ) ∪ (OPTshort \ OPTT ) and both sets are disjoint. Inequality (4) follows from Lemma 24: if we
consider the sum of the number of packed rectangles corresponding to the 4 subcases associated with the case
“short horizontal/short vertical”, then every i ∈ OPTlong \OPTT ⊆ OPTLF appears four times, every i ∈
OPTshort ∩OPTLF appears four times, every i ∈ OPTSF appears twice and every i ∈ OPTlong ∩OPTT
appears twice. After including a (1 − O(εL)) fraction of OPTsmall, and since (OPTshort ∩ OPTLF ) ∪
OPTSF∪OPTsmall = OPTshort\OPTT , the inequality follows by taking average of the four packings.

The following theorem due to Steinberg [32] will be useful to pack items from OPTshort in order to
obtain better packings.

Theorem 38 (A. Steinberg [32]). We are given a set of rectangles I ′ and a box Q of size w × h. Let
wmax ≤ w and hmax ≤ h be the maximum width and maximum height among the items in I ′ respectively.
Also we denote x+ := max(x, 0). If

2a(I ′) ≤ wh− (2wmax − w)+(2hmax − h)+

then I ′ can be packed into Q.

Corollary 39. Let I ′ be a set of rectangles such that max
i∈I′

h(i) ≤
(

1

2
+ 2εlarge

)
N and max

i∈I′
w(i) ≤(

1

2
+ 2εlarge

)
N . Then for any α, β ≤ 1

2 − 2εlarge, all of I ′ can be packed into a knapsack of width

(1− α)N and height (1− β)N if

a(I ′) ≤
(1

2
− (α+ β)

(
1

2
+ 2εlarge

)
− 8ε2large

)
N2.

Now we prove a more general version of Lemma 26 which holds for the cardinality case.

Lemma 40. If a(OPTshort \OPTT ) ≤ γN2 for any γ ≤ 1, then

|OPTL&C | ≥
3

4
|OPTlong ∩OPTT |+ |OPTshort ∩OPTT |+ min

{
1,

1−O(εL)

2γ

}
|OPTshort \OPTT |.

Proof. As in Lemma 26, we can pack 3
4 |OPTlong ∩ OPTT | + |OPTshort ∩ OPTT | many rectangles in a

boundary L-region plus two boxes on the other two sides of the knapsack and then a free square region with
side length (1 − 3ε)N can be used to pack items from OPTshort \ OPTT . From Corollary 39, any subset
of rectangles of OPTshort \OPTT with total area at most (1−O(εL))N2/2 can be packed into that square
region of length (1− 3ε)N . Thus we sort rectangles from OPTshort \OPTT in the order of nondecreasing
area and iteratively pick them until their total area reaches (1 − O(εL) − εsmall)N2/2. Using Steinberg’s
theorem, there exists a packing of the selected rectangles. If 2γ ≤ 1 − O(εL) − εsmall then the profit of
this packing is |OPTshort \ OPTT |, and otherwise the total profit is at least 1−O(εL)

2γ |OPTshort \ OPTT |.
The packing coming from Steinberg’s theorem may not be container-based, but we can then use resource
augmentation as in Lemma 26 to obtain an L&C packing.
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Now the following lemma will be useful when a(OPTshort) is large.

Lemma 41. If a(OPTshort) > γN2 for any γ ≥ 3
4 + ε+ εlarge, then

|OPTL&C | ≥
3

4
|OPTlong|+

(3γ − 1−O(εL))

4γ
|OPTshort|.

Proof. Similar to Lemma 13 in Section 3, we start from the optimal packing and move all rectangles in
OPTlong to the boundary such that all of them are contained in a boundary ring. Note that unlike the case
when we only pack OPTlong ∩ OPTT in the boundary region, the boundary ring formed by OPTlong may
have width or height � εN . Let us call the 4 stacks in the ring to be subrings. Let us assume that left
and right subrings have width αleftN and αrightN respectively and bottom and top subrings have height
βbottomN and βtopN respectively. By possibly killing one of the long rectangles, subrings can be arranged
such that αleft, αright, βbottom, βtop ≤ 1/2: If no vertical rectangle intersects the vertical line x = N

2 and no
horizontal rectangle intersects the horizontal line y = N

2 this property holds directly. If one of the previous
cases is not satisfied, by deleting such rectangle we can ensure the desired property at a negligible loss of
profit, and notice that it is not possible that both cases happen at the same time since rectangles are long.

As a(OPTshort) > γN2, then a(OPTlong) < (1 − γ)N2. Let us define α = αleft + αright and
β = βbottom + βtop. Then (α + β)N · N2 ≤ a(OPTlong), which implies that α+β2 < 1− γ. Hence, we get
the following two inequalities:

(α+ β) ≤ 2(1− γ); (5)

a(OPTshort) ≤ N2 − a(OPTlong) ≤
(

1− (α+ β)

2

)
N2. (6)

Now consider the case when we remove the top horizontal subring and construct a boundary L-region as
in Lemma 13. We will assume that rectangles in the L-region are pushed to the left and bottom as much
as possible. Then, the boundary L-region has width (αleft + αright)N and height βbottomN . We will
use Steinberg’s theorem to show the existence of a packing of rectangles from OPTshort in a subregion
of the remaining space with width N − (αleft + αright + ε)N and height N − (βbottom + ε)N , and use
the rest of the area for resource augmentation to get an L&C-based packing. Since γ ≥ 3

4 + ε + εlarge,
we have from (5) that α + β + 2ε ≤ 2(1 − γ) + 2ε ≤ 1/2 − 2εlarge. So α + ε ≤ 1/2 − 2εlarge
and β + ε ≤ 1/2 − 2εlarge. Thus from Corollary 39, in the region with width N − (αleft + αright +

ε)N and height N(1 − βbottom − ε) we can pack rectangles from OPTshort of total area at most
(
1
2 −

(αleft+αright+βbottom)
2 − O(εL)

)
N2. Hence, we can take the rectangles in OPTshort in the order of nonde-

creasing area until their total area reaches
(
1
2 −

(αleft+αright+βbottom)
2 − O(εL) − εsmall

)
N2 and pack at

least |OPTshort| · (
1
2
−

(αleft+αright+βbottom)

2
−O(εL)−εsmall)

(1− (α+β)
2

)
using Steinberg’s theorem. If we now consider

all the four different cases corresponding to removal of the four different subrings and take the average of
profits obtained in each case, we pack at least

3

4
|OPTlong|+ |OPTshort| ·

(
(12 − 3

8(αleft + αright + βbottom + βtop)−O(εL)

(1− (α+β)
2 )

)

=
3

4
|OPTlong|+ |OPTshort| ·

(
(12 − 3

8(α+ β)−O(εL))

(1− (α+β)
2 )

)

≥ 3

4
|OPTlong|+ |OPTshort| ·

3γ − 1−O(εL)

4γ
,

35



Case 2: wL > εL or hL > εL

Case 2A:
(wL > εL and hL > εL)

or
(wL > εL, hL ≤ εL and w(V1−2εL) ≤ (12 − 2εlarge)N)

or
(hL > εL, wL ≤ εL and h(H1−2εL) ≤ (12 − 2εlarge)N)

Case 2B:
(hL ≤ εL and wLN ≥ w(V1−2εL) > (12 − 2εlarge)N)

or
(wL ≤ εL and hLN ≥ h(H1−2εL) > (12 − 2εlarge)N)

approximation factor: 1.708

Subcase (i):
a(OPTshort\OPTT ) ≤ 3

5N
2

approximation factor: 1.701

Subcase (ii):
a(OPTshort\OPTT ) > (34 + ε + εlarge)N

2

approximation factor: 1.648

Subcase (iii):
a(OPTshort\OPTT ) ∈ [35N

2, (34 + ε + εlarge)N
2]

Subcase (iii a):

wL ≤ 1
2 and hL ≤ 1

2

approximation factor: 1.716

Subcase (iii b):

wL >
1
2 or hL >

1
2

approximation factor: 1.717

Figure 7: Summary of the cases.

where the last inequality follows from (5) and the fact that the expression is decreasing as a function of
(α+ β).

Now we start with the proof of Theorem 36.

Proof of Theorem 36. In the refined analysis, we will consider different solutions and show that the best of
them always achieves the claimed approximation guarantee. We will pack some rectangles in a boundary
L-region (either a subset of only OPTlong ∩OPTT or a subset of OPTlong) using the PTAS for L-packings
described in Section 2, and in the remaining area of the knapsack (outside of the boundary L-region), we
will pack a subset of rectangles from OPTshort.

Consider the ring as constructed in the beginning of the proof of Lemma 41. Then we remove the least
profitable subring and repack the remaining rectangles from OPTlong in a boundary L-region. W.l.o.g. as-
sume that the horizontal top subring was the least profitable subring. The other cases are analogous. We
will use the same notation as in Lemma 41, and also define wL = (αleft + αright), hL = βbottom. Now let
us consider two cases (see Figure 7 for an overview of the subcases of case 2).

• Case 1. wL ≤ εL, hL ≤ εL.
In this case, following the proof of Lemma 40 (using γ = 1), we can pack 3

4 |OPTlong| + |OPTshort ∩
OPTT |+ 1−O(εL)

2 |OPTshort \ OPTT |. This along with inequalities (2), (3) and (4) will give us a solution
with good enough approximation factor. Check Section B.1 and Table 1 for details.
• Case 2. wL > εL or hL > εL.
Let V1−2εL be the set of vertical rectangles having height strictly larger than (1 − 2εL)N . Let us define
w(V1−2εL) =

∑
i∈V1−2εL

w(i). Similarly, let H1−2εL be the set of horizontal rectangles of width strictly
larger than (1− 2εL)N and h(H1−2εL) =

∑
i∈H1−2εL

h(i).

♦ Case 2A.
(
wL > εL and hL > εL

)
or
(
wL > εL, hL ≤ εL, and w(V1−2εL) ≤

(
1
2 − 2εlarge

)
N
)

or(
hL > εL, wL ≤ εL, and h(H1−2εL) ≤

(
1
2 − 2εlarge

)
N
)

.

We will show that if any of the above three conditions is met, then we can pack 3(1−O(ε))
4 |OPTlong| +

|OPTshort ∩ OPTT | in a boundary L-region of width close to wLN and height close to hLN , and then in
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` > N
2

` > N
2

wLN > εLN

εN

hLN > εLNεN

(a) Packing of L-region using rectangles from
OPTlong. Striped strips are cheapest εN -width
and cheapest εN -height.

` > N
2

` > N
2

(b) Packing of rectangles in OPTlong ∪
(OPTshort ∩ OPTT ). Dark gray rectan-
gles are from OPTshort ∩OPTT .

Figure 8: The case for wL > εL and hL > εL.

` > N
2

` > N
2

wLN > εLN

εN

hLN ≤ εLN

(a) Packing of L-region using rectangles from
OPTlong. Striped strip is the cheapest εN -
width strip.

` > N
2

` > N
2

(b) Packing of rectangles in OPTlong ∪
(OPTshort ∩ OPTT ). Dark gray rectan-
gles are from OPTshort ∩OPTT .

Figure 9: The case for wL > εL and hL ≤ εL.

the remaining area we will pack some rectangles from OPTshort \ OPTT using Steinberg’s theorem and
resource augmentation.
Packing of subset of rectangles from OPTlong ∪ (OPTshort ∩OPTT ) into L-region.
If (wL > εL and hL > εL), we partition the vertical part of the L-region into consecutive strips of width εN .
Consider the strip that intersects the least number of vertical rectangles from OPTlong among all strips, and
we call it to be the cheapest εN -width vertical strip (See Figure 8a). Clearly the cheapest εN -width vertical
strip intersects at most a ε+2εsmall

εL
≤ 3εL fraction of the rectangles in the vertical part of the L-region, so

we can remove all such vertical rectangles intersected by that strip at a small loss of profit. Similarly, we
remove the horizontal rectangles intersected by the cheapest εN -height horizontal strip in the boundary L-
region. We now pack the horizontal container for OPTshort ∩OPTT in the free region left by the removed
horizontal strip, and the vertical container for OPTshort ∩ OPTT in the free region left by the removed
vertical strip. Similarly to the proof of Lemma 13 we can sort rectangles in the vertical (resp. horizontal)
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pile of the L-region according to their height (resp. width), obtaining a feasible L&C-packing (See Figure
8b).
In the other case (wL > εL, hL ≤ εL andw(V1−2εL) ≤

(
1
2 − 2εlarge

)
N ), we can again remove the cheapest

εN -width vertical strip in the boundary L-region and pack the vertical container forOPTshort∩OPTT there
(See Figure 9a). Now we show how to pack horizontal items from OPTshort ∩OPTT . In the packing of the
boundaryL-region, we can assume that the vertical rectangles are sorted non-increasingly by height from left
to right and pushed upwards until they touch the top boundary. Then, since w(V1−2εL) ≤

(
1
2 − 2εlarge

)
N

and (hL ≤ εL), the region
[(

1
2 − 2εlarge

)
N,N

]
× [εLN, 2εLN ] will be completely empty and thus we will

have enough space to pack the horizontal container forOPTshort∩OPTT on top of the horizontal part of the
L-region (See Figure 9b). This leads to a packing in a boundary L-region of width at most wLN and height
at most (hL + εL)N with total profit at least 3(1−O(ε))

4 |OPTlong| + |OPTshort ∩ OPTT |. The last case,
when wL ≤ εL, is analogous, leading to a packing into a boundary L-region of width at most (wL + εL)N
and height at most hLN with at least the same profit. Thus,

|OPTL&C | ≥
3(1−O(εL))

4
|OPTlong|+ |OPTshort ∩OPTT | (7)

Packing of a subset of rectangles from OPTshort \OPTT into the remaining region.
Note that after packing at least 3(1−O(ε))

4 |OPTlong|+ |OPTshort ∩OPTT |many rectangles in the boundary
L-region, the remaining rectangular region of width (1 − wL − εL)N and height (1 − hL − εL)N is
completely empty. Now we will show the existence of a packing of some rectangles fromOPTshort\OPTT
in the remaining space of the packing (even using some space from the L-boundary region). Let (OPTshort\
OPTT )hor := ((OPTshort\OPTT )∩Ihor)∪((OPTshort\OPTT )∩Ismall) and (OPTshort\OPTT )ver :=
(OPTshort \OPTT )∩ Iver. Let us assume w.l.o.g. that vertical rectangles are shifted as much as possible to
the left and top of the knapsack and horizontal ones are pushed as much as possible to the right and bottom.
We divide the analysis in three subcases depending on a(OPTshort \OPTT ).
− Subcase (i). If a(OPTshort \OPTT ) ≤ 3

5N
2, from inequalities (2), (3), (4), (7) and Lemma 40, we get a

solution with good enough approximation factor. Check Section B.1 and Table 1 for details.
− Subcase (ii). If a(OPTshort \ OPTT ) > (34 + ε + εlarge)N

2, from inequalities (2), (3), (4), (7) and
Lemma 41, we get a solution with good enough approximation factor. Check Section B.1 and Table 1 for
details.
− Subcase (iii). Finally, if 3

5N
2 ≤ a(OPTshort \OPTT ) ≤ (34 + ε+ εlarge)N

2, from inequality (5) we get
α+ β ≤ 2(1− 3

5) = 4
5 . Now we consider two subcases.

� Subcase (iii a): wL ≤ 1
2 and hL ≤ 1

2 . Note that in this case if wL ≥ 1
2 − 2εlarge − 2εL (resp.,

hL ≥ 1
2 − 2εlarge − 2εL), we can remove the cheapest 2(εL + εlarge)N -width vertical (resp., horizontal)

strip from the L-region by removing O(εL) fraction of rectangles in OPTlong. Otherwise we have wL <
1
2−2εlarge−2εL and hL < 1

2−2εlarge−2εL. So there is a free rectangular region that has both side lengths
at least N(12 + 2εlarge + εL); we will keep εLN width and εLN height for resource augmentation and use
the rest of the rectangular region (with both sides length at least

(
1
2 + 2εlarge

)
N ) for showing existence of

a packing using Steinberg’s theorem.
Note that this free rectangular region has area at least N2(1−wL− 2εL)(1−hL− 2εL). Now consider

rectangles from (OPTshort \OPTT )hor (by sorting them non-decreasingly by area and picking them itera-
tively) until their total area becomes at least min{a((OPTshort \ OPTT )hor),

N2(1−wL−2εL)(1−hL−2εL)
2 −

εsmallN
2}. Thus their total area is at most ≤ N2(1−wL−2εL)(1−hL−2εL)

2 as the area of any rectangle in
(OPTshort \ OPTT )hor is at most εsmallN2. Hence, from Steinberg’s theorem, we can pack these rectan-
gles in the free rectangular region. Similarly, we can pack there rectangles from (OPTshort \ OPTT )ver
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with total area at least min{a((OPTshort \OPTT )ver),
N2(1−wL−2εL)(1−hL−2εL)

2 − εsmallN2}.
Since rectangles are sorted non-decreasingly according to their areas, the total profit of the aforemen-

tioned packings is bounded below bymin{1,
(

(1−wL)(1−hL)
2a((OPTshort\OPTT )hor) −O(εL)

)
N2}|(OPTshort\OPTT )hor|

and min{1,
(

(1−wL)(1−hL)
2a((OPTshort\OPTT )ver) −O(εL)

)
N2}|(OPTshort \OPTT )ver| respectively. We claim that if

we keep the best of the two packings, we can always pack at least
(

7
48 −O(εL)

)
|OPTshort \OPTT | many

rectangles. To show this we will consider the four possible cases:

• Ifmin{1,
(

(1−wL)(1−hL)
2a((OPTshort\OPTT )hor) −O(εL)

)
N2} = min{1,

(
(1−wL)(1−hL)

2a((OPTshort\OPTT )ver) −O(εL)
)
N2} =

1, then, by an averaging argument, the best among the two packings has profit at least 1
2(|(OPTshort \

OPTT )ver|+ |(OPTshort \OPTT )hor|) = 1
2 |OPTshort \OPTT |.

• If
(

(1−wL)(1−hL)
2a((OPTshort\OPTT )hor) −O(εL)

)
N2 < 1 and

(
(1−wL)(1−hL)

2a((OPTshort\OPTT )ver) −O(εL)
)
N2 < 1, then by

an averaging argument we pack at least

N2

2

(
( (1−wL)(1−hL)
2a((OPTshort\OPTT )hor) −O(εL))|(OPTshort \OPTT )hor|+ ( (1−wL)(1−hL)

2a((OPTshort\OPTT )ver) −O(εL))|(OPTshort \OPTT )ver|
)

≥N2

2

(
(1−wL)(1−hL)

2a(OPTshort\OPTT ) −O(εL)
)
|OPTshort \OPTT |

where the inequality follows from the fact that a
b + c

d ≥
(a+c)
(b+d) for a, b, c, d ≥ 0. Since a(OPTshort \

OPTT ) ≤ (N2− a(OPTlong)) ≤ (1− α
2 −

β
2 )N2 ≤ (1− wL

2 −
hL
2 )N2 and wL + hL ≤ α+ β ≤ 4

5 , the
amount of rectangles we are packing from OPTshort \OPTT is bounded below by the minimum of

f(hL, wL) =

(
(1− wL)(1− hL)

(4− 2wL − 2hL)
−O(εL)

)
N2|OPTshort \OPTT |

over the domain {wL + hL ≤ 4
5 , 0 ≤ wL ≤ 1

2 , 0 ≤ hL ≤ 1
2}. Since ∂f(hL,wL)

∂hL
= −2(1−wL)2

(4−2wL−2hL)2 ≤ 0 and
∂f(hL,wL)

∂wL
= −2(1−hL)2

(4−2wL−2hL)2 ≤ 0, the function is decreasing with respect to both its arguments, implying

that the minimum value must be attained when hL + wL = 4
5 . This in turn implies that the amount of

rectangles from OPTshort \OPTT we are packing is bounded below by the minimum of f(hL,
4
5 − hL)

over the interval [ 3
10 ,

1
2 ]. Since

f(hL,
4

5
− hL) =

(
5

12
(1− hL)(

1

5
− hL)−O(εL)

)
N2|OPTshort \OPTT |

describes a parabola centered at hL = 2
5 , the minimum value on the aforementioned interval is attained at

both limits hL = 3
10 and hL = 1

2 with a value of
(

7
48 −O(εL)

)
|OPTshort \OPTT |.

• If min{1,
(

(1−wL)(1−hL)
2a((OPTshort\OPTT )hor) −O(εL)

)
N2} = 1 and

(
(1−wL)(1−hL)

2a((OPTshort\OPTT )ver) −O(εL)
)
N2 < 1
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wLN > N
2

hLN ≤ N
2

γN (12 − 2εlarge)N

λN

AN/2

B(λ− 1
2)N

C

ψN

Region 1

Region 2

Figure 10: Case 2A(iii)b in the proof of Theorem 36

(the remaining case being analogous), then we are packing at least

1

2

(
|(OPTshort \OPTT )hor|+ (

(1− wL)(1− hL)

2a((OPTshort \OPTT )ver)
−O(εL))N2|(OPTshort \OPTT )ver|

)
≥N

2

2

(
(1− wL)(1− hL)

2a((OPTshort \OPTT )ver)
−O(εL)

)
(|(OPTshort \OPTT )hor|+ |(OPTshort \OPTT )ver|)

≥N
2

2

(
(1− wL)(1− hL)

2a(OPTshort \OPTT )
−O(εL)

)
|OPTshort \OPTT |

≥
(

7

48
−O(εL)

)
|OPTshort \OPTT |,

where the last inequality comes from the analysis of the previous case.

From this we conclude that

|OPTL&C | ≥
3(1−O(εL))

4
|OPTlong|+ |OPTshort ∩OPTT |+

(
7

48
−O(εL)

)
|OPTshort \OPTT |.

This together with inequalities (2), (3), (4) and Lemma 40 gives us a solution with good enough approxima-
tion factor. Check Section B.1 and Table 1 for details.
� Subcase (iii b): wL >

1
2 (then from inequality (5), hL ≤ 3

10 ). Note that a(OPTlong) ≤ (1 − 3
5)N2 =

2
5N

2.
Let us define some parameters from the current packing to simplify the calculations. Let λN be the height of
the rectangle in the packing that intersects or touches the vertical line x =

(
1
2 − 2εlarge

)
N (if two rectangles

touch such line, we choose that tallest one) and γN be the total width of vertical rectangles having height
greater than (1 − hL)N . We define also the following three regions in the knapsack: A, the rectangular
region of width wLN and height 1

2N in the top left corner of the knapsack; B, the rectangular region of
width wLN and height (λ − 1

2)N below A and left-aligned with the knapsack; and C, the rectangular
region of width N and height hLN touching the bottom boundary of the knapsack. Notice that A is fully
occupied by vertical rectangles, B is almost fully occupied by vertical rectangles except for the right region
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of width wLN −
(
1
2 − 2εlarge

)
N , and at least half of C is occupied by horizontal rectangles (some vertical

rectangles may overlap with this region). Our goal is to pack some rectangles from OPTshort \ OPTT in
the L-shaped region outside A ∪ B ∪ C. Let ψ ∈ [λ, 1 − hL] be a parameter to be fixed later. We will use,
when possible, the following regions for packing items from OPTshort \ OPTT : Region 1 on the top right
corner of the knapsack with width N(1−wL) and height ψN and Region 2 which is the rectangular region
[0, N ] × [hLN, (1 − ψ) · N ] (see Figure 10). Region 1 is completely free but Region 2 may overlap with
vertical rectangles.

We will now divide Region 2 into a constant number of boxes such that: they do not overlap with
vertical rectangles, the total area inside Region 2 which is neither overlapping with vertical rectangles nor
covered by boxes is at most O(εL)N2 and each box has width at least

(
1
2 + 2εlarge

)
N and height at least

εN . That way we will be able to pack rectangles from (OPTshort \ OPTT )ver into the box defined by
Region 1 and rectangles from (OPTshort \ OPTT )hor into the boxes defined inside Region 2 using almost
completely its free space. In order to create the boxes inside Region 2 we first create a monotone chain
by doing the following: Let (x1, y1) = (γN, hL). Starting from position (x1, y1), we draw an horizontal
line of length εLN and then a vertical line from bottom to top until it touches a vertical rectangle, reaching
position (x2, y2). From (x2, y2) we start again the same procedure and iterate until we reach the vertical line
x =

(
1
2 − 2εlarge

)
N or the horizontal line y = (1 − ψ)N . Notice that the area above the monotone chain

and below y = (1−ψ)N that is not occupied by vertical rectangles, is at most
∑

i εLN(yi+1 − yi) ≤ εLN2.
The number of points (xi, yi) defined in the previous procedure is at most 1/εL. By drawing an horizontal
line starting from each (xi, yi) up to (N, yi), together with the drawn lines from the monotone chain and the
right limit of the knapsack, we define k ≤ 1/εL boxes. We discard the boxes having height less than εN ,
whose total area is at most ε

εL
N2 = εLN

2, and have all the desired properties for the boxes.
Note that the area that is occupied for sure by rectangles inOPTlong in regionsA,B and C by rectangles

in OPTlong is at least (12wL + (λ − 1
2)(12 − 2εlarge) + 1

2hL)N2. Since the total area of rectangles from
OPTlong is at most 2

5N
2, the total area occupied by rectangles in OPTlong in Region 2 is at most N2(25 −

1
2wL − (λ − 1

2)(12 − 2εlarge) − 1
2hL) ≤ N2(1320 −

wL
2 − λ

2 −
hL
2 + εlarge). This implies that the total area

of the horizontal boxes is at least N2(1 − ψ − hL) − N2(1320 −
wL
2 − λ

2 −
hL
2 ) − O(εL)N2 and the area

of the vertical box is (1 − wL)ψN2. Ignoring the O(εlarge)-term, these two areas become equal if we set
ψ = 7+10(wL+λ−hL)

40−20wL . It is not difficult to verify that in this case ψ ≤ 1 − hL. If 7+10(wL+λ−hL)
40−20wL ≥ λ, then

we set ψ = 7+10(wL+λ−hL)
40−20wL . Otherwise we set ψ = λ.

First, consider the case ψ = 7+10(wL+λ−hL)
40−20wL . Since ψ ≥ λ, boxes inside Region 2 have width at

least
(
1
2 + 2εlarge

)
N and height at least εN � εsmallN (recall that εsmall differs by a large factor from

εlarge ≤ ε), and the box in Region 1 has height at least
(
1
2 + 2εlarge

)
N and width at least 1

5N � εsmallN .
By using Steinberg’s theorem, we can always pack in these boxes at least(

min
{

1,
1
2
(N−wLN)ψN

a((OPTshort\OPTT )hor) − εsmallN
2
})
|(OPTshort \OPTT )hor|+

(
min

{
1,

1
2
(N−wLN)ψN

a((OPTshort\OPTT )ver) − εsmallN
2
})
|(OPTshort \OPTT )ver|.

Note that from each box B′ of height h(≥ εN), we can remove the cheapest εh-horizontal strip and use
resource augmentation to get a container based packing with nearly the same profit as B′. Thus by perform-
ing a similar analysis to the one done in Subcase (iii a), and using the fact that a(OPTshort \ OPTT ) ≤
N2 − (α2 + (λ− 1

2)12 + β
2 )N2 ≤ N2 −N2(wL2 + (λ− 1

2)12 + hL
2 ), we can minimize the whole expression

over the domain {wL2 + (λ − 1
2)12 + hL

2 ≤ 2
5 , λ ≤ ψ, 12 ≤ wL ≤ 4

5 ,
1
2 ≤ λ ≤ 1, 0 ≤ hL ≤ 3

10} and prove
that this solution packs at least(

3−O(εL)

4

)
|OPTlong|+ |OPTshort ∩OPTT |+

(
5

36
−O(εL)

)
|OPTshort \OPTT |. (8)
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2εLN

` > N
2

` > N
2

(12 − 2εlarge)N

wLN

w(V1−2εL)

hLN
≤ εLN

(a) Packing of L-region using rectangles
from OPTlong. Striped rectangles are re-
moved.

2εLN

` > N
2

` > N
2

< wL
2 N

hLN
≤ εLN

(b) Packing of rectangles in OPTlong ∪
(OPTshort∩OPTT ). Dark gray rectangles are
from OPTshort ∩OPTT .

Figure 11: The case 2B.

Thus, using the above inequality along with (2), (3), (4) and Lemma 40, we get a solution with good enough
approximation factor. Check Section B.1 and Table 1 for details.

Finally, if ψ = λ > 7+10(wL+λ−hL)
40−20wL , the bound for the area of horizontal boxes will not be equal to the

area of the vertical box constructed to pack rectangles from isfat. In this case we change the width of the
box inside Region 1 to be w′L < N(1 − wL) fixed in such a way that the area of this box is equal to the
bound we have for the area of the boxes in Region 2, i.e.,N2(1−λ−hL)−(1320−

wL
2 −

hL
2 − λ

2 +O(εL))N2.
Performing the same analysis as before, it can be shown that in this case we pack at least(

(1− λ− hL)N2 − (1320 −
wL
2 −

hL
2 − λ

2 )N2

2a(OPTshort \OPTT )
−O(εL)N2

)
|OPTshort \OPTT |,

which is at least (16 −O(εL))|OPTshort \OPTT | over the domain {wL2 + (λ− 1
2)12 + hL

2 ≤ 2
5 ,

1
2 ≤ wL ≤

4
5 ,

7+10(wL+λ−hL)
40−20wL < λ ≤ 1, 0 ≤ hL ≤ 3

10} (and this solution leads to a better bound than (8)).

♦ Case 2B.
(
hL ≤ εL and wLN ≥ w(V1−2εL) >

(
1
2 − 2εlarge

)
N
)

or
(
wL ≤ εL and hLN ≥

h(H1−2εL) >
(
1
2 − 2εlarge

)
N
)

In the first case, area of rectangles in V1−2εL >
(
1
2 − 2εlarge

)
(1 − 2εL)N2. Remaining rectangles in

OPTlong have area at least (wL − 1
2 + 2εlarge)N · N2 . So, a(OPTlong) >

(
1
2 − 2εlarge

)
(1 − 2εL)N2 +

(wL− 1
2)N · N2 ≥ (14 + wL

2 − εL− 2εlarge)N
2. Thus a(OPTshort \OPTT ) ≤ a(OPTshort) < (34 −

wL
2 +

εL + 2εlarge)N
2.

Now consider the vertical rectangles in the boundary L-region sorted non-increasingly by width and pick
them iteratively until their total width crosses (wL2 + 3εL + 2εlarge)N . Remove these rectangles and
push the remaining vertical rectangles in the L-region to the left as much as possible. This modified
L-region will have profit at least (12 − O(εL))|OPTlong|. Now we can put an εN -strip for the vertical
items from OPTshort ∩ OPTT next to the vertical part of L-region. On the other hand, the horizontal
items of OPTshort ∩ OPTT can be placed on top of the horizontal part of the L-region. The remain-
ing space will be a free rectangular region of height at least (1 − 2εL)N and width (1 − wL

2 + 2εL +
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2εlarge)N . We will use a part of this rectangular region of height (1− 3εL)N and width (1− wL
2 + εL)N

to pack rectangles from OPTshort \ OPTT and the rest of the region for resource augmentation. Since
wL
2 − εL ≤ 1

2 − εlarge, we can use Corollary 39 to pack short rectangles in this region with profit at least(
(1−wL

2
)/2

3
4
−wL

2

−O(εL)
)
|OPTshort\OPTT | ≥ (34−O(εL))|OPTshort\OPTT | as the expression is increasing

with respect to wL and wL > 1
2 − 2εlarge. Thus, we get,

|OPTL&C | ≥
(

1

2
−O(εL)

)
|OPTlong|+ |OPTshort∩OPTT |+

(
3

4
−O(εL)

)
|OPTshort \OPTT |. (9)

On the other hand, as a(OPTshort \OPTT ) ≤ (34 −
wL
2 + εL + 2εlarge)N

2 and wL > 1
2 − 2εlarge, we get

a(OPTshort \OPTT ) ≤ (12 + 3εlarge + εL)N2 and thus from Lemma 40 we get

|OPTL&C | ≥
3

4
|OPTlong ∩OPTT |+ |OPTshort ∩OPTT |+ (1−O(εL))|OPTshort \OPTT |

≥ 3

4
|OPTlong ∩OPTT |+ (1−O(εL))|OPTshort|. (10)

From inequalities (1), (3), (4), (9) and (10) we get a solution with good enough approximation factor. Check
Section B.1 and Table 1 for details.

Now we consider the last case when wL ≤ εL and hLN ≥ h(H1−2εL) >
(
1
2 − 2εlarge

)
N . Note

that as we assumed the cheapest subring was the top subring, after removing it we might be left with only
|OPTlong∩Ihor|/2 profit in the horizontal part of L-region. So, further removal of items from the horizontal
part might not give us a good solution. Thus we show an alternate good packing. We restart with the ring
packing and delete the cheapest vertical subring instead of the cheapest subring (i.e., the top subring) and
create a new boundary L-region. Here, consider the horizontal rectangles in the boundary L-region in
non-increasing order of height and take them until their total height crosses (

βbottom+βtop
2 + εsmall + ε)N .

Remove these rectangles and push the remaining horizontal rectangles to the bottom as much as possible.
Then, following similar arguments as before, we will obtain the same bounds for the constructed solution.

B.1 Bounding the approximation factor

In each one of the cases listed before we are developing a set of different solutions in order to achieve
a good approximation factor. Let z = |OPTL&C |/|OPT |, x1 = |OPTlong ∩ OPTT |/|OPT |, x2 =
|OPTlong \ OPTT |/|OPT |, x3 = |OPTshort ∩ OPTT |/|OPT | and x4 = |OPTshort \ OPTT |/|OPT |.
The following list enumerates all the obtained inequalities in this section, and it is worth remarking that not
all of them hold simultaneously.

1. z ≥ 3
4x1 + 3

4x2 + x3 +
(
1
2 −O(εL)

)
x4;

2. z ≥ 3
4x1 + 3

4x2;

3. z ≥
(
1
2 −O(εL)

)
(x1 + x2) +

(
3
4 −O(εL)

)
(x3 + x4);

4. z ≥ (1−O(εL))(x2 + x4);

5. z ≥ (1−O(εL))
(
1
2x1 + x2 + 1

2x4
)
;

6. z ≥
(
3
4 −O(εL)

)
(x1 + x2) + x3;
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7. z ≥ 3
4x1 + x3 +

(
5
6 −O(εL)

)
x4;

8. z ≥ 3
4(x1 + x2) +

(
5
12 −O(εL)

)
(x3 + x4);

9. z ≥ 3
4x1 + x3 +

(
2
3 −O(εL)

)
x4;

10. z ≥ 3
4(x1 + x2) + x3 +

(
7
48 −O(εL)

)
x4;

11. z ≥
(
3
4 −O(εL)

)
(x1 + x2) + x3 +

(
5
36 −O(εL)

)
x4;

12. z ≥
(
1
2 −O(εL)

)
(x1 + x2) + x3 +

(
3
4 −O(εL)

)
x4;

13. z ≥ 3
4x1 + (1−O(εL))(x3 + x4).

For each case i, let Ai be the set of indexes of valid inequalities for case i. Then we can write the
following linear program to compute the obtained approximation factor in that case:

min z
s.t. Inequalities indexed by Ai

4∑
i=1

xi = 1

z, xi ≥ 0 for i = 1, 2, 3, 4.

Let cj,k be the coefficient accompanying xk in the constraint j ∈ Ai, k = 1, 2, 3, 4. The dual of the program
for case i has the form

max −w
s.t.

∑
j∈Ai

yj ≤ 1∑
j∈Ai

cj,kyj + w ≥ 0 for k = 1, 2, 3, 4

yj ≥ 0 for j ∈ Ai
w ∈ R

Any feasible solution for the dual program of case i is a lower bound on the fraction of OPT packed in
that case. Table 1 summarizes the analysis described along this section for all the cases, stating the valid
inequalities and the approximation factor obtained in each one of them, together with a dual feasible solution.
It is not difficult to see that the worst case is 2A(iii)b, implying that |OPTL&C | ≥ (325558 − O(εL))|OPT |.
Applying Lemma 35 concludes the proof of Theorem 36.
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Case Valid inequalities Dual feasible solution
Fraction of OPT

packed (w)

1 1, 3, 4, 5 y1 = 1
2 , y3 = 1

2 , y4 = 0, y5 = 0 5
8 −O(εL)

2A(i) 3, 4, 5, 6, 7 y3 = 17
54 , y4 = 0, y5 = 1

3 , y6 = 7
54 , y7 = 2

9
127
216 −O(εL)

2A(ii) 3, 4, 5, 6, 8 y3 = 4
7 , y4 = 0, y5 = 0, y6 = 0, y8 = 3

7
17
28 −O(εL)

2A(iii)a 3, 4, 5, 9, 10 y3 = 124
369 , y4 = 0, y5 = 1

3 , y9 = 2
9 , y10 = 40

369
215
369 −O(εL)

2A(iii)b 3, 4, 5, 9, 11 y3 = 94
279 , y4 = 0, y5 = 1

3 , y9 = 2
9 , y11 = 10

93
325
558 −O(εL)

2B 2, 4, 5, 12, 13 y2 = 8
41 , y4 = 0, y5 = 9

41 , y12 = 18
41 , y13 = 6

41
24
41 −O(εL)

Table 1: Summary of the case analysis in Theorem 36.

C Cardinality Case With Rotations

In this section we present a polynomial time (4/3 + ε)-approximation algorithm for 2DKR for the cardi-
nality case. We next assume w.l.o.g. that ε > 0 is a sufficiently small constant and also that h(i) ≥ w(i) for
all items i in the input.

Consider some optimal solution OPT for 2DKR, with an associated packing in the knapsack. We
crucially exploit the following resource contraction lemma, which is our main new idea in the rotation case.

Lemma 42. (Resource Contraction Lemma) For given positive constants ε ≤ 1/13 and εsmall < ε
1
2ε

+1,
suppose that there exists a feasible packing of a set of items M , with |M | ≥ 1/ε3small. Then it is possible to

pack a subset M ′ ⊆M of cardinality at least 2
3(1−O(ε))|M | into [0,

(
1− ε 1

2ε
+1
)
N ]× [0, N ] if rotations

are allowed.

We defer the proof of the lemma to the end of this section.
As in the case without rotations, we will first show the existence of a container packing that packs at

least (3/4 − O(ε))|OPT | many items. Let APX be the container packing with largest possible profit.
As in Section A, we assume all items to be skewed. Note that the small items can be handled with the
techniques used in Lemma 28. We start with the corridor partition as in Section A and define thin, fat and
killed rectangles accordingly. Let T and F be the set of thin and fat rectangles respectively.

We will show that |APX| ≥ (3/4−O(ε))|OPT |.

Lemma 43. |APX| ≥ (1− ε)|F |.

Proof. After removal of T , we can get a container packing for almost all items in F as discussed in Lemma
23 in Section A.

Now we show that using Lemma 42 we can prove the following :

Lemma 44. |APX| ≥ (1−O(ε))(|T |+ 2
3 |F |).

Proof. Thanks to 18 we can ensure that the total height of rectangles in T is at most ε
1
2ε+1N

2 . So we can

pack them in a vertical container of width ε
1
2ε+1N

2 .
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Now if |F | ≥ 1
ε3small

, then by Lemma 42 there exists F ′ ⊆ F of cardinality at least 2
3(1 − O(ε))|F |

that can be packed inside K ′ := [0,
(

1− ε 1
2ε

+1
)
N ] × [0, N ]. Then we can use the resource augmen-

tation PTAS in [21] to get a container packing of (2/3 − O(ε))|F | many rectangles in the area K ′′ :=

[0,
(

1− ε 1
2ε

+1/2
)
N ]× [0, N ], and pack the vertical container for items in T to the right of K ′′ in the area

[
(

1− ε 1
2ε

+1/2
)
N, 1]× [0, N ].

Otherwise, if |F | < 1
ε3small

, there are two cases. If |T | < 1
ε4small

, then |F ∪ T | < 2
ε4small

and we can

find the packing just by brute-force. Otherwise if, |T | ≥ 1
ε4small

≥ |F |/εsmall, then APX ≥ |T | ≥
(1−O(ε))(|T |+ |F |).

Thus we get the following theorem:

Theorem 45. |APX| ≥ (3/4−O(ε))|OPT |.
Proof. The claim follows by combining Lemma 44 and 43. Up to a factor (1 − O(ε)), the worst case is
obtained when |F | = |T |+ 2/3 · |F |, i.e., |F | = 3|T |. This gives a total profit of 3/4 · |T ∪ F |.

It remains to prove Lemma 42. Let us remove from M all items that are larger than εsmallN in both
dimensions. Let M2 be the resulting set: observe that |M2| ≥ (1− εsmall)|M |.

We next show how to remove from M2 a set of cardinality at most ε|M2| such that the remaining items
M3 are either very tall or not too tall, where the exact meaning of this will be given next. We use the notation
[k] = {1, . . . , k} for a positive integer k.

Lemma 46. Given any constant 1/2 > ε > 0, there exists a value i ∈ [d1/(2ε)e] such that all items in M2

having height in ((1− 2εi)N, (1− εi+1)N ] have total cardinality at most ε|M2|.
Proof. Let Ki be the set of items in M2 with height in ((1 − 2εi)N, (1 − εi+1)N ] for i ∈ [d1/(2ε)e]. An
item can belong to at most two such sets as ε < 1/2. Thus, the smallest such set has cardinality at most
ε|M2|.

We remove from M2 the elements from the set Ki of minimum cardinality guaranteed by the above
lemma, and let M3 be the resulting set. We also define εs = εi for the same i. Thus, εs ≥ ε1/2ε > εsmall/ε.
Note that the items in M3 have height either at most (1− 2εs)N or above (1− ε · εs)N .

For any δ > 0 denote the strips of width N and height δN at the top and bottom of the knapsack
by ST,δ := [0, N ] × [(1 − δ)N,N ] and SB,δ := [0, N ] × [0, δN ], resp. Similarly, denote the strips of
height N and width δN to the left and right of the knapsack by SL,δ := [0, δN ] × [0, N ] and SR,δ :=
[(1 − δ)N,N ] × [0, N ], resp. The set of items in M3 intersected by and fully contained in strip SK,δ are
denoted by EK,δ and CK,δ, resp. Obviously CK,δ ⊆ EK,δ, and we define, DK,δ = EK,δ \ CK,δ . Let a(I)
denote the total area of items in I , i.e., a(I) =

∑
i∈I w(i) · h(i).

Lemma 47. Either a(EL,εs ∪ ER,εs) ≤ (1+8εs)
2 N2 or a(ET,εs ∪ EB,εs) ≤ (1+8εs)

2 N2.

Proof. Let us define V := EL,εs ∪ ER,εs and H := ET,εs ∪ EB,εs . Note that, a(V ) + a(H) = a(V ∪
H) + a(V ∩H). Clearly a(V ∪H) ≤ N2 since all items fit into the knapsack. On the other hand, except
possibly four items (the ones that contain at least one of the points (εsN, εsN), ((1−εs)N, εsN), (εsN, (1−
εs)N), ((1− εs)N, (1− εs)N)) all other items in V ∩H lie entirely within the four strips SL,εs ∪ SR,εs ∪
ST,εs ∪ SB,εs . Thus a(V ∩ H) ≤ 4εsN

2 + 4εsmallN
2 ≤ 8εsN

2, as εsmall ≤ εs. We can conclude that
min{a(V ), a(H)} ≤ a(V )+a(H)

2 = a(V ∪H)+a(V ∩H)
2 ≤ (1+8εs)

2 N2.
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γN

δN

βNαN

SB,δ

SL,α SR,β

ST,γ

(a) Strips SL,α, SR,β , SB,δ, ST,γ

αN

SL,α

(b) CL,α, DL,α are dark and light gray resp.

Figure 12: Definitions for cardinality 2DK with rotations.

εi+1

εi

(a)

N − w(X) 2|X|/3

CT,εi+1 rotated
CB,εi+1 rotated

(b)

Figure 13: Case A for cardinality 2DK with rotations. Dark gray rectangles are X , light gray rectangles
are Z, gray (and hatched) rectangles are Y , hatched rectangles are CT,εi+1 and CB,εi+1 . Figure (a): original
packing in N ×N , Figure (b): modified packing leaving space for resource contraction on the right.

Now we use Steinberg’s Theorem [32] to prove the following lemma.

Lemma 48. Let 0 < εa < 1/2 be a constant and M̃ := {1, . . . , k} a set of items satisfying w(i) ≤ εsmallN
for all i ∈ M̃ . If a(M̃) ≤ (1/2 + εa)N

2. Then, a subset of M̃ of cardinality at least (1 − 2εs − 2εa)|M̃ |
can be packed into [0, (1− εs)N ]× [0, N ].

Proof. W.l.o.g., assume the items in M̃ are given in nondecreasing order according to their area. Note that
a(i) ≤ εsmallN

2 ≤ εs
2 N

2 for any i ∈ M̃ . Let S := {1, . . . , j} be such that (1−2εs)
2 N2 ≤ ∑j

i=1 a(i) ≤
(1−εs)

2 N2 and
∑j+1

i=1 a(i) > (1−εs)
2 N2. Then from Theorem 38, S can be packed into [0, (1−εs)N ]×[0, N ].

As we considered items in the order of nondecreasing area, |S||M̃ | ≥
( 1
2
−εs)

( 1
2
+εa)

. Thus, |S| ≥
(

1− (εa+εs)

( 1
2
+εa)

)
|M̃ | >

(1− 2εa − 2εs)|M̃ |.

From Lemma 47, we can assume w.l.o.g. that a(ET,εs ∪EB,εs) ≤ (1+8εs)
2 N2. Let X be the set of items

in M3 that intersect both ST,εs and SB,εs and Y := {ET,εs ∪ EB,εs} \X . Define Z := M3 \ {X ∪ Y } to
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εi+1

εi

(a)

X rotated

(b)

Figure 14: Case B for cardinality 2DK with rotations. Dark gray rectangles are X , light gray rectangles
are Z, gray (and hatched) rectangles are Y , hatched rectangles are CT,εi+1 and CT,εi+1 . Figure (a): original
packing, Figure (b): modified packing leaving space for resource contraction on the top.

be the rest of the items. Let us define w(X) =
∑

i∈X w(i). Now there are two cases.
Case A. w(X) ≥ 12ε · εsN . From Lemma 46, all items in X intersect both ST,ε·εs and SB,ε·εs . So the
removal of X ∪ CT,ε·εs ∪ CB,ε·εs creates a set of empty strips of height N and total width of w(X). By a
simple permutation argument, all items in Y ∪ Z can be packed inside [0, N − w(X)]× [0, N ], leaving an
empty vertical strip of width w(X) on the right side of the knapsack. Next we rotate CT,ε·εs and CB,ε·εs and
pack them in two vertical strips, each of width ε · εsN . Note that w(i) ≤ ε · εsN for all i ∈ X . Now take
items in X by nondecreasing width, till their total width is in [w(X)− 4ε · εsN,w(X)− 3ε · εsN ] and pack
them into another vertical strip. The cardinality of this set is at least (w(X)−4ε·εsN)

w(X) |X| ≥ 2
3 |X|, where the

last inequality follow by the Case A assumption. Hence, at least 2
3 |X| + |Y | + |Z| ≥ 2

3(|X| + |Y | + |Z|)
items can be packed into [0, (1− ε · εs)N ]× [0, N ].
Case B.w(X) < 12ε·εsN . Observe that Y = (ET,εs \X)∪̇(EB,εs \X), hence |Y | = |ET,εs \X|+|EB,εs \
X|. Assume w.l.o.g. that |EB,εs \X| ≥ |Y |/2 ≥ |ET,εs \X|. Then remove ET,εs . We can pack X on top
of M \ET,εs as 12ε ·εs ≤ εs−ε ·εs for ε ≤ 1/13. This gives a packing of |X|+ |Z|+ |Y |2 many rectangles.
On the other hand, as a(X ∪ Y ) = a(ET,εs ∪ EB,εs) ≤ (1+8εs)

2 N2, from Lemma 48, it is possible to pack
at least (1− 2εs − 8εs)|X ∪ Y | ≥ (1− 10εs)(|X|+ |Y |) many items into [0, (1− ε · εs)N ]× [0, N ].

Thus we can always pack a set of items of cardinality at least
max{(1− 10εs)(|X|+ |Y |), |X|+ |Z|+ |Y |

2 }
≥ 1

3(1− 10εs)(|X|+ |Y |) + 2
3(|X|+ |Z|+ |Y |

2 )
≥ 2

3(1− 10εs)(|X|+ |Y |+ |Z|)
= 2

3(1− 10εs)|M3|.
This concludes the proof of Lemma 42.

D Weighted Case with Rotations

In this section we give a polynomial time (3/2+ε)-approximation algorithm for the weighted 2-dimensional
geometric knapsack problem when items are allowed to be rotated by 90 degrees. In contrary to the un-
weighted case, where it is possible to remove a constant number of large items, the same is not possible in
the weighted case, where an item could have a big profit.

We call an item i massive if w(i) ≥ (1− ε)N and h(i) ≥ (1− ε)N . The presence of such a big item in
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the optimal solution requires a different analysis, that we present below. In both the cases, we can show that
there exists a container packing with roughly 2/3 of the profit of the optimal solution.

Let us assume that ε < 1/6. We will prove the following result:

Theorem 49. Let ε > 0 and let R be a set of items that can be packed into the N ×N knapsack. Then there
exists a container packing with Oε(1) containers of a subset R′ ⊆ R into the N × N knapsack such that
p(R′) ≥ (2/3−O(ε))p(R), if rotations are allowed.

We start by analyzing the case of a set R that has a massive item.

Lemma 50. Suppose that a set R of items can be packed into a N × N bin and there is a massive item
m ∈ R. Then, there is a container packing with at most Oε(1) containers for a subset R′ ⊆ R such that

p(R′) ≥
(

2

3
−O(ε)

)
p(R).

Proof. Assume, without loss of generality, that 1/(3ε) is an integer. Consider the items inR\{m}. Clearly,
each of them has width or height at most ε; moreover, a(R \ {m}) ≤ (1− (1− ε)2)N2 = (2ε− ε2)N2 ≤
N2

2(1+ε) , as ε < 1/6; thus, by possibly rotating each element so that the height is smaller than ε, by Theo-

rem 38 all the items in R \ {m} can be packed in a N × N
1+ε bin; then, by Lemma 55, there is a container

packing for a subset of R \ {m} with Oε(1) containers that fits in the N × N bin and has profit at least
(1−O(ε))p(R \ {m})

Consider now the packing of R. Clearly, the region [εN, (1 − ε)N ]2 is entirely contained within the
boundaries of the massive item m. Partition the region with x-coordinate between εN and (1 − ε)N in
k = 1/(3ε) strips of width 3ε(1− 2ε)N ≥ 2εN and height N , let them be S1, . . . , Sk; let R(Si) be the set
of items in R such that their left or right edge (or both) are contained in the interior of strip Si. Since each
item belongs to at most two of these sets, there exists i such that p(R(Si)) ≤ 6εp(R).
Symmetrically, we define k horizontal strips T1, . . . , Tk, obtaining an index j such that p(R(Tj)) ≤ 6εp(R).
Thus, no item in R := R \ (R(Si) ∪ R(Tj)) has a side contained in the interior of Si or Tj , and p(R) ≥
(1 − 12ε)p(R). Let MV be the set of items in R \ {m} that overlap Tj , and let MH be the set of items in
R \ {m} that overlap Si. Clearly, the items in MH can be packed in a horizontal container with width N
and height N − h(m), and the items in MV can be packed in a vertical container of width N − w(m) and
height N .

Let H be the set of items of R \ MH that are completely above the massive item m or completely
below it; symmetrically, let V be the set of items of R \MV that are completely to the left or completely
to the right of m. We will now show that there is a container packing for MH ∪ V ∪ {m}. Since all the
elements overlapping Tj have been removed, V can be packed in a bin of size (N − w(m)) × (1 − 2ε)N
(see Figure 15). Since (1− 2ε)N · (1 + ε) < (1− ε)N ≤ h(m), Lemma 55 implies that there is a container
packing of a subset of V with profit at least (1−O(ε))p(V ) in a bin of size (N −w(m))×h(m) and using
Oε(1) containers; thus, by adding a horizontal container of the same size as m and a horizontal container
of size N × (N − h(m)), we obtain a container packing for MH ∪ V ∪ {m} with Oε(1) containers and
profit at least (1 − O(ε))p(MH ∪ V ∪ {m}). Symmetrically, there is a container packing for a subset of
MV ∪H ∪ {m} with profit at least (1−O(ε))p(MV ∪H ∪ {m}) and Oε(1) containers.

Let RMAX be the set of maximum profit among the sets R \ {m}, MH ∪V ∪{m} and MV ∪H ∪{m}.
By the discussion above, there is a container packing for R′ ⊆ RMAX with Oε(1) containers and profit at
least (1 − O(ε))p(RMAX). Since each element in R is contained in at least two of the above three sets, it
follows that:
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(a) Massive item case. Items intersecting strips
MH and MV (hatched rectangles) cross them com-
pletely.
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(b) Bottom(i), T op(i), Left(i), Right(i) are rep-
resented by vertical, horizontal, north east and north
west stripes respectively.

Figure 15

p(R′) ≥ (1−O(ε))p(RMAX) ≥ (1−O(ε))

(
2

3
p(R)

)
≥
(

2

3
−O(ε)

)
p(R)

If there is no massive item, we will show existence of two container packings and show the maximum
of them always packs items with total profit at least

(
2
3 −O(ε)

)
fraction of the optimal profit.

First, we follow the corridor decomposition and the classification of items as in Section A to define
sets LF, SF,LT, ST,OPTsmall. Let T := LT ∪ ST be the set of thin items. Also let APX be the best
container packing and OPT be the optimal solution. Then similar to Lemma 33, we can show p(APX) ≥
(1− ε)(p(LF ) + p(SF ) + p(OPTsmall)). Thus,

p(APX) ≥ (1− ε)p(OPT )− p(T ). (11)

In the second case, we define the set T as above. Then in Resource Contraction Lemma (Lemma 51),
we will show that one can pack 1/2 of the remaining profit in the optimal solution, i.e., p(OPT \ T )/2 in a
knapsack of size N × (1 − ε/2)N . Now, we can pack T in a horizontal container of height ε/4 and using
Lemma 51 and resource augmentation we can pack p(OPT \T )/2 in the remaining spaceN × (1−ε/4)N .
Thus,

p(APX) ≥ p(T ) + (1− ε)(p(OPT )− p(T ))/2. (12)

Hence, up to (1 − O(ε)) factor, we pack at least max{(p(T ) + p(OPT \ T )/2), p(OPT \ T )} ≥ 2/3 ·
p(OPT ), thus proving Theorem 49.

Note that using techniques similar to Appendix A, we can get a PTAS for the best container packing.
Now to complete the proof of Theorem 4, it only remains to prove Lemma 51.
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SB,εs

SL,εs SR,εs

ST,3εs

(a) Case 1:
DB,εs ∩DT,3εs = ∅.

i

(b) Case 2A: i does not intersect
SL,εs or SR,εs .

i

(c) Case 2B: i intersects both SL,εs
and SR,εs .

i

(d) Case 2C: i ∈ DL,εs and
x′i ≤ N/2.

i

(e) Case 2C: i ∈ DL,εs and
x′i > N/2.

i

(f) Case 2C:
i ∈ CL,εs .

Figure 16: Cases for Resource Contraction Lemma (Lemma 51).

Lemma 51. (Resource Contraction Lemma) If a set of itemsM contains no massive item and can be packed
into a N ×N bin, then it is possible to pack a set M ′ of profit at least p(M) · 12 into a N × (1 − ε

2)N bin
(or a (1− ε

2)N ×N bin), if rotations are allowed.

Proof. Let εs = ε/2. We will partition M into two sets M1,M \M1 and show that both these sets can be
packed intoN×(1−εs)N bin. If an item i is embedded in position (xi, yi), we define x′i := xi+w(i), y′i :=
yi + h(i).

In a packing of a set of items M , for item i we define Left(i) := {k ∈ M : x′k ≤ xi}, Right(i) :=
{k ∈ M : xk ≥ x′i}, Top(i) := {k ∈ M : yk ≥ y′i}, Bottom(i) := {k ∈ M : y′k ≤ yi}, i.e., the
set of items that lie completely on left, right, top and bottom of i respectively. Now consider four strips
ST,3εs , SB,εs , SL,εs , SR,εs (see Figure 16).

Case 1. DB,εs ∩ DT,3εs = ∅, i.e., no item intersecting SB,εs intersects ST,3εs . Define M1 := ET,3εs .
As these items in M1 do not intersect SB,εs , M1 can be packed into a (N,N(1 − εs)) bin. For the re-
maining items, pack M \ (M1 ∪ CL,εs ∪ CR,εs) as it is. Now rotate CL,εs and CR,εs and pack on top of
M \ (M1 ∪ CL,εs ∪ CR,εs) into two strips of height εsN and width N . This packing will have total height
≤ (1− 3εs + 2εs)N ≤ (1− εs)N .

Case 2. DB,εs ∩DT,3εs 6= ∅, i.e., there is some item intersecting SB,εs that also crosses ST,3εs . Now, there
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are three subcases:
Case 2A. There exists an item i that does neither intersect SL,εs nor SR,εs . Then item i partitions the
items in M \ (CT,3εs ∪ CB,εs ∪ {i}) into two sets: Left(i) and Right(i). W.l.o.g., assume xi ≤ 1/2.
Then remove Right(i), i, CT,3εs and CB,εs from the packing. Now rotate CT,3εs and CB,εs to pack right
of Left(i). Define this set M \ (Right(i) ∪ {i}) to be M1. Clearly packing of M1 takes height N and
width xi + 4εsN ≤ (12 + 4εs)N ≤ (1 − εs)N as εs ≤ 1

10 . As the item i does not intersect the strip SL,εs ,
(Right(i) ∪ {i}) can be packed into height N and width (1− εs)N .
Case 2B. There exists an item i that intersects both SL,εs and SR,εs . Consider M1 to be M \ (CL,εs ∪
CR,εs ∪ Top(i)). As there is no massive item, M1 is packed in height (1 − εs)N and width N . Now,
pack Top(i) and then rotate CL,εs and CR,εs to pack on top of it. These items can be packed into height
(1− y′i + 2εs)N ≤ 5εsN ≤ (1− εs)N as εs ≤ 1/10.
Case 2C. If an item i intersects both SB,εs and ST,3εs , then the item i intersects exactly one of SL,εs and
SR,εs . Consider the set of items in DB,εs ∩DT,3εs .
First, consider the case when the set DB,εs ∩DT,3εs contains an item i ∈ DL,εs (similarly one can consider
i ∈ DR,εs). Now if x′i ≤ N/2, take M1 := Right(i). Then, we can rotate Right(i) and pack into
height (1 − εs)N and width N . On the other hand, pack M \ {M1 ∪ CT,3εs ∪ CB,εs} as it is. Then rotate
CT,3εs ∪CB,εs and pack on its side. Total width≤ (1/2+3εs+εs)N ≤ (1−εs)N as εs ≤ 1/6. Otherwise
if x′i > N/2 take M1 := Left(i) ∪ i. Now, consider packing of M \ {M1 ∪ CT,3εs ∪ CB,εs}, rotate
CT,3εs ∪ CB,εs and pack on its left. Total width ≤ (1/2 + 4εs)N ≤ (1− εs)N as εs ≤ 1/10.
Otherwise, no items in SB,εs ∩ ST,3εs are in DL,εs ∪DR,εs . So let us assume that i ∈ CL,εs (similarly one
can consider i ∈ CR,εs), then we take M1 = ET,3εs \ (CL,εs ∪ CR,εs). Then we can rotate CL,εs and CR,εs
and pack them on top of M \ (M1 ∪ CL,εs ∪ CR,εs) as in Case 1.

E Some Tools

In this section, we review some standard building blocks that we rely on in our construction.

E.1 Next Fit Decreasing Height

One of the most recurring tools used as a subroutine in countless results on geometric packing problems is
the Next Fit Decreasing Height (NFDH) algorithm, which was originally analyzed in [11] in the context of
Strip Packing. We will use a variant of this algorithm to pack items inside a box, and analyze its properties.
We provide a full proof for the sake of self-completeness.

Suppose you are given a box C of size w × h, and a set of items I ′ each one fitting in the box (without
rotations). NFDH computes in polynomial time a packing (without rotations) of I ′′ ⊆ I ′ as follows. It sorts
the items i ∈ I ′ in non-increasing order of height hi, and considers items in that order i1, . . . , in. Then the
algorithm works in rounds j ≥ 1. At the beginning of round j it is given an index n(j) and a horizontal
segment L(j) going from the left to the right side of C. Initially n(1) = 1 and L(1) is the bottom side of C.
In round j the algorithm packs a maximal set of items in(j), . . . , in(j+1)−1, with bottom side touching L(j)
one next to the other from left to right (a shelf ). The segment L(j + 1) is the horizontal segment containing
the top side of in(j) and ranging from the left to the right side of C. The process halts at round r when either
all items have being packed or in(r+1) does not fit above in(r).

We prove the following:

Lemma 52. Assume that, for some given parameter ε ∈ (0, 1), for each i ∈ I ′ one has w(i) ≤ εw and
h(i) ≤ εh. Then NFDH is able to pack in C a subset I ′′ ⊆ I ′ of area at least a(I ′′) ≥ min{a(I ′), (1 −
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2ε)w · h}. In particular, if a(I ′) ≤ (1− 2ε)w · h, all items in I ′ are packed.

Proof. The claim trivially holds if all items are packed. Thus suppose that this is not the case. Observe that∑r+1
j=1 h(in(j)) > h, otherwise item in(r+1) would fit in the next shelf above in(r); hence

∑r+1
i=2 h(in(j)) >

h − h(in(1)) ≥ (1 − ε)h. Observe also that the total width of items packed in each round j is at least
w− εw = (1− ε)w, since in(j+1), of width at most εw, does not fit to the right of in(j+1)−1. It follows that
the total area of items packed in round j is at least (w − εw)h(n(j + 1)− 1), and thus

a(I ′′) ≥
r∑
j=1

(1− ε)w · h(n(j + 1)− 1) ≥ (1− ε)w
r+1∑
j=2

h(n(j)) ≥ (1− ε)2w · h ≥ (1− 2ε)w · h.

E.2 Maximum Generalized Assignment Problem

In this section we show that there is a PTAS for the Maximum Generalized Assignment Problem (GAP) if
the number of bins is constant. In GAP, we are given a set of k bins with capacity constraints and a set of
n items that have a possibly different size and profit for each bin and the goal is to pack a maximum-profit
subset of items into the bins. Let us assume that if item i is packed in bin j, then it requires size sij ∈ Z and
profit pij ∈ Z.

GAP is known to be APX-hard and the best known polynomial time approximation algorithm has ratio
(1− 1/e+ ε) [15, 12]. In fact, for arbitrarily small constant δ > 0 (which can even be a function of n) GAP
remains APX-hard even on the following instances: bin capacities are identical, and for each item i and bin
j, pij = 1, and sij = 1 or sij = 1 + δ [8]. The complementary case, where item sizes do not vary across
bins but profits do, is also APX-hard [8]. However, when all profits and sizes are same across all bins (i.e.,
pij = pik and sij = sik for all bins j, k), the problem is known as multiple knapsack problem (MKP) and it
admits PTAS [8].

On the other hand, for our purposes we only need instances where k = O(1). A PTAS for GAP for a
constant number of bins follows from extending known techniques from the literature [28, 31]. However,
we did not find an explicit proof in the literature and thus, for the sake of completeness, in this section we
present a full, self-contained description of such an algorithm.

Let Cj be the capacity of bin j for j ∈ [k]. Let p(OPT ) be the cost of the optimal assignment.

Lemma 53. There is a O
((

1+ε
ε

)k
nk+1

)
time algorithm for the maximum generalized assignment problem

with k bins, which returns a solution with profit at least p(OPT ) if we are allowed to augment the bin
capacities by a (1 + ε)-factor for any fixed ε > 0.

Proof. For each i ∈ [n] and cj ∈ [Cj ] for j ∈ [k], let Si,c1,c2,...,ck denote a subset of the set of items
{1, 2, . . . , i} packed into the bins such that the profit is maximized and capacity of bin j is at most cj . Let
P [i, c1, c2, . . . , ck] denote the profit of Si,c1,c2,...,ck . Clearly P [1, c1, c2, . . . , ck] is known for all cj ∈ [Cj ]
for j ∈ [k]. Moreover, we define P [i, c1, c2, . . . , ck] = 0 if cj < 0 for any j ∈ [k]. We can compute the
value of P [i, c1, c2, . . . , ck] by using a dynamic program (DP), that exploits the following recurrence:

P [i, c1, c2, . . . , ck] = max{P [i− 1, c1, c2, . . . , ck],

max
j
{pij + P [i− 1, c1, . . . , cj − sij , . . . , ck]}}

With a similar recurrence, we can easily compute a corresponding set Si,c1,c2,...,ck .
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The running time of the above program is O
(
n

k∏
j=1

Cj

)
. If each Cj is polynomially bounded, then

this running time is polynomial. Therefore, we now create a modified instance where each bin size is
polynomially bounded.

Let µj =
εCj
n . For item i and bin j, define the modified size s′ij =

⌈
sij
µj

⌉
=
⌈
nsij
εCj

⌉
and C ′j =

⌊
(1+ε)Cj

µj

⌋
.

Note that C ′j =
⌊
(1+ε)n

ε

⌋
≤ (1+ε)n

ε , so the above DP requires time at most O
(
n ·
(
(1+ε)n

ε

)k)
The above DP finds the optimal solution OPTmodified for the modified instance. Now consider the

optimal solution for the original instance (i.e., with original item sizes and bin sizes) OPToriginal. If we
show the same assignment of items to the bins is a feasible solution (with modified bin sizes and item sizes)
for the modified instance, we get OPTmodified ≥ OPToriginal and that will conclude the proof.

Let Sj be the set of items packed in bin j in the OPToriginal. So,
∑

i∈Sj sij ≤ Cj . Hence,

∑
i∈Sj

s′ij ≤

∑
i∈Sj

(
sij
µj

+ 1

) ≤
 1

µj

∑
i∈Sj

sij + |Sj |µj

 ≤ ⌊ 1

µj
(Cj + nµj)

⌋
≤
⌊

(1 + ε)Cj
µj

⌋
= C ′j

ThusOPToriginal is a feasible solution for the modified instance and the DP will return a packing with profit
at least p(OPT ) under ε-resource augmentation.

Now we can show how to employ this result to obtain a feasible solution with an almost optimal profit
using the original bin capacities.

Lemma 54. There is an algorithm for maximum generalized assignment problem with k bins that runs in
time O

((
1+ε
ε

)k
nk/ε

2+k+1
)

and returns a solution that has profit at least (1 − 3ε)p(OPT ), for any fixed
ε > 0.

Proof. First, we claim the following:

Claim 1. If a set of items Rj is packed in a bin Bj with capacity Cj , then there exists a set of at most
O(1/ε2) items Xj , and a set of items Yj with p(Yj) ≤ εp(Rj) such that all items in Rj \ (Xj ∪ Yj) have
size at most ε(Cj −

∑
i∈Xj sij).

Proof. Let Q1 be the set of items i with sij>εCj . If p(Q1) ≤ εp(Rj), we are done by taking Yj = Q1

and Xj = φ. Otherwise, define Xj := Q1 and we continue the next iteration with the remaining items.
Let Q2 be the items with size greater than ε(Cj −

∑
i∈Xj sij) in Rj \ Xj . If p(Q2) ≤ εp(Rj), we are

done by taking Yj = Q2. Otherwise define Xj := Q1 ∪ Q2 and we continue with further iterations till we
get a set Qt with p(Qt) ≤ εp(Rj). Note that we need at most 1

ε iterations since the sets Qi are disjoint.

Otherwise, p(Rj) ≥
1/ε∑
i=1

p(Qi) >

1/ε∑
i=1

εp(Rj) ≥ p(Rj), which is a contradiction. Thus, consider Yj = Qt

and Xj =
⋃t−1
l=1 Ql. One has |Xj | ≤ 1/ε2 and p(Yj) ≤ εp(Rj). On the other hand, after removing Qt, the

remaining items have size < ε(Cj −
∑

i∈Xj sij).

Now consider a bin with bin capacity of (Cj −
∑

i∈Xj sij) where all packed items R′j have sizes <
ε(Cj −

∑
i∈Xj sij), then we can divide the bin into 1/ε equal sized intervals Sj,1, Sj,2, . . . , Sj,1/ε of lengths

ε(Cj−
∑

i∈Xj sij). LetR′j,l be the set of items intersecting the interval Sj,l. As each packed item can belong
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to at most two such intervals, the cheapest setR′′ among {R′j,1, . . . , R′j,1/ε} has profit at most 2εp(R′j). Thus
we can remove this set R′′ and reduce the bin size by a factor of (1− ε).

Now consider the packing of k binsBj’s in the optimal packingOPT . LetRj be the set of items packed
in bin Bj . Now the algorithm first guesses all Xj’s, a constant number of items, in all k bins. We assign
them to corresponding bins inO(nk/ε

2
) time. Then for bin j we are left with capacity rj := Cj−

∑
i∈X sij .

From previous discussion, we know that there is packing of R′′j ⊆ Rj \Xj of profit (1− 2ε)p(Rj \Xj) in
a bin with capacity (1− ε)Cj . Thus we can use resource augmentation algorithm for GAP in Lemma 53 to
pack remaining items in k bins where for bin j we use original capacity to be (1 − ε)Cj for j ∈ [k] before
the resource augmentation. As Lemma 53 returns the optimal packing on this modified bin sizes we get total
profit ≥ (1− 3ε)p(OPT ).

F Packing rectangles with resource augmentation

In this section we prove that it is possible to pack a high profit subset of rectangles into boxes, if we are
allowed to augment one side of a knapsack by a small fraction.

The result is essentially proved in [23], although we introduced some modifications and extensions
to obtain the additional properties relative to packing into containers and a guarantee on the area of the
obtained packing. For the sake of completeness, we provide a full proof, which follows in spirit the proof
of the original result, from which we also borrow several notations. We will prove the following stronger
version of Lemma 19:

We say that a container C ′ is smaller than a container C if w(C ′) ≤ w(C) and h(C ′) ≤ h(C). Given
a container C and a positive ε < 1, we say that a rectangle Rj is ε-small for C if wj ≤ εw(C) and
hj ≤ εh(C).

Lemma 55 (Resource Augmentation Packing Lemma). Let I ′ be a collection of rectangles that can be
packed into a box of size a × b, and εra > 0 be a given constant. Then there exists a container packing of
I ′′ ⊆ I ′ inside a box of size a× (1 + εra)b (resp., (1 + εra)a× b) such that:

1. p(I ′′) ≥ (1−O(εra))p(I
′);

2. the number of containers is Oεra(1) and their sizes belong to a set of cardinality nOεra (1) that can be
computed in polynomial time;

3. the total area of the containers is at most a(I ′) + εraab.

In this result, we assume that rectangles in an area container C are εra-small for C.
Note that we do not allow rotations, that is, rectangles are packed with the same orientation as in the

original packing. However, as an existential result we can apply it also to the case with rotations. Moreover,
since Lemma 35 gives a PTAS for approximating container packings, this implies a simple algorithm that
does not need to solve any LP to find the solution, in both the cases with and without rotations.

For simplicity, in this section we assume that widths and heights are positive real numbers in (0, 1], and
a = b = 1: in fact, all elements, container and boxes can be rescaled without affecting the property of a
packing of being a container packing with the above conditions. Thus, without loss of generality, we prove
the statement for the augmented 1× (1 + εra) box.

Let ε′ra = εra/2 < εra. We will first obtain a packing where all the elements of each area container C
are ε′ra-small for C, and in Section F.6 we will obtain the final packing, where the sizes of each container
are taken from a polynomially sized set of choices.

We will use the following Lemma, that follows from the analysis in [26]:
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Lemma 56 (Kenyon and Rémila [26]). Let ε > 0, and letQ be a set of rectangles, each of height and width
at most 1. Let L ⊆ Q be the set of rectangles of width at least ε, and let OPTSP (L) be the minimum width
such that the rectangles in L can be packed in a box of size OPTSP (L)× 1.

Then Q can be packed in polynomial time into a box of height 1 and width w̃ ≤ max{OPTSP (L) +
18
ε2
wmax, a(Q)(1 + ε) + 19

ε2
wmax}, where wmax is the maximum width of rectangles in Q. Furthermore, all

the rectangles with both width and height less than ε are packed into at most 9
ε2

boxes, and all the remaining
rectangles into at most 27

ε3
vertical containers.

Note that the boxes containing the rectangles that are smaller than ε are not necessarily packed as con-
tainers.

We need the following technical lemma:

Lemma 57. Let ε > 0 and let f(·) be any positive increasing function such that f(x) < x for all x. Then,
there exist positive constant values δ, µ ∈ Ωε(1), with f(ε) ≥ δ and f(δ) ≥ µ such that the total profit of
all the rectangles whose width or height lies in (µ, δ] is at most ε · p(I ′).

Proof. Define k+1 = 2/ε+1 constants ε1, . . . , εk+1, with ε1 = f(ε) and εi = f(εi+1) for each i. Consider
the k ranges of widths and heights of type (εi+1, εi]. By an averaging argument there exists one index j
such that the total profit of the rectangles in I ′ with at least one side length in the range (εj+1N, εjN ] is at
most 2 ε2p(I

′). It is then sufficient to set δ = εj and µ = εj+1.

We use this lemma with ε = ε′ra, and we will specify the function f later. By properly choosing the
function f , in fact, we can enforce constraints on the value of µ with respect to δ, which will be useful
several times; the exact constraints will be clear from the analysis. Thus, we remove from I ′ the rectangles
that have at least one side length in (µ, δ].

We call a rectangle Ri wide if wi > δ, high if hi > δ, short if wi ≤ µ and narrow if hi ≤ µ.8 From
now on, we will assume that we start with the optimal packing of the rectangles in R′, and we will modify
it until we obtain a packing with the desired properties. We remove from R′ all the short-narrow rectangles,
initially obtaining a packing. We will show in section F.5 how to use the residual space to pack them, with
a negligible loss of profit.

As a first step, we round up the widths of all the wide rectangles in R′ to the nearest multiple of δ2;
moreover, we shift them horizontally so that their starting coordinate is an integer multiple of δ2 (note that,
in this process, we might have to shift also the other rectangles in order to make space). Since the width of
each wide rectangle is at least δ and 1

δ · 2δ2 = 2δ, it is easy to see that it is sufficient to increase the width of
the box to 1 + 2δ to perform such a rounding.

F.1 Containers for short-high rectangles

We draw vertical lines across the 1× (1+2δ) region spaced by δ2, splitting it intoM := 1+2δ
δ2

vertical strips
(see Figure 17). Consider each maximal rectangular region which is contained in one such strip and does
not overlap any wide rectangle; we define a box for each such region that contains at least one short-high
rectangle, and we denote the set of such boxes by B.

Note that some short rectangles might intersect the vertical edges of the boxes, but in this case they
overlap with exactly two boxes. Using a standard shifting technique, we can assume that no rectangle is cut
by the boxes by losing profit at most ε′raOPT : first, we assume that the rectangles intersecting two boxes

8Note that the classification of the rectangles in this section is different from the ones used in the main results of this paper,
although similar in spirit.
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Figure 17: An example of a packing after the short-narrow rectangles have been removed, and the wide
rectangles (in dark grey) have been aligned to the M vertical strips. Note that the short-high rectangles (in
light gray) are much smaller than the vertical strips.

Figure 18: For each vertical box, we can remove a low profit subset of rectangles (red in the picture), to
make space for short-high rectangles that cross the right edge of the box (blue).
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belong to the leftmost of those boxes. For each box B ∈ B (which has width δ2 by definition), we divide it
into vertical strips of width µ. Since there are δ2

µ > 2/ε′ra strips and each rectangle overlaps with at most
2 such strips, there must exist one of them such that the profit of the rectangles intersecting it is at most
2µp(B) ≤ ε′rap(B), where p(B) is the profit of all the rectangles that are contained in or belong to B. We
can remove all the rectangles overlapping such strip, creating in B an empty vertical gap of width µ, and
then we can move all the rectangles intersecting the right boundary of B to the empty space.

Proposition 58. The number of boxes in B is at most 1+2δ
δ2
· 1δ ≤ 2

δ3
.

First, by a shifting argument similar to above, we can reduce the width of each box to δ2−δ4 while losing
only an ε′ra fraction of the profit of the rectangles in B. Then, for each B ∈ B, since the maximum width
of the rectangles in B is at most µ, by applying Lemma 56 with ε = δ2/2 we obtain that the rectangles
packed inside B can be repacked into a box B′ of height h(B) and width at most w′(B) ≤ max{δ2 −
δ4 + 72

δ4
µ, (δ2 − δ4)(1 + δ2

2 ) + 76
δ4
µ} ≤ δ2, which is true if we make sure that µ ≤ δ10/76. Furthermore,

the short-high rectangles in B are packed into at most
216

δ6
≤ 1

δ7
vertical containers, assuming without

loss of generality that δ ≤ 1/216. Note that all the rectangles are packed into vertical containers, because
rectangles that have both width and height smaller than ε are short-narrow and we already removed them.
Summarizing:

Proposition 59. There is a set I+ ⊆ I ′ of rectangles with total profit at least (1 − O(ε′ra)) · p(I ′) and a
corresponding packing for them in a 1× (1 + 2δ) region such that:

• every wide rectangle in I+ has its length rounded up to the nearest multiple of δ2 and it is positioned
so that its left side is at a position x which is a multiple of δ2, and

• each box B ∈ B storing at least one short-high rectangle has width δ2, and the rectangles inside are
packed into at most 1/δ7 vertical containers.

F.2 Fractional packing with O(1) containers

Let us consider now the set of rectangles I+ and an almost optimal packing S+ for them according to
Proposition 59. We remove the rectangles assigned to boxes in B and consider each box B ∈ B as a single
pseudoitem. Thus, in the new almost optimal solution there are just pseudoitems from B and wide rectangles
with right and left coordinates that are multiples of δ2. We will now show that we can derive a fractional
packing with the same profit, and such that the rectangles and pseudoitems can be (fractionally) assigned to
a constant number of containers. By fractional packing we mean a packing where horizontal rectangles are
allowed to be sliced horizontally (but not vertically); we can think of the profit as being split proportionally
to the heights of the slices.

Let K be a subset of the horizontal rectangles of size K that will be specified later. By extending
horizontally the top and bottom edges of the rectangles in K and the pseudoitems in B, we partition the
knapsack into at most 2(|K|+ |B|) + 1 ≤ 2(K + 2

δ3
) + 1 ≤ 2(K + 3

δ3
) horizontal stripes.

Let us focus on the (possibly sliced) rectangles contained in one such stripe of height h. For any vertical
coordinate y ∈ [0, h] we can define the configuration at coordinate y as the set of positions where the
horizontal line at distance y from the bottom cuts a vertical edge of a horizontal rectangle which is not in K.
There are at most 2M−1 possible configurations in a stripe.

We can further partition the stripe in maximal contiguous regions with the same configuration. Note that
the number of such regions is not bounded, since configurations can be repeated. But since the rectangles
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Figure 19: Rearranging the rectangles in a horizontal stripe. On the right, rectangles are repacked so that
regions with the same configuration appear next to each other. Note that the yellow rectangle has been
sliced, since it partakes in two regions with different configurations.

are allowed to be sliced, we can rearrange the regions so that all the ones with the same configuration
appear next to each other; see Figure 19 for an example. After this step is completed, we define up to M
horizontal containers per each configuration, where we repack the sliced horizontal rectangles. Clearly, all
sliced rectangles are repacked.

Thus, the number of horizontal containers that we defined per each stripe is bounded by M2M−1, and
the total number overall is at most

2

(
K +

3

δ3

)
M2M−1 =

(
K +

3

δ3

)
M2M .

F.3 Existence of an integral packing

We will now show the existence of an integral packing, at a small loss of profit.
Consider a fractional packing in N containers. Since each rectangle slice is packed in a container of

exactly the same width, it is possible to pack all but at most N rectangles integrally by a simple greedy
algorithm: choose a container, and greedily pack in it rectangles of the same width, until either there are
no rectangles left for that width, or the next rectangle does not fit in the current container. In this case,
we discard this rectangle and close the container, meaning that we do not use it further. Clearly, only one
rectangle per container is discarded, and no rectangle is left unpacked.

The only problem is that the total profit of the discarded rectangles can be large. To solve this problem,
we use the following shifting argument. Let K0 = ∅ and K0 = 0. For convenience, let us define f(K) =(
K + 3

δ3

)
M2M .

First, consider the fractional packing obtained by choosing K = K0, so that K = K0 = 0. Let K1 be
the set of discarded rectangles obtained by the greedy algorithm, and let K1 = |K1|. Clearly, by the above
reasoning, the number of discarded rectangles is bounded by f(K0). If the profit p(K1) of the discarded
rectangles is at most ε′rap(OPT ), then we remove them and there is nothing else to prove. Otherwise,
consider the fractional packing obtained by fixingK = K0∪K1. Again, we will obtain a setK2 of discarded
rectangles such that K2 := |K2| ≤ f(K0 + K1). Since the sets K1,K2, . . . that we obtain are all disjoint,
the process must stop after at most 1/ε′ra iterations. Setting p := M2M and q := 3

δ3
M2M , we have that

Ki+1 ≤ p(K0 +K1 + . . .Ki)+q for each i ≥ 0. Crudely bounding it asKi+1 ≤ i ·pq ·Ki, we immediately
obtain that Ki ≤ (pq)i. Thus, in the successful iteration, the size of K is at most K1/ε′ra−1 and the number
of containers is at most K1/ε′ra

≤ (pq)1/ε
′
ra = ( 3

δ2
M222M )1/ε

′
ra = Oε′ra,δ(1).
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F.4 Rounding down horizontal and vertical containers

As per the above analysis, the total number of horizontal containers is at most ( 3
δ2
M222M )ε

′
ra and the total

number of vertical containers is at most 2
δ3
· 1
δ7

= 2
δ10

.
We will now show that, at a small loss of profit, it is possible to replace each horizontal and each vertical

container defined so far with a constant number of smaller containers, so that the total area of the new
containers is at most as big as the total area of the rectangles originally packed in the container. Note that in
each container we consider the rectangles with the original widths (not rounded up). We use the following
lemma:

Lemma 60. LetC be a horizontal (resp. vertical) container defined above, and let IC be the set of rectangles
packed in C. Then, it is possible to pack a set I ′C ⊆ IC of profit at least (1− 3ε′ra)p(IC) in a set of at most⌈
log1+ε′ra(1δ )

⌉
/ε′2ra horizontal (resp. vertical) containers that can be packed inside C and such that their

total area is at most a(IC).

Proof. Without loss of generality, we prove the result only for the case of a horizontal container.
Sincewi ≥ δ for each rectangleRi ∈ IC , we can partition the rectangles in IC into at most

⌈
log1+ε′ra(1δ )

⌉
groups I1, I2, . . . , so that in each Ij the widest rectangle has width bigger than the smallest by a factor at
most 1 + ε′ra; we can then define a container Cj for each group Ij that has the width of the widest rectangle
it contains and height equal to the sum of the heights of the contained rectangles.

Consider now one such Cj and the set of rectangles Ij that it contains, and let P := p(Ij). Clearly,
w(Cj) ≤ (1 + ε′ra)wi for each Ri ∈ Ij , and so a(Cj) ≤ (1 + ε′ra)a(Ij). If all the rectangles in Ij have
height at most ε′rah(Cj), then we can remove a set of rectangles with total height at least ε′rah(C) and
profit at most 2ε′rap(Ij). Otherwise, let Q be the set of rectangles of height larger than ε′rah(Cj), and
note that a(Q) ≥ ε′rah(Cj)w(Cj)/(1 + ε′ra). If the p(Q) ≤ ε′raP , then we remove the rectangles in Q
from the container Cj and reduce its height as much as possible, obtaining a smaller container C ′j ; since
a(C ′j) ≤ a(Cj)−ε′raa(Cj) = (1−ε′ra)a(Cj) ≤ (1−ε′ra)(1+ε′ra)a(Ij) < a(Ij), then the proof is finished.
Otherwise, we define one container for each of the rectangles in Q (which are at most 1/ε′ra) of exactly the
same size, and we still shrink the container with the remaining rectangles as before; note that there is no
lost area for each of the newly defined container. Since at every non-terminating iteration a set of rectangles
with profit larger than ε′raP is removed, the process must end within 1/ε′ra iterations.

Note that the total number of containers that we produce for each initial container Cj is at most 1/ε′2ra,
and this concludes the proof.

Thus, by applying the above lemma to each horizontal and each vertical container, we obtain a modified
packing where the total area of the horizontal and vertical containers is at most the area of the rectangles of
I ′ (without the short-narrow rectangles, which we will take into account in the next subsection), while the
number of containers increases at most by a factor

⌈
log1+ε′ra(1δ )

⌉
/ε′2ra.

F.5 Packing short-narrow rectangles

Consider the integral packing obtained from the previous subsection, which has at most K ′ :=(
2
δ10

+ ( 3
δ2
M222M )ε

′
ra

)⌈
log1+ε′ra(1δ )

⌉
/ε′2ra containers. We can create a non-uniform grid extending each

side of the containers until they hit another container or the boundary of the knapsack. Moreover, we
also add horizontal and vertical lines spaced at distance ε′ra. We call free cell each face defined by
the above lines that does not overlap a container of the packing; by construction, no free cell has a
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side bigger than ε′ra. The number of free cells in this grid plus the existing containers is bounded by
KTOTAL = (2K ′ + 1/ε′ra)

2 = Oε′ra,δ(1). We crucially use the fact that this number does not depend on
value of µ.

Note that the total area of the free cells is no less than the total area of the short-narrow rectangles, as a
consequence of the guarantees on the area of the containers introduced so far. We will pack the short-narrow
rectangles into the free cells of this grid using NFDH, but we only use cells that have width and height at
least 8µ

ε′ra
; thus, each short-narrow rectangle will be assigned to a cell whose width (resp. height) is larger by

at least a factor 8/ε′ra than the width (resp. height) of the rectangle. Each discarded cell has area at most 8µ
ε′ra

,

which implies that the total area of discarded cells is at most 8µKTOTAL
ε′ra

. Now we consider the selected cells
in an arbitrary order and pack short narrow rectangles into them using NFDH, defining a new area container
for each cell that is used. Thanks to Lemma 52, we know that each new container C (except maybe the
last one) that is used by NFDH contains rectangles for a total area of at least (1 − ε′ra/4)a(C). Thus, if all
rectangles are packed, we remove the last container opened by NFDH, and we call S the set of rectangles
inside, that we will repack elsewhere; note that a(S) ≤ ε′2ra ≤ ε′ra/3, since all the rectangles in S were
packed in a free cell. Instead, if not all rectangles are packed by NFDH, let S be the residual rectangles.
In this case, the area of the unpacked rectangles is a(S) ≤ 8µKTOTAL

ε′ra
+ ε′ra/4 ≤ ε′ra/3, assuming that

µ ≤ ε′2ra
96KTOTAL

.
In order to repack the rectangles of S, we define a new area container CS of height 1 and width ε′ra/2.

Since a(CS) = ε′ra/2 ≥ (ε′ra/3)/(1 − 2ε′ra), all elements from S are packed in CS by NFDH, and the
container can be added to the knapsack by further enlarging its width from 1+2δ to 1+2δ+ε′ra/2 < 1+ε′ra.

The last required step is to guarantee the necessary constraint on the total area of the area containers,
similarly to what was done in Section F.4 for the horizontal and vertical containers.

Let D be any full area container (that is, any area container except for CS). We know that the area
of the rectangles RD in D is a(RD) ≥ (1 − ε′ra)a(D), since each rectangle Ri inside D has width less
than ε′raw(D)/2 and height less than ε′rah(D)/2, by construction. We remove rectangles from RD in non-
decreasing order of profit/area ratio, until the total area of the residual rectangles is between (1−4ε′ra)a(D)
and (1− 3ε′ra)a(D) (this is possible, since each element has area at most ε′2raa(D)); let R′D be the resulting
set. We have that p(R′D) ≥ (1−4ε′ra)p(RD), due to the greedy choice. Let us define a containerD′ of width
w(D) and height (1 − ε′ra)h(D). It is easy to verify that each rectangle in RD has width (resp. height) at
most ε′raw(D′) (resp. ε′rah(D′)). Moreover, since a(R′D) ≤ (1− 3ε′ra)a(D) ≤ (1− 2ε′ra)(1− ε′ra)a(C) ≤
(1−2ε′ra)a(C ′), then all elements inR′D are packed inD′. By applying this reasoning to each area container
(except CS), we obtain property (3) of Lemma 55.

Note that the constraints on µ and δ that we imposed are µ ≤ δ10

76 (from Section F.1), and µ ≤ ε′2ra
96KTOTAL

.
It is easy to check that both of them are satisfied if we choose f(x) = (ε′rax)C for a big enough constant C
that depends only on δ and ε′ra.

F.6 Rounding containers to a polynomial set of sizes

In this subsection we show that it is possible to round down the size of each horizontal, vertical or area
container so that the resulting sizes can be chosen from a polynomially sized set, while incurring in a
marginal loss of profit.

For a set I of rectangles, we define WIDTHS(I) = {wj |Rj ∈ I} and HEIGHTS(R) = {hj |Rj ∈
I}.

Given a finite set P of real numbers and a fixed natural number k, we define the set P (k) = {(p1 + p2 +
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· · ·+pl)+ ipl+1 | pj ∈ P ∀ j, l ≤ k, 0 ≤ i ≤ n, i integer}; note that if |P | = O(n), then |P (k)| = O(nk+2).
Moreover, if P ⊆ Q, then obviously P (k) ⊆ Q(k), and if k′ ≤ k′′, then P (k′) ⊆ P (k′′).

Lemma 61. Let ε > 0, and let I be a set of rectangles packed in a horizontal or vertical container C. Then,
for any k ≥ 1/ε, there is a set I ′ ⊆ I with profit p(I ′) ≥ (1− ε)p(I) that can be packed in a container C ′

smaller than C such that w(C ′) ∈WIDTHS(I)(k) and h(C ′) ∈ HEIGHTS(R)(k).

Proof. Without loss of generality, we prove the thesis for an horizontal container C; the proof for vertical
containers is symmetric. Clearly, the width ofC can be reduced towmax(I), andwmax(I) ∈WIDTHS(I) ⊆
WIDTHS(I)(k).

If |I| ≤ 1/ε, then
∑

Ri∈I hi ∈ HEIGHTS(I)(k) and there is no need to round the height of C down.
Otherwise, let ITALL be the set of the 1/ε rectangles in I with largest height (breaking ties arbitrarily),
let Rj be the least profitable of them, and let I ′ = I \ {Rj}. Clearly, p(I ′) ≥ (1 − ε)p(I). Since each
element of I ′ \ ITALL has height at most hj , it follows that h(I \ ITALL) ≤ (n − 1/ε)hj . Thus, letting
i = dh(I ′ \ ITALL)/hje ≤ n, all the rectangles in I ′ fit in a container C ′ of width wmax(I) and height
h(C ′) := h(ITALL)+ihj ∈ HEIGHTS(R)(k). Since h(ITALL)+ihj ≤ h(ITALL)+h(I ′\ITALL)+hj =
h(I) ≤ h(C), this proves the result.

Lemma 62. Let ε > 0, and let I be a set of rectangles that are assigned to an area container C. Then
there exists a subset I ′ ⊆ I with profit p(I ′) ≥ (1 − 3ε)p(I) and a container C ′ smaller than C such that:
a(I ′) ≤ a(C), w(C ′) ∈ WIDTHS(I)(0), h(C ′) ∈ HEIGHTS(I)(0), and each Rj ∈ I ′ is

ε

1− ε -small

for C ′.

Proof. Without loss of generality, we can assume that w(C) ≤ nwmax(I) and h(C) ≤ nhmax(I): if not,
we can first shrink C so that these conditions are satisfied, and all the rectangles still fit in C.

Define a container C ′ so that it has width w(C ′) = wmax(I) bw(C)/wmax(I)c and height h(C ′) =
hmax(I) bh(C)/hmax(I)c, that is, C ′ is obtained by shrinking C to the closest integer multiples of wmax(I)

and hmax(I). Observe that w(C ′) ∈ WIDTHS(I)(0) and h(C ′) ∈ HEIGHTS(I)(0). Clearly, w(C ′) ≥
w(C) − wmax(I) ≥ w(C) − εw(C) = (1 − ε)w(C), and similarly h(C ′) ≥ (1 − ε)h(C ′). Hence
a(C ′) ≥ (1− ε)2a(C) ≥ (1− 2ε)a(C).

We now select a set I ′ ⊆ I by greedily choosing elements from I in non-increasing order of profit/area
ratio, adding as many elements as possible without exceeding a total area of (1 − 2ε)a(C). Since each
element of I has area at most ε2a(C), then either all elements are selected (and then p(I ′) = p(I)), or the
total area of the selected elements is at least (1− 2ε− ε2)a(C) ≥ (1− 3ε)a(C). By the greedy choice, we
have that p(I ′) ≥ (1− 3ε)p(I).

Since each rectangle in I is ε
1−ε -small for C ′, this proves the thesis.

By applying Lemmas 61 and 62 with ε = ε′ra to all the containers and noting that
ε′ra

1− ε′ra
≤ εra, we

completed the proof of Lemma 55.

Remark 6. Note that in the above, the size of the container is rounded to a family of sizes that depends on
the rectangles inside; of course, they are not known in advance in an algorithm that enumerates over all
the container packings. On the other hand, if the instance is a set I of n rectangles, then for any natural
number k we have thatWIDTHS(I)(k) ⊆WIDTHS(I)(k) andHEIGHTS(I)(k) ⊆WIDTHS(I)(k)

for any I ⊆ I; clearly, WIDTHS(I)(k)×HEIGHTS(I)(k) has a polynomial size and can be computed
explicitly.
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Similarly, when finding container packings for the case with rotations, one can compute the set SIZES(I) :=
WIDTHS(I) ∪HEIGHTS(I), and consider containers of width and height in SIZES(I)(k) for a suf-
ficiently high constant k.
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