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Figure 1: We propose a novel problem where we concurrently learn dance choreography and music composition. Specifically,
our framework consists of two networks,𝐺𝑀→𝐷 for generating 3D dance choreographs from input music, and𝐺𝐷→𝑀 that syn-
thesizes music compositions given dance sequences. We leverage the duality of these tasks to extract the common underlying
themes and ensure consistency between the generated output and the conditional input.

ABSTRACT
Music and dance have always co-existed as pillars of human ac-
tivities, contributing immensely to the cultural, social, and enter-
tainment functions in virtually all societies. Notwithstanding the
gradual systematization of music and dance into two independent
disciplines, their intimate connection is undeniable and one art-
form often appears incomplete without the other. Recent research
works have studied generative models for dance sequences con-
ditioned on music. The dual task of composing music for given
dances, however, has been largely overlooked. In this paper, we
propose a novel extension, where we jointly model both tasks in a
dual learning approach. To leverage the duality of the two modali-
ties, we introduce an optimal transport objective to align feature
embeddings, as well as a cycle consistency loss to foster overall
consistency. Experimental results demonstrate that our dual learn-
ing framework improves individual task performance, delivering
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generated music compositions and dance choreographs that are
realistic and faithful to the conditioned inputs.

CCS CONCEPTS
• Computing methodologies→Neural networks;Multi-task
learning; • Applied computing→Media arts.

KEYWORDS
cross-modal generation, dual learning, optimal transport

ACM Reference Format:
Shuang Wu, Zhenguang Liu, Shijian Lu, and Li Cheng. 2021. Dual Learning
Music Composition and Dance Choreography. In Proceedings of the 29th
ACM International Conference on Multimedia (MM ’21), October 20–24, 2021,
Virtual Event, China. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3474085.3475180

1 INTRODUCTION
From an evolutionary perspective, music and dance have played a
vital role for the social function of the human species [35]. They
are ubiquitous in human activities, ranging from personal enter-
tainment to social functions and ceremonial activities. On top of
forming an indispensable tapestry in human culture, they are also
integral to modern civilization and contribute immensely to our
individual and social well-being. Over the past centuries, music
and dance are gradually systematized into two separate art-forms
but their intimate and deep connection is unmistakable. Both en-
tail expressing our internal emotions as external movements. For
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dance, the medium of expression is visual in the form of body move-
ments whereas for music, movements manifest auditorily through
melodies and rhythms.

It is widely acknowledged that music evokes motions and feel-
ings of intentionality [30]. We may find ourselves moving along
to the beats and dancing to music, perhaps even unaware of our
movements. Neuroscience research elucidates howmusic and dance
activities may involve similar stimuli in our brain [6, 20]. Recently,
the artificial intelligence community has also taken an interest.
Several works [11, 15, 18, 19, 29, 31] have investigated the task of
generating dance choreographs from music.

Reciprocally, dance would appear incomplete and unadorned if
there were no accompanying music. Since generating music from
dance remains largely overlooked in the literature, we propose to
concurrently tackle this dual task. As summarized in Fig. 1, we
develop a bi-directional generative model for synthesizing realistic
and matching dance from music and music from dance. This dual
learning has the additional advantage of enhancing the modeling
of each modality. Given the popularity of music and dance videos
in entertainment and multimedia, our ultimate goal is to enable ef-
fective engagement of the public, contribute to the user experience,
and benefit the vast community of musicians and dancers.

There are several challenges in this task.
Cross-domain generation Translating between music and

dance constitutes a cross-domain sequence-to-sequence generative
modeling task. Most source-to-target domain learning tasks entail
image-to-image [17, 23, 40, 42] or language translation [13], for
which the data lies in topologically identical spaces. However, our
task is further complicated by the fact that the ambient spaces for
our data have totally distinct topological properties. Specifically,
music is represented as waveforms, whereas a dance sequence is
represented as 3D motion trajectories on a pose manifold. This
increases the difficulty of learning a network mapping between
music and dance with realistic outputs.

Creativity and Diversity Earlier works in dance choreogra-
phy [11, 19] adopted a similarity retrieval approach which simply
glues together dance moves from a learned template and is lack-
ing in both innovation and diversity. [31] utilized a sequence-to-
sequencemodel with Long Short TermMemory (LSTM) units which
suffered from the limitation of a single output. However, multiple
interpretations for music composition or dance choreography is
commonplace and diversity should also be reflected in the model.
One viable approach [18, 29] is to employ Generative Adversarial
Networks (GANs) that enables a distribution of plausible outputs
instead of a single deterministic one.

Consistency betweenmusic and dance On top of securing
the realism of the generated music pieces or dance sequences, we
need to ensure harmony between the generated output and the con-
ditioned input. In other words, we need to extract the shared themes
and intentionality between the two media as domain-independent
features and ensure that such domain-independent abstractions are
reflected in the target output. Furthermore, the kinematic beats in
dance and the acoustic beats in music should be aligned.

To address these challenges, our proposed approach employs
transformer network architectures [34] as encoders and decoders in
a sequence-to-sequence framework. We incorporate a full attention
mechanism [8] for feature learning in both the music and dance

domain. This has the key advantage of a global level understand-
ing of underlying themes. We instill diversity into our model by
concatenating a random vector with the encoded feature. Further-
more, to effectively leverage the dual structure of the problem, we
also propose an optimal transport inspired alignment that serves
to match cross-domain features. Specifically, we define a Gromov-
Wasserstein distance [26] which measures the relational distance
between intra-domain distances while preserving the domain topo-
logical structures. Optimizing the Gromov-Wasserstein objective
facilitates feature learning in each encoder network. It therefore
promotes the proximity and similarity of the learnt embeddings
despite inherent differences in domain topology.

Our contributions may be summarized as follows:
(1) We consider a new problem of both music-to-dance genera-

tion and its dual dance-to-music generation.
(2) A novel dual learning strategy is proposed, which incorpo-

rates a Gromov-Wasserstein distance to facilitate feature
learning of each task, as well as promote coherence between
input and output.

(3) Empirical experiments demonstrate the applicability of our
approach in delivering realistic, diverse generations of dance
choreographs and music compositions faithful to the input.
Moreover, superior performance is observed when compar-
ing to the state-of-the-arts in music-to-dance generation.

2 RELATEDWORK
2.1 Dance generation
Earlier works generate dance sequences from fixed templates fol-
lowing a similarity matching for the music source [11, 19]. Since
the synthesized choreographs simply re-arrange the dance moves
from the training data in rigid fashions, there is the drawback of
unnatural transitions and a lack of creativity.

With the advent of deep learningmethods, sequence-to-sequence
models have been proposed for generating dance sequences from
encoded music features. A pioneering work [31] uses a L2 loss for
comparing the dance sequences, which suffers from a tendency of
motion freezing. To alleviate this, [15] proposes curriculum learning
coupled with a L1 loss whereas [39] employs a geodesic loss. To
enable the generation of diverse dance sequences, [15, 39] introduce
a random seed vector alongside the encoded music features, while
an alternative approach [18, 29] utilises GANs. One key remark is
that [15, 18, 29] focus on 2D motion. The 3D representation in our
work allows important cues such as relative positions or invariance
on bone lengths to be clearly put into perspective, thus appearing
more more realistic, appealing and geometrically rich.

Another line of work [21, 22] employs a cross-modal architecture
for generating dance sequences conditional on both music and
previous dance moves. In our work, the primary task of music-to-
dance generation is only conditional on a single music stream and
does not require any additional dance stream.

2.2 Music generation
There are two general approaches in computational music genera-
tion. The first focuses on symbolic representations [5, 14, 16]. The
second handles music as rawwaveforms either in the audio [7, 9, 10]



Figure 2: A high-level overview of our pipeline. (a) For data preprocessing, we extract MFCC, chroma and beats features from
themusicwaveform rawdata, and represent the dance sequence as pose and translation parameters in the SMPLmodel [24]. (b)
The two generative networks 𝐺𝑀→𝐷 (music-to-dance choreography) and 𝐺𝐷→𝑀 (dance-to-music composition) in our frame-
work comprise a sequence-to-sequence architecture where the encoder and decoder are both transformer networks. (c) We
train our network through a Gromov-Wassserstein loss that facilitates dual learning in this cross-domain situation, on top of
the reconstruction loss and cycle consistency loss.

or frequency domain [33]. Ideally, the waveform representation
enables a much richer generative landscape, such as allowing gen-
eration of human voices or nuances in musical performances which
attach an additional layer of interpretation on top of the sheet mu-
sic. However, this comes at an extremely high computational cost.
To put this in context, the waveform representation for a 5 seconds
music sequence sampled at 48kHz would incur a 240,000 length
spectrogram sequence. Despite recent advancements such as sparse
attentions [7] or discretized representations [9, 10], learning the
multiple levels of musical structure and hierarchy which manifest
at different scales remains extremely computationally expensive. In
light of this, we resort to the lightweight symbolic representation
for our music generation task.

2.3 Dual Learning
Dual learning [36] is a paradigm which jointly trains a primary task
and its dual task. The symmetry and duality at the data or model
level [37] can be leveraged, ideally improving the performance
of both tasks compared to training for each independently. Dual
learning can be in a supervised setting such as in image-to-image
translations for paired data [17] or machines language translation
[13]. It may likewise be extended to the unsupervised setting [40,
42] whereby the notion of a cycle consistency loss is introduced,
compelling the primary task and dual task to learn inverse maps
of each other. In our dual learning scheme, on top of the cycle
consistency loss, we also introduce a novel Gromov-Wasserstein
loss to facilitate feature space alignment.



3 OUR APPROACH
An overview of our pipeline is outlined in Fig. 2. In the following,
we present the details of each component.

3.1 Data Preprocessing
Music The raw music input are sampled at 48kHz, thereby ob-
taining a waveform representation in the form of a time-frequency
spectrogram. However, such high sampling rates may well lead to
high computational costs and lots of redundancy. To this end, we
employ the Librosa toolbox [25] to perform feature engineering and
extraction. These extracted features will be used in our networks
instead of the raw waveform.

Following [18], we first extract Mel-frequency cepstral coeffi-
cients (MFCC) [38] andMFCC delta from the spectrogram. However,
these low level features (typically used for speech recognition) may
be inadequate for conveying high level musical information. There-
after, we perform a harmonic percussive source separation [27]
which decomposes the spectrogram into harmonic components
and percussive components. The harmonic components correspond
to the pitch and melody of the music from which we extract chroma
features. The percussive components provide the rhythmic infor-
mation from which we extract the beats and onsets. Specifically,
for each frame, our music features is a 53 dimensional vector, com-
prising 20-dim MFCC, 20-dim MFCC delta, 12-dim chroma features,
and 1-dim one-hot encoding for beats.

Dance We work with two 3D dance sequence datasets from
[22, 31]. [22] performed a 3D annotation of the AISTDance database
[32] and each 3D pose is parameterized in the Skinned Multi-Person
Linear Model [24]. For consistency, we performed a fitting with
SMPLify [3] on the dataset in [31] to obtain SMPL pose parameters.

The SMPL model has 24 skeletal joints and a pose is represented
as 24×3 axis-angle parameters, which characterizes the 3D orienta-
tion or rotation of each joint. However the axis-angle (and likewise
the quaternion) parameterization is not globally continuous over
the 3D rotational group 𝑆𝑂 (3) [2]. Furthermore, it is cumbersome
to define a geometrically meaningful loss for axis-angle parameters
and we adopt a Stiefel manifold representation [41]:

𝑅 =
©­«R1 R2

ª®¬ , (1)

which essentially amounts to discarding the last column for a ro-
tation matrix. Such a representation is smooth over 𝑆𝑂 (3), thus
offering empirical advantages for backpropagation. Overall, the
skeletal pose is parameterized as a 24 × 6 + 3 = 147-dim vector.

3.2 Problem Formulation
We denote the music space as X and the dance space as Y. We
sample fixed duration (𝑇 frames) music and dance sequence pairs
(𝑥𝑖 , 𝑦𝑖 )𝑁𝑖=1 i.i.d from X × Y. Formally, the problem statement can
be formulated as follows.

• The primary task is to learn a mapping 𝐺𝑀→𝐷 : X → Y
such that

∑𝑁
𝑖=1 LY (𝐺𝑀→𝐷 (𝑥𝑖 ), 𝑦𝑖 ) is minimized. Here LY

denotes a metric in dance space Y.

• The dual task is to learn a mapping 𝐺𝐷→𝑀 : Y → X such
that

∑𝑁
𝑖=1 LX (𝐺𝐷→𝑀 (𝑦𝑖 ), 𝑥𝑖 ) is minimized. Here LX de-

notes a metric in music space X.
In the ideal case,𝐺𝑀→𝐷 and𝐺𝐷→𝑀 would be inverse of each other,
i.e. 𝐺𝐷→𝑀 (𝐺𝑀→𝐷 (𝑥𝑖 )) = 𝑥𝑖 and 𝐺𝑀→𝐷 (𝐺𝐷→𝑀 (𝑦𝑖 )) = 𝑦𝑖 . The
discrepancy from this ideal case may be leveraged in the form of a
cycle discrepancy loss [42] in our dual learning context.

Figure 3: In optimizing for theGromov-Wasserstein loss, the
Enc𝑀→𝐷 network parameters are updated, re-positioning
the music embedding vectors {𝑧𝑥

𝑖
}4
𝑖=1 such that the discrep-

ancy between intra-space distances is minimized.

3.3 Overall Framework
Transformer and attention Both the 𝐺𝑀→𝐷 and 𝐺𝐷→𝑀 con-
sist of transformer networks that serve as encoders and decoders
as illustrated in Fig. 2. We adopt a full attention mechanism [8]
throughout for all transformers. This allows full access to the entire
context, without masking of the future contexts. Explicitly, for a
given sequence input S, an attention layer learns the context Z:

Z = Softmax
( ⟨SW𝑞, SW𝑘 ⟩√

𝐷

)
SW𝑣, (2)

where 𝐷 is the number of channels in the attention layer and
W𝑞,W𝑘 ,W𝑣 denote the query, key and value weights respectively.

Intuitively, the full attentionmechanism aligns with how humans
go about composing music for dance or choreographing dance from
music. We make a global consideration of the structure and themes
in our design. In allowing access to all contextual information, we
expect that the structural constructs and hierarchical abstractions
can be better modeled in the transformer networks.

Gromov-Wasserstein Loss to Facilitate Dual Learning in
Encoders Each encoder network learns an embedding map from
its respective input space into a latent space. Explicitly, we have:

Enc𝑀→𝐷 : X → ZX
𝑥 ↦→ 𝑧𝑥 ,

Enc𝐷→𝑀 : Y → ZY
𝑦 ↦→ 𝑧𝑦 .

(3)

The music space X and dance space Y have different topological
structures. As such, it would bemathematically impossible to embed
them into the same space since embeddings are topology-preserving
maps. This means that we cannot directly gauge the similarity



between a piece of music and a dance sequence by defining a metric
on their embedding vectors.

On the other hand, embeddings do introduce metric distortions
[4]. This motivates us to propose a Gromov-Wasserstein loss [1,
26, 28] which measures the discrepancy between the metrics on
the two embedding spaces instead of directly comparing between
cross-domain samples. By defining an inter-space distance between
the respective intra-space distances for ZX and ZY , the Gromov-
Wasserstein loss gives a well-defined notion of distance between
music and dance pairs. Heuristically, we present in Fig. 3 how
optimizing this loss amounts to aligning the feature embeddings.

Give two point sets of𝑚 embedded vectors {𝑧𝑥
𝑖
}𝑚
𝑖=1, {𝑧

𝑦

𝑖
}𝑚
𝑖=1, we

may view them as two discrete empirical distributions 𝜇, 𝜈 as:

𝜇 =

𝑚∑︁
𝑖=1

1

𝑚
𝛿𝑧𝑥

𝑖
, 𝜈 =

𝑚∑︁
𝑖=1

1

𝑚
𝛿𝑧𝑦

𝑖
, (4)

where 𝛿 denotes the Dirac delta distribution. Formally, the Gromov-
Wasserstein distance for our task is given by

𝐺𝑊 (𝜇, 𝜈) = min
𝜋 ∈Π

∑︁
𝑖, 𝑗,𝑘,𝑙

���∥𝑧𝑥𝑖 − 𝑧𝑥
𝑘
∥1 − ∥𝑧𝑦

𝑗
− 𝑧𝑦

𝑙
∥1
���2 𝜋𝑖 𝑗𝜋𝑘𝑙 . (5)

Here Π defines the set of all joint distributions with marginals 𝜇 and
𝜈 . The goal is to find the optimal transport matrix 𝜋 that minimizes
the squared distance between intra-space L1 costs.

Following [28], we introduce an entropic regularization term
which allows much more efficient solving of Eq. (5). The entropy
regularized Gromov-Wasserstein distance can then be solved via
the Sinkhorn algorithm and projected gradient descent [28]. We
outline the steps in Algorithm 1.

Algorithm 1 GW Distance for 2 batches of𝑚 samples
Input: music embeddings Z𝑥 = {𝑧𝑥

𝑖
}𝑚
𝑖=1,Z

′𝑥 = {𝑧′𝑥
𝑖
}𝑚
𝑖=1

Input: dance embeddings Z𝑦 = {𝑧𝑦
𝑖
}𝑚
𝑖=1,Z

′𝑦 = {𝑧′𝑦
𝑖
}𝑚
𝑖=1

Hyperparameters: regularization 𝜀 > 0, projection iterations𝑀 ,
Sinkhorn iterations 𝐿

Initialize: 𝜋 (0)
𝑖 𝑗

= 1
𝑛 , ∀𝑖, 𝑗

Cost Matrix for music embeddings 𝐶𝑖 𝑗 =



𝑧𝑥𝑖 − 𝑧𝑥

𝑗





1

Cost Matrix for dance embeddings 𝐷𝑖 𝑗 =




𝑧𝑦𝑖 − 𝑧𝑦
𝑗





1

for 𝑙 = 1 : 𝑀 do
𝐸 = 1

𝑚𝐷
21𝑚1

⊺
𝑚 + 1

𝑚1𝑚1
⊺
𝑚𝐶

2 − 2𝐷𝜋 (𝑙−1)𝐶⊺

𝐾 = exp(−𝐸/𝜀)
b(0) = 1𝑚
for ℓ = 1 : 𝐿 do

a(ℓ) = 1𝑚 ⊘ 𝐾b(ℓ−1) , b(ℓ) = 1𝑚 ⊘ 𝐾⊺a(ℓ)

where ⊘ denotes component-wise division
end for
𝜋 (𝑙) = diag(a(𝐿) )𝐾diag(b(𝐿) )

end for
Output: 𝐺𝑊𝜀 (Z𝑥 ,Z′𝑥 ,Z𝑦,Z′𝑦 ) =

∑︁
𝑖,𝑗,𝑘,𝑙



𝐷𝑖𝑘 −𝐶 𝑗𝑙



2 𝜋 (𝑀 )
𝑖 𝑗

𝜋
(𝑀 )
𝑘𝑙

Optimizing the Gromov-Wasserstein distance throughAlgorithm
1 updates the music encoder network parameters Enc𝑀→𝐷 through
backpropagation. This matching of the music embeddings with the
dance embeddings facilitates learning the duality of our two tasks.

Decoding and Generation During training phase, the start
token for the decoder network is taken from the training data.
Specifically, for the dance generation task, the start token is the
initial dance pose. During inference phase, we sample a random
seed vector for the initial pose instead. For the music generation
task, during inference, we randomly sample a chord root from
{C,C#,D,D#,E,F,F#,G,G#,A,A#,B} and a chord quality among {major,
minor}. These random seeds during the inference phase introduce
diversity in the generated dance and music.

3.4 Loss Functions
As illustrated in Fig. 2, three loss functions are defined. The first is
our Gromov-Wasserstein loss, which has been discussed in detail in
the previous subsection. Essentially it serves as an auxiliary regular-
ization loss that promotes a better learning of the correspondence
between the music and dance embeddings. This facilitates extract-
ing the commonalities and shared structural similarities between
the two media, which would enhance the consistency between
inputs and generated outputs in our tasks.

The reconstruction loss has the general form:

Lreconstruction
dance =

∑︁
𝑖

LY (𝑦𝑖 ,𝐺𝑀→𝐷 (𝑥𝑖 )),

Lreconstruction
music =

∑︁
𝑖

LX (𝑥𝑖 ,𝐺𝐷→𝑀 (𝑦𝑖 )) .
(6)

LY denotes the metric over the dance space Y. Specifically, we
haveY = (R3×𝑆𝑂 (3) × · · · × 𝑆𝑂 (3)︸                     ︷︷                     ︸

24 times

)𝑇 where𝑇 is the total number

of frames in our model. A point 𝑦 ∈ Y may then be written as

𝑦 =

[
𝑦trans𝑡 , 𝑦

rot1
𝑡 , · · · , 𝑦rot24𝑡

]𝑇
𝑡=1

. We define LY : Y ×Y → R+ as
follows:

LY (𝑦,𝑦) =
𝑇∑︁
𝑡=1

∥𝑦trans𝑡 − 𝑦trans𝑡 ∥1︸                 ︷︷                 ︸
L1 loss for translation

+
𝑇∑︁
𝑡=1

24∑︁
𝑗=1

geodesic(𝑦rot𝑗𝑡 , 𝑦
rot𝑗
𝑡 )2 .

(7)

Here, geodesic : 𝑆𝑂 (3) ×𝑆𝑂 (3) → R+ defines the shortest distance
between two 3D rotations. Recall that 𝑦rot𝑗𝑡 constitutes the first two
columns of its associated rotation matrix 𝑅 𝑗𝑡 as defined in Eq. (1),
we can recover its third column through the cross product. The
geodesic distance between rotation matrices 𝑅, 𝑅 is given by:

geodesic(𝑅, 𝑅) =
����arccos [Tr(𝑅𝑅⊺) − 1

2

] ���� . (8)

For the music space X, we compare only the chroma and beats.
The metric LX : X × X → R+ is defined as:

LX (𝑥, 𝑥) =
𝑇∑︁
𝑡=1

∥𝑥chroma
𝑡 − 𝑥chroma

𝑡 ∥1︸                      ︷︷                      ︸
L1 loss for chroma

+ ∥𝑥beats𝑡 − 𝑥beats𝑡 ∥1︸                 ︷︷                 ︸
L1 loss for beats

. (9)

The cycle consistency loss is another regularization term that we in-
corporate to facilitate dual learning.Whereas theGromov-Wasserstein
loss is applied at an initial stage to update the music embedding
network parameters, the cycle consistency loss is applied at the
posterior stage to gauge the generated rendition against the input.



With the same metrics defined in Eqs. (7) and (9), the cycle con-
sistency loss measures the discrepancy of the two dual networks
𝐺𝑀→𝐷 and 𝐺𝐷→𝑀 from being inverse to each other:

Lcycle
dance =

∑︁
𝑖

LY (𝑦𝑖 ,𝐺𝑀→𝐷 (𝐺𝐷→𝑀 (𝑦𝑖 ))),

Lcycle
music =

∑︁
𝑖

LX (𝑥𝑖 ,𝐺𝐷→𝑀 (𝐺𝑀→𝐷 (𝑥𝑖 ))).
(10)

Our transformer networks 𝐺𝑀→𝐷 and 𝐺𝐷→𝑀 are trained concur-
rently and updated according to the following prescriptions:

LGW + Lreconstruction
dance + Lcycle

dance
backpropagation
−−−−−−−−−−−−−→ 𝐺𝑀→𝐷 ,

Lreconstruction
music + Lcycle

music
backpropagation
−−−−−−−−−−−−−→ 𝐺𝐷→𝑀 .

4 EXPERIMENTS
4.1 Dataset Description
As mentioned in subsection 3.1, we employ two public datasets
from [31] and [22, 32], which consists of 3D dance sequences with
accompanying music. Since these two datasets do not overlap in
their dance genres, we combine them into a single entity. We first
re-parameterized the skeletal pose representation in [31] in the
SMPL model [24] pose parameters (3D positional representation
of 17 keypoints→ rotational pose representation of 24 keypoints)
through an inverse kinematics fitting. For consistency in frame rate,
we also perform a downsampling (via spherical interpolation) of
the frames per second (FPS) in [22] from 60 to 25. The statistics for
the aggregated dataset is summarized in the following table.

Dance Genre # of Sequences Frames Remarks
Rumba 10 20950 From [31]. Dance se-

quences are typically
much longer at around
150 seconds.

Cha Cha 8 20425
Tango 9 49165
Waltz 34 43298
Break Dance 141 46526

From [22]. Dance se-
quences generally range
from 8 to 12 seconds.

House 141 40050
Ballet Jazz 141 47727
Street Jazz 141 47920
Krump 141 47534
LA Style Hip Hop 141 48323
Lock 141 47388
Middle Hip Hop 141 48276
Pop 140 46749
Waack 140 47355

Table 1: Summary of dataset, aggregated from [31] and
[22, 32]. For our tasks, the frame rate is set to 25 FPS. Dur-
ing training, the input and output sequences are fixed at 75
frames (or 3 seconds).

4.2 Implementation Details
Our framework is implemented with PyTorch. We set the input and
output sequence lengths to𝑇 = 75 frames (equivalent to 3 seconds).
Both𝐺𝑀→𝐷 and𝐺𝐷→𝑀 have 6 transformer layers and 8 attention
heads. The hidden units dimensions for the transformer layers is set
to 512 for𝐺𝑀→𝐷 and 256 for𝐺𝐷→𝑀 . For our Gromov-Wasserstein
loss, the hyperparameters for Algorithm 1 are as follows: the en-
tropic regularization parameter is set to 𝜀 = 0.2 while the number

of Sinkhorn iterations and projection iterations are respectively set
to 𝐿 = 30 and𝑀 = 20. During training, we use the Adam optimizer
with a batch size of 16 and an initial learning rate of 1e-4 (decays
to {1e-5, 5e-6} after {20k, 40k} iterations).

During inference, the decoder start token may either be sampled
randomly from a pool (for diverse generation setting) or provided
as an auxiliary input. For inference over 75 frames, we simply feed
the last generated frame as the decoder start token.

4.3 Dance Generation
For generation of music-to-dance choreography, we compare our
work against [15, 29, 31]. For [31], we re-implement it since the
source code is not available. We also adapt [15, 29] (both imple-
mented for 2D dance sequences) for 3D dance generation. We em-
ploy three quantitative metrics, namely the Fréchet Distance, Diver-
sity and Beats Alignment. The details of these metrics are discussed
below and the quantitative results are reported in Tab. 2.

Furthermore, we engage a qualitative user study to rate the
realism and the genre consistency of the generated dances. The
results are tabulated in Tab. 3.

We showcase sample dance animations in Fig. 4 and 5. These
sequences spanning 10 seconds are animated at 5 FPS (requires
Adobe Acrobat Reader). More sample sequences are available in
the supplementary video.

Method Fréchet Distance Diversity Beats Alignment (%)
Ground Truth - - 68.7
Tang et al. (2018) [31] 986.4 10.3 31.2
Ren et al. (2020) [29] 1526.3 48.2 49.5
Huang et al. (2021) [15] 384.2 37.2 62.3
Ours 140.5 49.8 64.5

Table 2: Quantitative results for dance generation. We adopt
three metrics: 1) Fréchet distance measures the difference
from the ground truth, 2) Diversity measures the variation
in dance moves, and 3) Beats Alignment evaluates the per-
centage matching of kinematic beats and music beats. Best
performance highlighted in bold.

Fréchet Distance We define the Fréchet distance as the av-
erage 3D joint distance of the generated dance sequence from the
ground truth. In our experiments, we evaluate the Fréchet distance
for 280 sequences (20 per genre, each spanning 9 seconds) in our
pre-allocated test set. Our framework achieves significantly bet-
ter performance than compared methods. This superior matching
of the generated dances with the ground truth suggests that the
music-to-dance correspondence is better modeled in our approach.

Sample generated Cha Cha sequences are shown in Fig. 4 for the
same initial pose and input music. We observe that our network
generates sequencesmore consistent with the ground truth. [31] has
a inclination to gravitate towards motionless states, showing very
limited range of motions. On the other hand, while not suffering
from lack of motions, [29] tends to deviate from the ground truth.

Diversity Recall that we incorporate randomness into our
decoder through a randomly seeded start token. This allows our
framework to generate diverse dance moves from the same input
music but a different initial pose. We define our diversity metric
as the variation in 3D joints position, evaluated over 5 generated
dance sequences conditioned on the samemusic and different initial



Method Click ↓ Cha Cha dance sequences displayed at 0.2 second intervals

Ground Truth

Tang et al. (2018) [31]

Ren et al. (2020) [29]

Huang et al. (2021) [15]

Ours

Figure 4: Visual comparison of sample generated Cha Cha dance sequences. Best viewed via Adobe Acrobat Reader. Click the
figures under ‘Click ↓’ to show dance animations (4 seconds at 5 FPS).

Genre Click ↓ Dance sequences displayed at 0.2 second intervals

Cha Cha

Break Dance

Figure 5: Our framework can generate diverse dance sequences given the same input music but a different starting pose. Best
viewed via Adobe Acrobat Reader where dance animations will be played upon clicking the figures under ‘Click ↓’.

poses. This is averaged over 20 independent trials for each genre. In
Fig. 5, We showcase the dance choreographs obtained by our model
given the same input music. The diverse generation is indicative
that our model is adept at learning the abstract movements in music
and translating them to kinematic movements in dance.

Beats Alignment Beats alignment measures the consistency
of rhythmic articulation. For simplicity, we follow [22] in defining
dance kinematics beats as local minima in average joints 3D speed.
We then define a matching beat if the occurrence of the kinematics
beat occurs within 5 frames or 0.2 seconds of a music beat. The beats
alignment ratio can then be defined as the ratio of matching beats



Figure 6: Visualization of sample generatedmusic (light blue) and originalmusic (dark blue). Left: Visualization ofmusic notes
played out in time. Right: Histogram of music notes.

Method Realism (Ranking) Genre Consistency (Ranking)
Tang et al. (2018) [31] 3.9 3.80
Ren et al. (2020) [29] 2.98 2.58
Huang et al. (2021) [15] 2.05 2.35
Ours 1.07 1.27

Table 3: User study for dance generation. We report the av-
erage ranking of eachmethod formotion realism and dance
genre consistency.

to the total dance beats. Our framework again achieves compelling
performance for beats matching, demonstrating its effectiveness in
learning the rhythmic articulation of the input music.

User Study We engage 5 users (amateur dancers) to assess
the generated dances in a single blind study. For each dance genre,
we generate 3 dance sequences of 12 seconds duration via different
methods. Each user then rank the generated dances according to
two criteria: 1) the naturalness or realism of the dance poses; 2)
the consistency with the dance genre. As shown in Tab. 3, the
dance sequences generated from our framework is overwhelmingly
ranked most preferred for both realism and genre consistency.

4.4 Music Generation
To our knowledge, we are the first to investigate the task of com-
posing music for given dance sequences. We propose to quantify
the performance of our model via a notes accuracy metric. We first
transpose both compared music pieces to either the C major or A
minor scale (depending on its original chord quality), before com-
puting the average notes accuracy. Our model achieves an accuracy
of 72%, as tabulated in Tab. 4.

However, this metric is not ideal since music composition is
rather subjective task and is best assessed via human listening tests
[16]. To this end, we invite the reader to look over and listen to the
sample music compositions in our supplementary file. A sample
generated music piece, is shown in tandem with the ground truth
in Fig. 6. The visualization is done with JuxtaMidi [12].

4.5 Ablation Studies
We perform ablation studies focused on investigating the effec-
tiveness of our dual learning scheme. The first key component

GW CC Dance Music
Fréchet Distance Diversity Beats Alignment (%) Notes Accuracy

✓ 335.4 46.3 58.5 0.51
✓ 196.2 50.1 60.3 0.59

376.5 46.2 56.4 0.37
✓ ✓ 140.5 49.8 64.5 0.72

Table 4: Ablation experiments performed on two com-
ponents of our framework. GW refers to the Gromov-
Wasserstein loss and CC refers to the cycle consistency loss.
in our framework is the Gromov-Wasserstein loss, applied at the
early stage of a training iteration to align the music embeddings
with dance embeddings. The second component is the cycle consis-
tency loss, optimized at the final stage of a training iteration as an
additional regularization to enforce overall consistency.

The ablation experiments are reported in Tab. 4. We observe
significant performance drops for the Fréchet distance, beats align-
ment ratio and music notes accuracy upon removal of the Gromov-
Wasserstein objective. This provides strong justification of its po-
tency for handling the duality of the tasks. The cycle consistency
loss, is also effective, albeit to a lesser extent. Overall, compared
to independently training separate task-specific networks, the con-
joined learning in our framework delivers significant improvements
through a balanced set-up of well-tailored components.

5 CONCLUSION
In this work, we propose a novel problem of simultaneously learn-
ing music-to-dance choreography and dance-to-music composition.
The crucial ingredient is how to effectively leverage the duality
of the tasks and integrate the information from both domains. To
overcome the challenge of our cross-domain setting, we design a
Gromov-Wasserstein objective for aligning the music embeddings
vis-à-vis the dance embeddings, coupled to a cycle consistency loss.
These auxiliary losses and our dual learning scheme prove capable
in boosting the performance of individual tasks. Our framework
delivers realistic and genre-consistent dance generations, as well as
viable music compositions. For future work, we seek to extend our
framework to raw waveform based music composition and explore
multi-persons dance choreography.
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