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ABSTRACT

Recent advances in unsupervised domain adaptation have achieved
remarkable performance on semantic segmentation tasks. Despite
such progress, existing works mainly focus on bridging the inter-
domain gaps between the source and target domain, while only few
of them noticed the intra-domain gaps within the target data. In this
work, we propose a pixel-level intra-domain adaptation approach
to reduce the intra-domain gaps within the target data. Compared
with image-level methods, ours treats each pixel as an instance,
which adapts the segmentation model at a more fine-grained level.
Specifically, we first conduct the inter-domain adaptation between
the source and target domain; Then, we separate the pixels in target
images into the easy and hard subdomains; Finally, we propose a
pixel-level adversarial training strategy to adapt a segmentation
network from the easy to the hard subdomain. Moreover, we show
that the segmentation accuracy can be further improved by incorpo-
rating a continuous indexing technique in the adversarial training.
Experimental results show the effectiveness of our method against
existing state-of-the-art approaches.
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1 INTRODUCTION

Semantic segmentation is born to be a pixel-level task that aims to
assign a class label to each pixel in an image. Compared to other
related tasks like image classification and object detection, semantic
segmentation is more fine-grained and thus has gained popularity
in various applications, e.g. autonomous driving [9, 21], image syn-
thesis and manipulation [27, 51], and medical imaging [29]. Despite
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their superiority, modern semantic segmentation models build on
the data-hungry deep learning techniques and thus suffer from the
costly pixel-wise annotation of training data. For cost reduction’s
sake, both researchers and practitioners turned to the synthetic data
that are automatically annotated upon generation [28, 30]. How-
ever, segmentation models trained on synthetic data usually gener-
alize poorly to real-world data due to the synthetic-to-real domain
gaps. To bridge such domain gaps, unsupervised domain adaptation
(UDA) was introduced to minimize the distributional discrepancy
between synthetic and real-world data [4, 6, 19, 32, 36, 39, 52].

Recently, Pan et al. [26] observed that the domain gaps do not
only exist between the synthetic and real-world data (a.k.a. inter-
domain gap) but also exist between different pieces of the real-
world data (a.k.a. intra-domain gap). Based on this observation,
they proposed a two-step UDA method for semantic segmentation.
Similar to other methods, they first train an inter-domain model by
adapting a segmentation network from the synthetic to real-world
data. While unlike other methods, they further separate the real-
world data into the “easy” and “hard” subdomains according to how
easily an image can be segmented. Then, an intra-domain model is
trained by adapting another segmentation network from the “easy”
to “hard” subdomain.

Although being state-of-the-art, IntraDA [26] has a key short-
coming that we would like to improve upon: the separation of
the easy and hard subdomains at image-level is not sufficient for
the intra-domain adaptation because class labels are assigned at
pixel-level. Specifically, IntraDA [26] determines the easiness of
segmentation by averaging the entropy of class probabilities across
all pixels in the segmentation map predicted by the inter-domain
adapted segmentation network. As a result, “hard” pixels in an
easy image and “easy” pixels in a hard image are both ignored,
e.g. , in Cityscapes [8] training set, when A = 0.67, approximately
16% of the pixels in easy subdomain images have entropy values
larger than the threshold, which means that these 16% pixels are
hard but misclassified into the easy subdomain. In this work, we
address the aforementioned problem by performing intra-domain
adaptation at pixel-level (see Figure 1). Specifically, our pixel-level
intra-domain adaptation method consists of two steps: 1) Separat-
ing the easy and hard subdomains at pixel-level according to the
predictions of a pre-trained inter-domain adapted segmentation
network; 2) Adapting another segmentation network from the easy
to hard subdomain at pixel-level. Note that we also modify the

Pan et al. [26] first rank the target images based on the mean values of their corre-
sponding entropy maps. Then, they set the 100Ath percentile mean entropy value as
the threshold to separate easy and hard images, where A € [0, 1] is a hyperparameter
used to control the proportion of easy images. Target images with mean entropy values
smaller than the threshold are classified as easy images and vice versa.
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Figure 1: Image-level intra-domain adaptation [26] splits
target domain images into easy and hard subdomains and
performs adaptation in-between. However, our pixel-level
intra-domain adaptation splits pixels of target domain im-
ages into easy and hard subdomains and thus achieves bet-
ter segmentation accuracy by performing the adaptation at
a more fine-grained level.

adversarial training in step 2 with a continuous indexing technique
to further improve the segmentation accuracy. Experimental results
show that our method achieves higher segmentation accuracy than
state-of-the-art intra-adaptation methods on benchmark datasets.

Our Contributions. First, we identify a key shortcoming of the
image-level intra-domain adaptation method: “hard” pixels in an
easy image and “easy” pixels in a hard image are both ignored.
Second, we propose a pixel-level intra-domain adaptation method
to address the aforementioned shortcoming. Third, we show that the
segmentation accuracy can be further improved by incorporating a
continuously indexed adversarial training method.

2 RELATED WORK

Unsupervised Domain Adaptive Segmentation. The goal of
unsupervised domain adaptive segmentation is to train a segmen-
tation network that achieves good performance in an unlabeled
target domain when only the source domain data are annotated.
Methodology-wise, existing methods build on three techniques:

1) adversarial learning (7, 22, 32, 33, 36, 42, 44, 46], 2) image-to-
image translation [2, 10, 12, 14, 17, 25, 31, 40] and 3) self-training
[1, 15, 18, 19, 24, 36, 43, 47, 49, 53].

Adversarial learning employs a discriminator to mitigate the
distributional discrepancy between the source and target domain
in the feature and/or output space of the segmentation network.
For example, [46] encouraged the segmentation network to learn
domain-invariant features by incorporating a discriminator to dis-
tinguish between the feature maps of the source and target data;
[32] used a discriminator to align the output distributions of the
source and target data, i.e.the softmax probability maps generated
by the segmentation network. Improving upon [32], Vu et al. [36]
borrowed ideas from self-training and showed that aligning the
distributions in a transformed output space (i.e.the entropy space)
is more advantageous. Observing that the gaps of foreground and
background classes are of different sizes between the source and tar-
get domain, [39] refined the feature alignment process by treating
the foreground and background classes differently.

Image-to-image translation based methods assume that the do-
main gaps are mostly in the low-level features (e.g. textures) rather
than the semantic structures of an image and proposed to close
them by translating images between the source and target domain.
For example, CyCADA [12] translates images from the source to tar-
get domain by enforcing the cycle-consistency [50] that preserves
semantic labels. In addition to cycle-consistency, [6] augmented the
regularization of the network with more consistency constraints,
e.g. cross domain consistency. Addressing the imbalanced data sizes
between the source and target domain, [41] proposed to invert the
translation direction to target-to-source and enforce the semantic
consistency by incorporating a cycle-reconstruction loss.

Self-training trains a segmentation network by exploiting the
pseudo labels of target domain images and their associated confi-
dence values. For example, [53] formulates self-training as a joint
learning process of both the model and the pseudo labels in an
“easy-to-hard” way. [36] penalizes low-confidence predictions by
minimizing an entropy loss over target data. Observing that the
gradient magnitudes are imbalanced during entropy minimization
[36], Chen et al.[4] employed a maximum square loss to alleviate the
problem. [19, 39] set thresholds on confidence values and only use
high-confidence pseudo labels in self-training. Similarly, [49] uses
an uncertainty estimation module to rectify the noisy pseudo labels.
As aresult, only low-uncertainty (i.e.high-confidence) pseudo labels
are used in the training.

Domain Separation. Most existing methods take the separation
of source and target domains for granted: according to the data
collection process, it is straightforward to separate the source and
target domains by the scenarios where the data are collected. [37]
pointed out that the above separation strategy is not always op-
timal. For instance, in medical applications, one needs to adapt
disease diagnosis models across patients of different ages, blood
pressure levels, activity levels, etc. Thus, it is more appropriate to
divide both the source and target domains into subdomains accord-
ing to these continuous variables. Apart from that, a recent work
IntraDA [26] shows that utilizing the predictions of a pre-trained
segmentation network, traditionally-defined target domains can



be further separated into “easy” and “hard” subdomains by rank-
ing how “easy” an image can be segmented. After the separation,
intra-domain adaption is performed to improve the segmentation
accuracy by directly applying existing domain adaption techniques
(e.g. self-training) to the two subdomains to close their domain gaps.
However, by analyzing the results of IntraDA, we observed a key
shortcoming: ranking the easiness of segmentation at image-level
is not sufficient for intra-domain adaptation because pseudo labels
are predicted at pixel-level.

In this work, we address the aforementioned inconsistency by
ranking the easiness of segmentation at pixel-level and separate the
subdomains accordingly. Since existing domain adaption techniques
are all at image-level and cannot be used without modification, we
also developed new methods to adapt the segmentation network
from the “easy” to “hard” subdomain at pixel-level.

3 SYSTEM PIPELINE

In this section, we revisit the general pipeline of the two-stage do-
main adaptation method [26], which consists of i) the inter-domain
adaptive segmentation [32, 36] and ii) the intra-domain adaptive
segmentation.

3.1 Inter-Domain Adaptation
Let Ds = (xj, yj)jv_bl be the source domain, D; = (x,-)i.\il be the

unlabelled target domain, where x;, x; € REXWX3

are input images,
y; € {0, 1}XWXIC js the pixel-level semantic annotations of x;
and C is the set of class index. The goal of inter-domain adaptation
is to train a segmentation network Gip;er that achieves good per-
formance on D; using the labeled data in D and the unlabelled
data in ;. Following the adversarial learning approach [32], this
is implemented by i) training a discriminator Djner to classify
whether Gipter (x;) is from the source or target domain; ii) training
the segmentation network Gipter to fool Dipter. Accordingly, the
loss functions can be formally written as:

L6ier (59570 == 7 (15" log Ginger (x5) 1)

hw ¢
— log [Dinter (Ginter (xi))]
LDinter (xj, xi) = —log [1 — Dinter (Ginter (xi)]

- log [Dinter(Ginter(xj))] .
(1)

3.2 Intra-Domain Adaptation

Observing that there are still domain gaps within the target domain
Dy, Pan et al. [26] proposed to reduce them by separating D;
into two subdomains, namely the easy and hard subdomains, and
adapting another segmentation network G from the easy to hard
subdomain. Specifically, they first train an inter-domain adaptation
model by the method in [36], and then rank each image x; € D; by
the mean value of its predicted entropy map I; € RF*W By setting
thresholds on the ranking, x; is classified into the easy subdomain
if its predicted entropy is low and vice versa. Finally, they adapt G
from the easy to hard subdomain using only the predicted labels of
easy subdomain images (i.e., pseudo labels).

As aforementioned, the image-level mean value of I; is not suffi-
cient for capturing the pixel-level domain gaps among predicted
labels. To this end, we propose a method to separate the subdomains
at pixel-level and also a pixel-level adversarial training strategy to
adapt G from the easy to hard subdomain.

4 PIXEL-LEVEL INTRA-DOMAIN
ADAPTATION

Following the two-stage pipeline described in section 3, we first
train an inter-domain adapted segmentation network Gjnser and

then construct a set D = (x;, yi)fil with N samples, where x; €

REXWX3 jcan input image from target domain and y; = Ginter(x;i) €
[0, 1]HXWXICl js its corresponding “soft segmentation map” of |C]|
classes. Given D, this section shows: i) how to separate the pixels
of x; into an easy and hard split according to y;; ii) how to adapt the
training of an intra-domain segmentation network G from the easy
to the hard subdomain at pixel-level. An overview of our method is

shown in Figure 2.

4.1 Subdomain Separation at Pixel-Level

Let xi(h’w) be the pixel at position (h, w) of x;, we sort it into the
easy and the hard subdomains by thresholding its confidence val-
ues yl.(h’w’k): the easier a pixel can be classified into a category
¢, the higher its confidence value is. Addressing the challenge of
imbalanced classes, we refine the proposed thresholding method
to be class-wise and represent the results with a binary mask

M; € {0, 1}W that:

(hw,k)
i

; @)
(hwl) g
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Mi(haw) —
0, JkeCy

where ty is the threshold of class k, a € [0, 1] is a scaling param-
eter to control the separation, Mi(h’w) = 1 means that the pixel
belongs to the hard subdomain and vice versa. Specifically, t; is de-
termined by the median of all confidence values of class k across the
dataset [19, 39]: f. is set to 0.9 when the median value is larger than

0.9; Otherwise, it is set to the median value. According to the sepa-

ration matrix M;, we assign pseudo labels gl(h,w) to corresponding
. (h,w)
pixels x; as:
(h,w,k) (hyw) _
g(h,w) B arlg(rsléax 1 [y 5 gt ] (y; ) M, =0 )
i - bl
none, Mi(h’W) 1

where 1(+) is a function that returns the input if the condition is
satisfied; Otherwise, a “none” value is returned and thus excluded
from the domain of the argmax function. In addition, we calculate
the proportion of easy pixels as:

1

N
_ - T — M.
Prop. = - — Z 15,(J - M) 1w @)

where N is number of samples, 15 and 1y are vectors of ones with
size H X 1 and W X 1 respectively, J is a matrix of ones with size
H x W. Note that Prop. is indirectly controlled by « via M;.
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Figure 2: Pipeline of the proposed domain adaptation method. Stage I: inter-domain adaptation. In this stage, we train an
inter-domain adaptive segmentation model Gj,;er using an arbitrarily-selected existing method, e.g. [19, 32]. Stage II: pixel-
level intra-domain adaptation. First, we separate the pixels in the target image into the easy and hard subdomains according
to the predictions of Gj,ter. These two subdomains are represented by a binary mask M (Eq. 2), where the black and white
pixels belong to the easy and hard subdomains respectively. Then, we train an intra-domain adaptive segmentation model G
by i) matching easy subdomain pixels with the corresponding pseudo labels (Eq. 3) predicted by Gjnrer (Eq. 5); i) performing
pixel-level adversarial learning on hard subdomain pixels to make them indistinguishable from the easy subdomain ones

(Eq. 6, 8).

4.2 Subdomain Adaptation at Pixel-Level

With the aid of the separation mask M; and the pseudo label tensor
i, we propose a new domain adaption framework to enable pixel-
level adaption between subdomains. Given a segmentation network
G with input x;, we adapt G from the easy to the hard subdomain
by i) matching the pseudo labels in 7j; that belong to the easy sub-
domain and ii) fooling the discriminator D which distinguishes
between easy and hard pixels through adversarial learning.

Self-training with Partial Pseudo Labels. To avoid the noise
introduced by low-confidence pixels, we only use the pseudo labels
whose corresponding pixels belong to the easy subdomain, i.e.,
AA(h’W) # none (Eq. 3). For simplicity, we convert yAFh’W)
5 (hwie)

to its one-

hot representation §; and formulate the partial segmentation

loss as:

L5 (xi ) = - Z Zﬁi(h’w’c) log G (x;) B-e) .5

(h,w)€E; ¢

where E; is the set consisting of all (h, w) that xi(h’w) belongs to
the easy subdomain (i.e., M i(h’w) =0).

Pixel-Level Adversarial Learning. Contrasting previous adver-
sarial learning methods [26] that discriminate between the binary
(e.g. True and False) labels assigned to images, we formulate pixel-
level adversarial learning by discriminating the binary labels as-
signed to pixels. To this end, we represent the pixel-wise labels of an
input image x; with M; (Eq. 2) and employ a special discriminator
architecture that outputs a matrix of the same size of M;, i.e, HXW.
Accordingly, our pixel-level adversarial loss functions are:

L (xi, M) =~ log [15(D(G(x1)) © M) 1w]
—log [1((J = D(G(x1))) o (J = Mi))1w], (6)
LE (i, My) = = log [15;((J = D(G(x1)) o M) 1w]
where o denotes the hadamard product operator.

Continuously Indexed Adversarial Learning. Although most
existing methods use categorical domain labels as in Eq. 6, the
predicted labels of G are essentially continuous as softmax proba-
bilities. This implies that useful information might be lost during



the categorization of continuous labels, especially for those in the
hard subdomain. Thus, inspired by [37], we directly use the pre-
dicted probabilities as continuous domain indexes for the adversar-
ial learning. Specifically, we modify the binary label mask M; to its

continuous version Z; using the predicted probabilities yi(h’w’k) as:
MO g
z{" = 1’_ max(y ) Ml(h,w) Ly ™
keCc 7t ’ i

Hence, the objective of the discriminator is to regress towards Z;.
However, unlike [37], we treat the pixels in the easy and hard
subdomains separately when training the segmentation network
G. Specifically, we apply the partial segmentation loss to pixels in
the easy subdomain (Eq. 5) and the adversarial loss to pixels in the
hard subdomain. Thus, our continuous adversarial loss functions
are:

‘Z:Ia)dv(xi)zi) = ||D(G(xl)) - Zi”%‘ >
£88(xM Z) = ID(G(x) o Mill.,
where || - || F denotes the Frobenius norm. Incorporating the partial

segmentation loss (Eq. 5), the overall loss functions for the generator
G and the discriminator D are:

_ pado
LD _LD 5

Lo =Ly +pLED,

®)

©

where f is a weighting parameter balancing ng and .fjgd”.

5 IMPLEMENTATION

5.1 Network Architecture

Segmentation Network. Similar to [32], we adopt the DeepLab-
v2 [3] framework with a ResNet-101 [11] model pre-trained on
ImageNet as the backbone. Hence, the output size is 1/8 times the
input image size. Since our pixel-level training (Eq. 5, 6) requires
the output size to match the input size, we bilinearly upsample the
segmentation output to be of the same spatial size as the input image.
Finally, we attach a softmax layer to the rear of the segmentation
network to generate class-wise probabilities for each pixel.

Discriminator Network. Following [26, 32], we use two discrim-
inators to conduct multi-level adversarial learning. One discrim-
inator takes the final segmentation probability map as input and
another one takes the probability map of the auxiliary classifier as
input. The auxiliary classifier is the same as the one used in [26, 32].
To conduct pixel-level adversarial learning, similar to the segmen-
tation network, we bilinearly upsample the outputs of both discrim-
inators to be of the same spatial size of the input image.

5.2 Datasets
We evaluate our method on two popular synthetic-to-real adapta-
tion scenarios: i) GTA5 [28] to Cityscapes [8] and ii) SYNTHIA [30]
to Cityscapes [8].

GTA5. GTAS5 [28] is a synthetic dataset which contains 24,966
images with a resolution of 1,914 x 1,052. The synthetic images
are collected from a video game based on the city of Los Angeles.
There are 33 categories in the ground truth annotations. Similar to

[26, 32, 36], we only use the 19 categories that are compatible with
the Cityscapes [8] annotations.

SYNTHIA. The SYNTHIA [30] dataset contains 9,400 synthetic
urban scene images of resolution 1,280 X 760. Similar to [26, 32,
36], we only use the 13 categories that are compatible with the
Cityscapes [8] annotations.

Cityscapes. Cityscapes [8] is a real world urban scene dataset that
contains 3,975 images collected from different cities. Similar to [26,
32, 36], 2,975 images are selected from the training set of Cityscapes
[8] for training, 500 images are selected from the evaluation set of
Cityscapes [8] for evaluation.

5.3 Training Details

Inter-domain Adaptation. For GTA5—Clityscapes, we collect the
source domain images by transferring the GTA5 images to the
style of the Cityscapes images [19] and generate the pseudo la-
bels by training the inter-domain adaptation model of [32]. For
SYNTHIA—Cityscapes, we generate the pseudo labels using the
released pre-trained model of [19].

Intra-domain Adaptation. We use the Cityscapes images and
the generated pseudo labels to train our intra-domain adaptation
model. The hyperparameters of the two discriminators and the
auxiliary classifier are the same as the ones used in [32]. We use
Stochastic Gradient Descent (SGD) with a momentum of 0.9 and a
weight decay parameter of 5 x 1074 to optimize the network. The
initial learning rate is set to be 2.4 X 10~* and polynomially [3]
decays with a power of 0.9. For the discriminator networks, Adam
[16] optimizers with momentum 0.9 and 0.99 are used. The initial
learning rate is 10~* and decays using the same strategy as SGD.
Similar to multi-round training in [19, 39, 52], we train our network
for 2 rounds. For the second round training (denoted as T=1), we
utilize KLD regularization [52] to prevent overfitting to pseudo
labels. The batch size is 4 and multi-scale training and testing is
utilized. Our training is carried out on an NVIDIA Tesla V100 GPU.

6 EXPERIMENTAL RESULTS
6.1 GTAS5 to Cityscapes.

Quantitative results. In Table 1, we quantitatively compare the
IoU and mean IoU (mloU) of our method (PixIntraDA) against
those of the state-of-the-art methods. INTER represents the inter-
domain adaptation model used in our method. It can be observed
that our method outperforms all other models with a promising
mloU of 54.2%. Moreover, the proposed method also shows superior
performance in terms of the per class IoU score, especially in the
minor categories (e.g., “motor”, “bike”), which implies that proposed
method can extract more fine-grained features.

Ablation studies. Our PixIntraDA consists of four parts, pixel-
level adversarial learning (PLA), continuously indexed adversarial
learning (CTS), one more round training (T=1) and KLD regulariza-
tion [52], among which PLA and CTS are our main contributions.
We validate the effectiveness of each part, as shown in Table 3. It can
be observed that our PLA method outperforms the inter-domain
adaptation model (INTER) by 4.2% in mIoU. Moreover, the proposed
CTS can further improve the performance.



Table 1: Semantic segmentation results of GTA5—Cityscapes. The best result in each column is highlighted in bold fonts.
INTER: the inter-domain adaptation model used in our method.

GTA5 — Cityscapes
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Method Ié? %ﬁ) ~o§ 3% %‘é) Qo\@ .\:&3 3? Aéo f Eé :?% k;él 8§ {50 ~o§ ~§$ SS‘ 55\& mloU
DCGAN [40] 85.0 30.8 81.3 25.8 21.2 22.2 254 26.6 83.4 36.7 76.2 589 249 80.7 29.5 429 25 269 11.6 41.7
AdapSegNet [32] 86.5 36.0 79.9 23.4 233 239 35.2 14.8 83.4 333 75.6 585 27.6 73.7 325 354 39 30.1 28.1 424
CLAN [23] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 742 58.6 28.0 76.2 33.1 36.7 6.7 31.9 314 43.2
ADVENT [36] 87.6 21.4 82.0 34.8 26.2 28.5 35.6 23.0 84.5 35.1 76.2 58.6 30.7 84.8 34.2 434 04 284 352 44.8
BDL [19] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5
AdaPatch [34] 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 334 46.3 2.2 29.5 323 46.5
MaxSquare [5] 89.4 43.0 82.1 30.5 21.3 30.3 34.7 24.0 85.3 394 782 63.0 229 84.6 36.4 43.0 55 34.7 335 46.4
PyCDA [20] 90.5 36.3 84.4 324 28.7 34.6 36.4 31.5 86.8 379 785 62.3 21.5 85.6 27.9 34.8 18.0 22.9 49.3 47.4
Diff [39] 90.6 44.7 84.8 34.3 28.7 31.6 35.0 37.6 84.7 43.3 853 57.0 31.5 83.8 42.6 48.5 1.9 30.4 39.0 49.2
CrCDA [13] 92.4 553 823 31.2 29.1 325 33.2 35.6 83.5 34.8 84.2 589 32.2 84.7 40.6 46.1 2.1 31.1 32.7 48.6
FADA [38] 92.5 47.5 85.1 37.6 32.8 33.4 33.8 18.4 85.3 37.7 83.5 63.2 39.7 87.5 329 47.8 1.6 349 39.5 49.2
MRNet [48] 90.5 35.0 84.6 34.3 24.0 36.8 44.1 42.7 84.5 33.6 825 63.1 34.4 85.8 329 38.2 2.0 27.1 41.8 483
MRKLD [52] 91.0 554 80.0 33.7 21.4 37.3 329 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1
LRTIR [14] 92.9 55.0 85.3 34.2 31.1 349 40.7 34.0 85.2 40.1 87.1 61.0 31.1 82.5 32.3 429 0.3 364 46.1 50.2
FDA [43] 92.5 533 824 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 169 27.7 46.4 50.5
IAST [24] 94.1 58.8 85.4 39.7 29.2 25.1 43.1 34.2 84.8 34.6 88.7 62.7 30.3 87.6 42.3 50.3 24.7 35.2 40.2 52.2
CAG [45] 90.4 51.6 83.8 34.2 27.8 38.4 253 48.4 854 38.2 78.1 58.6 34.6 84.7 21.9 42.7 41.1 29.3 37.2 50.2
INTER (ours) 91.2 47.6 81.5 285 17.6 29.3 28.3 24.2 82.7 36.3 80.2 56.4 27.9 829 339 42.0 0.6 29.3 26.4 44.6
PixIntraDA (ours) 93.4 56.1 85.9 29.7 34.3 39.1 47.8 43.8 86.2 37.6 89.2 68.2 38.8 87.8 39.6 57.4 0.1 46.4 49.5 54.2

Table 2: Semantic segmentation results of SYNTHIA—Cityscapes. The best result in each column is highlighted in bold fonts.
Note that in this experiment, BDL [19] is used as the inter-domain adaptation model in our method, i.e.,, PixIntraDA.

SYNTHIA — Cityscapes

)
S ‘ZJ& § & S Q%T A @O g G $ &
Method 'év § N '\7% "o*% £ ¥ 4% ’?b <5§ N @O ~0$ mloU
AdaptSegNet [32] 84.3 42.7 77.5 4.7 7.0 77.9 82,5 543 21.0 723 322 18.9 323  46.7
CLAN [23] 81.3 37.0 80.1 16.1 13.7 78.2 81.5 534 212 730 329 22.6 30.7 47.8
ADVENT [36] 85.6 42.2 79.7 5.4 8.1 80.4 84.1 579 238 733 364 14.2 33.0 48.0
IntraDA [26] 84.3 37.7 79.5 9.2 8.4 80.0 84.1 57.2 230 780 38.1 20.3 36.5 48.9
FADA [38] 84.5 40.1 83.1 4.8 27.2 84.8 84.0 535 22.6 854 437 26.8 27.8 52.5
Diff [39] 83.0 44.0 80.3 17.1 15.8 80.5 81.8 599 331 702 373 28.5 458 52.1
LRTIR [14] 92.6 53.2 79.2 1.6 7.5 78.6 84.4 52.6 20.0 82.1 348 14.6 39.4 493
FDA [43] 79.3 35.0 73.2 199 24.0 61.7 82.6 614 31.1 839 40.8 38.4 51.1 52.5
MRNet [48] 82.0 36.5 80.4 18.0 134 81.1 80.8 613 21.7 844 324 14.8 45.7 50.2
PyCDA [20] 75.5 30.9 83.3 27.3 335 84.7 85.0 64.1 254 850 45.2 21.2 32.0 53.3
MRKLD [52] 67.7 32.2 73.9 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 194 45.3 50.1
IAST [24] 81.9 41.5 83.3 309 28.8 83.4 85.0 655 308 86.5 38.2 33.1 52.7 57.0
CAG [45] 84.7 40.8 81.7 13.3  22.7 84.5 77.6 64.2 27.8 809 19.7 22.7 48.3 51.5
BDL [19] 86.0 46.7 80.3 141 11.6 79.2 81.3 54.1 279 737 422 25.7 45.3 514
PixIntraDA (ours) 81.5 45.8 77.8 32.5 239 83.2 87.6 68.9 368 79.6 47.3 44.0 54.7 58.7

Comparison with IntraDA [26]. As Table 4 shows, we also com-
pare our method with IntraDA [26] under the same experimental
setting. To make a fair comparison, we i) bilinearly upsample the

discriminator outputs of IntraDA [26] as in our method; ii) train In-
traDA [26] using the pseudo labels generated by our inter-domain
adaptation model (INTER). It can be observed that our method
outperforms the inter-domain adaptation model (i.e., INTER) by



Table 3: Ablation study on GTA5—Cityscapes. INTER: our
inter-domain adaptation model. PLA: pixel-level adversar-
ial learning (Eq. 6). CTS: continuously indexed adversarial
learning (Eq. 8). T=1: the model is trained for another round.
KLD: KLD regularization [52]

Model | PLA CTS T=1 KLD | mloU
INTER 45.2
+PLA v 49.4
+CTS v v 50.3
+T=1 v v v 53.3
+KLD v v v v 54.2

Table 4: Comparison with IntraDA [26] on GTA—Cityscapes.
For a fair comparison, the IntraDA [26] model is retrained
using the pseudo labels generated by INTER.

Model mloU | mloU gain
INTER 45.2 -
IntraDA [26] | 47.4 2.2
PLA 49.4 4.2
PLA + CTS 50.3 5.1

Table 5: Analysis of the proportion of easy pixels on
GTA5—Cityscapes, where 1! = Prop. (Eq. 4) for IntraDA [26].
Note that Prop. = 0 means intra-domain adaptation is not ap-
plied and Prop. = 1 means that all the pseudo labels are used
in self-training (Eq. 5) and none of them are used in adver-
sarial learning (Eq. 6 and 8).

Proportion of Easy Pixels vs mIoU

Model Prop.=0 057 067 079 1
o=- 0.7 085 1.00 -
IntraDA [26] 45.2 47.1 474 469 46.0
PLA 45.2 49.0 494 49.1 46.0
PLA + CTS 45.2 49.3 503 499 46.0

4.2%-5.1% in mloU, while IntraDA [26] only outperforms INTER by
2.2%.

Qualitative results. To get an intuitive understanding, we visual-
ize the segmentation results of both IntraDA [26] and our method in
Figure 3. Facilitating the comparison, we highlight the superiority
of our method with colored boxes.

Analysis of the proportion of easy pixels. Similar to [26], we
conduct an experiment on the proportion of easy pixels, as shown
in Table 5. It can be observed that our method outperforms In-
traDA [26] on all the three non-degenerate cases, i.e., Prop. € (0,1).
Similar to IntraDA [26], our method achieves its best performance
when Prop. = 0.67.

Versatility. As Table 6 shows, we justify the versatility of our
method by testing its performance with a different pseudo label
thresholding scheme: instance adaptive selection (IAS) [24]. Instead

Table 6: Justification of the versatility of our method on
GTA—Cityscapes. For PLA + IAS and PLA + CTS + IAS, we as-
sign pseudo labels using instance adaptive selector (IAS) [24]
rather than our pseudo label thresholding scheme (Eq. 3).

Model mloU | mloU gain
INTER 45.2 -
PLA +IAS 49.0 3.8
PLA + CTS +IAS | 49.5 4.3

Table 7: Ablation study on SYNTHIA—Cityscapes. We use
the pretrained model provided by BDL [19] as the inter-
domain adaptation model.

Model |PLA CTS T=1 KLD | mloU
BDL [19] 514
+PLA v 545
+CTS v 55.1
+T=1 VAV AV 57.5
+ KLD v v v v 58.7

Table 8: Analysis of the proportion of easy pixels on
SYNTHIA—Cityscapes. Note that Prop. = 0 means intra-
domain adaptation is not applied and Prop. = 1 means that all
the pseudo labels are used in self-training (Eq. 5) and none
of them are used in adversarial learning (Eq. 6 and 8).

Proportions of Easy Pixels vs mIoU

Model Prop.=0 0.66 0.87 1
a=- 0.79  1.00 -

PLA 51.4 545 542 52.7

PLA + CTS 514 55.1 54.7 52.7

of determining a global set of per-class thresholds for all samples
in the dataset (section 4.1), IAS [24] applies a unique set of per-
class thresholds to each sample, which is determined by a convex
combination of the current sample thresholds and a historical one
during pseudo label generation. It can be observed that our method
can also achieve a significant performance gain when IAS is used.

Feature visualization. We use t-SNE [35] to visualize the final
features generated by the backbone network of IntraDA [26] and
our method (PixIntraDA). As Figure 4 shows, IntraDA [26] can
produce separated features, yet it is still hard for linear classification.
In comparison, our method produces i) more dispersed feature
clusters and ii) more compact intra-class features, which is more
amenable to classification.

6.2 SYNTHIA to Cityscapes

Quantitative Results. Following [19, 23, 39], we evaluate the
ToU and mloU of all the 13 classes shared between SYNTHIA and
Cityscapes. As Table 2 shows, our method outperforms the base-
line (i.e., BDL [19]) by 7.3% in mloU, which implies that our model
achieves the new state-of-the-art performance of SYNTHIA—Citys-



(@) Input (b) IntraDA

(c) PixIntraDA (ours) (d) Ground Truth

Figure 3: Qualitative results on GTA5—Cityscapes. (a) and (d) are the images and their corresponding ground truth annotations
from the Cityscapes validation set. (b) and (c) are the segmentation results of IntraDA [26] and our method respectively. The

superiority of our method is highlighted with colored boxes.

capes. Note that we use the pre-trained model provided by [19] as
the inter-domain adaptation model.

Ablation studies. Similar to GTA—Cityscapes, we also validate
the effectiveness of each part, i.e., pixel-level adversarial learning
(PLA), continuously indexed adversarial learning (CTS), one more
round training (T=1) and KLD regularization [52], as shown in
Table 7.

Analysis of the proportions of easy pixels. We also conduct an
experiment on the proportion of easy pixels for SYNTHIA—Citysc-
apes. The results are shown in Table 8. It can be observed that our
method performs the best when Prop. = 0.66 and our PLA is robust
to easy pixel proportions.

7 CONCLUSION

In this paper, we address the shortcoming of image-level intra-
domain adaptive segmentation by proposing a pixel-level intra-
domain adversarial learning framework. Specifically, we first con-
duct an inter-domain adaptation and then split the target domain
pixels into the easy and hard subdomains. Finally, we propose
a pixel-level adversarial learning strategy to conduct the pixel-
level intra-domain adaptation from the easy to hard subdomain.
Moreover, we propose a continuously indexed adversarial learning
technique that can further improve the segmentation accuracy. Ex-
perimental results show the effectiveness of our method against
existing state-of-the-art approaches.
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(a) IntraDA [26] (b) PixIntraDA (ours)

Figure 4: t-SNE [35] visualization of the features extracted
by IntraDA [26] and our method on the validation set of
GTA—Cityscapes.
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