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ABSTRACT
Compared with tedious per-pixel mask annotating, it is much easier
to annotate data by clicks, which costs only several seconds for
an image. However, applying clicks to learn video semantic seg-
mentation model has not been explored before. In this work, we
propose an effective weakly-supervised video semantic segmen-
tation pipeline with click annotations, called WeClick, for saving
laborious annotating effort by segmenting an instance of the seman-
tic class with only a single click. Since detailed semantic information
is not captured by clicks, directly training with click labels leads
to poor segmentation predictions. To mitigate this problem, we de-
sign a novel memory flow knowledge distillation strategy to exploit
temporal information (named memory flow) in abundant unlabeled
video frames, by distilling the neighboring predictions to the target
frame via estimated motion. Moreover, we adopt vanilla knowledge
distillation for model compression. In this case, WeClick learns com-
pact video semantic segmentation models with the low-cost click
annotations during the training phase yet achieves real-time and
accurate models during the inference period. Experimental results
on Cityscapes and Camvid show that WeClick outperforms the
state-of-the-art methods, increases performance by 10.24% mIoU
than baseline, and achieves real-time execution.
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1 INTRODUCTION
Video semantic segmentation (VSS), one of the fundamental high-
level tasks in computer vision, aims to assign a semantic label to
each pixel in every video frame. Compared with image semantic
segmentation, VSS has a wider range of application scenarios, e.g.
autonomous driving and human-computer interaction [59], which
deserves more attention from researchers.

In recent years, the community haswitnessed substantial progress
in VSS. However, VSS still encounters major bottlenecks because
most existing VSS methods [12, 30, 39, 66] depend on large-scale
per-pixel masks to learn sufficient semantic information for obtain-
ing well-performed models. Annotating per-pixel masks is time-
consuming because it takes an annotator 1.5 hours on average to
label a frame. Therefore, Cityscape dataset [8] annotates only 1
frame for a 30-frame video snippet to reduce huge human effort.

To cope with the fine-annotation scarcity issue, a natural way
is to use weakly-supervised annotations to train VSS networks.
Researchers have explored several weakly-supervised methods in
image semantic segmentation, including click-based [1, 40], box-
based [9, 23, 25], and extreme point-based [38, 55] approaches.
Among these weakly-supervised approaches, click-based methods
reduce the tedious labeling process to the greatest extent because
it costs the annotator only several seconds for an image. Figure 1(a)
and (b) shows the difference between per-pixel masks and click
annotations. However, to the best of our knowledge, little attention
has been paid to the weakly-supervised learning algorithms with
click annotations in VSS. In order to promote the development of
this field, we extend the classical click-based learning method [40]
in image semantic segmentation to video semantic segmentation for
learning semantic information with low-cost click labels in video
data, which is named the weakly training scheme in this work.

However, directly training with click annotations leads to poor
segmentation performance because detailed semantic information
is not captured by clicks. Inspired by the previous self-distillation
work [21, 64], to properly exploit temporal information in plenty of
unlabeled video frames, we design a novel temporal self-distillation
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(a) Fine annotations.

(c) Result with fine annotations.

(b) Click annotations.

(d) Result with click annotations.

Figure 1: Examples of (a) fine annotations and (b) click an-
notations for an image from Cityscapes validation set. (c)
and (d) are the semantic segmentation results trained with
fine annotations and click annotations, respectively. It can
be observed that (d) achieves comparable segmentation re-
sults with (c) in some instance class, e.g. car, person, rider.

Figure 2: Comparison on the accuracy and inference speed
of our method and the state-of-the-art weakly-supervised
methods: Gated CRF [40] (click-based image semantic seg-
mentation) and ADVENT [52] (unsupervised domain adap-
tation image semantic segmentation). The experiment is
conducted on Cityscapes with an Nvidia Tesla V100 GPU.

mechanism, calledMemory Flow knowledge Distillation (MFD) train-
ing scheme, which obtains internal temporal information (named
memory flow) within the network itself by distilling the neighboring
predictions as extra supervision signals to the target frame. Specifi-
cally, a pre-trained optical flow net is applied to predict the optical
flow of each pixel from the neighboring frame to the target frame
based on the frame-pair input. Then the neighboring predictions
are warped to the target frame with the estimated optical flow to
supervise the learning of the target frame. Besides, a well-designed
consistency matrix is employed to regularize the propagation of the

estimated motion by adaptively tuning the importance of memory
flow in the MFD training scheme.

In this paper, we propose an effective weakly-supervised video se-
mantic segmentation pipelinewith click annotations, calledWeClick,
which learns models with low-cost click labels in the training phase
yet achieves fast and accurate prediction without any additional
computation cost and post-processing during inference. In specific,
WeClick applies the weakly training scheme to alleviate the issue
of fine-annotation scarcity and the MFD training scheme to exploit
the temporal knowledge. Moreover, to further ease the inference
latency problem, WeClick adopts vanilla knowledge distillation
for model compression. After training the compact model, all the
teacher net and the motion estimation net in the training phase are
removed. Benefiting from the proposed training schemes, as Fig-
ure 1(c) and (d) shows, WeClick achieves comparable segmentation
results with the models trained with fine annotations. During in-
ference, WeClick only keeps the student net as the VSS model with
single-frame input so that the proposed training schemes boost the
model accuracy without additional computation cost. As Figure 2
illustrates, our DeeplabV3+ with MobileNetV2 can reach higher
accuracy (i.e. mIoU) with a faster inference speed compared with
other state-of-the-art weakly-supervised methods.

Extensive experiments on benchmark Cityscapes and Camvid
demonstrate the effectiveness and generalization of our method.
WeClick outperforms the state-of-the-art methods based on image-
level and click-level annotations and the most significant improve-
ment in terms of mIoU reaches 10.24% than baseline on Cityscapes.
Several lightweight backbones including ResNet18, ResNet34 [16]
and MobileNetV2 [48], empirically verify that WeClick improves
segmentation accuracy with a faster inference speed.

In summary, our main contributions are as follows:
• We propose theWeClick pipeline, the first study to explore
click-based learning in VSS, which learns compact models
with low-cost click labels in the training phase yet achieves
real-time and accurate prediction in the inference period.

• We employ the weakly learning scheme, which is extended
from the click-based method in image semantic segmenta-
tion, to mitigate the fine-annotation scarcity issue in VSS.

• To boost the segmentation performance, we design a novel
Memory Flow knowledge Distillation (MFD) scheme, which
utilizes memory flow in plentiful unlabeled video frames.

• Empirical experiments on Cityscapes and Camvid show that
the compact models with the proposed training schemes
outperform other state-of-the-art weakly-supervised VSS
methods substantially.

2 RELATEDWORK
2.1 Video Semantic Segmentation
Video semantic segmentation (VSS), also known as video scene
parsing (VSP), refers to the process of allotting a semantic label
for each pixel in every video frame [59]. VSS is greatly different
from image semantic segmentation in that the former is character-
ized by abundant temporal information. According to the usage
of optical flow [32, 66], previous VSS works are summarized into
two categories. The first one is to accelerate VSS algorithms by
propagating the predictions of previous frames to the target frame



using optical flow. For example, the methods [24, 30, 58, 66] obtains
the segmentation result of the next frame by processing the feature
map or segmentation mask of the previous frame via optical flow,
thus greatly reducing redundant calculations in the video segmen-
tation. However, the accuracy of the segmentation is reduced. The
second one is to use optical flow and other modules to fuse the
features of the preceding and subsequent frames or add constraints
to learn stronger representation ability for higher accuracy of single
frame semantic segmentation [12]. Our work belongs to the second
category with weakly-supervised annotations.

2.2 Weakly-Supervised Segmentation
In recent years, various types of weakly-supervised semantic seg-
mentation techniques have been studied and developed to reduce
the demand for large-scale detailed annotations. The typical weakly-
supervised forms of image semantic segmentation are image cate-
gory tagging [46, 53, 54, 56], bounding box annotations [9, 23, 25],
scribble annotations [7, 31], point annotations [1, 40] and eye move-
ment annotations [41]. We focus on the weakly-supervised learning
methods based on the low-cost click annotations.

In this context, a series of weakly-supervised learning meth-
ods based on point labeling are investigated. Firstly, inspired by a
human-oriented object, Bearman etal [1] proposes a supervision
mechanism based on point label in each class for training networks.
Besides, they prove that the model of point-level supervision train-
ing is better than that of the image-level supervision with a fixed
annotating budget by manually annotating and evaluating the anno-
tation time on the Pascal VOC 2012 dataset [11, 15]. The above work
is the beginning of point labeling supervision. Tang etal [49] studies
a new method on this basis, in order to minimize the performance
gap between weakly- and fully-supervised semantic segmentation.
They first propose to jointly minimize a partial cross-entropy loss
and a regularized loss for labeled pixels and unlabeled pixels re-
spectively. Next, they further extend the regularization loss [50]
to a more general loss function, such as graph cuts or dense CRFs.
The aforementioned methods somewhat rely on alternative sources
of supervision such as pre-training on other datasets. Recently,
Obukhov etal [40] propose Gated CRF loss for the unlabeled pixels.
It can be trained easily with the standard Stochastic Gradient De-
scent algorithm without any pre- and post-processing operations
and achieves state-of-the-art performance for click-based image se-
mantic segmentation algorithms. However, the VSS models, which
are directly trained with Gated CRF loss, perform poorly for limited
semantic information in click annotations. Therefore, we extend
Gated CRF loss to the VSS model for click-based learning and fur-
ther utilize temporal information in plenty of unlabeled video data
via the proposed training schemes.

The above methods focus on image semantic segmentation,
which is based on the relatively simple images in the Pascal VOC
dataset. In fact, VSS in complex scenes has a more expensive anno-
tation cost and needs to be broken through in weakly-supervised
methods [3, 5, 12]. For examples, Saleh etal proposes a weakly-
supervised two-stream (WSTS) method for VSP [47], which handles
foreground and background objects evenly, with one stream taking
the image and the other taking the optical flow to extract features.

[27] proposes a weakly-supervised method that uses temporal in-
formation to train a network on a video dataset labeled at the image
level, which is automatically harvested from the web. The model ob-
tains activated regions from each video frame and then aggregates
them in a single image. In the work of [5], they use unlabeled video
sequences to improve the image semantic segmentation or instance
segmentation of urban scenes segmentation. Instead, our method
concentrates on improving the performance of weakly-supervised
VSS methods with clicks in more complex scenes [8].

2.3 Knowledge Distillation
Besides model pruning [14, 17, 36], weight quantization [14, 44]
and compact network design [22, 48], knowledge distillation [20]
is first proposed as a novel technique for network compression. It
is characterized by a Teacher-Student learning paradigm that prop-
agates “dark knowledge” of a cumbersome teacher net to supervise
the training of a tiny student net. Specifically, knowledge includes
soft labels [20], intermediate features [19, 26, 45, 61, 62], correlation
information [33, 42, 43, 51], etc.

Although researches on knowledge distillation mostly focus
on the image classification task, it can also be extended to more
complex visual tasks, including object detection [4, 29], pose es-
timation [63] and image restoration [18, 28], which reveals the
generality of this learning framework. The pioneer knowledge dis-
tillation work in semantic segmentation [57] transfers pixel-wise
class probabilities and segmentation boundaries to the student net.
Liu etal [34] proposes structured distillation, including pair-wise
distillation that extracts feature similarity in a local patch, and
holistic distillation which captures higher-order semantics. Previ-
ous work in VSS that is related to our work is [35], which preserves
temporal consistency by encoding motion information in distilla-
tion loss terms. In contrast, we concentrate on weakly-supervised
learning with click annotations in VSS.

Self-distillation, also named teacher-free distillation, is proposed
to prevent the usage of large teacher nets, which distills knowl-
edge within the network itself. The commonly-used self-distillation
strategy includes transferring high-level features to low-level fea-
tures [21, 64], using soft labels of previous epochs to guide the
training of the target epoch [60], etc. In this work, we design a
temporal self-distillation mechanism, i.e. memory flow knowledge
distillation training scheme, to boost the segmentation accuracy.

3 METHOD
In this section, we first introduce the preliminaryweakly-supervised
learning with click annotations in Section 3.1. Then we present the
proposed WeClick pipeline, including the training and inference
phases in Section 3.2. Finally we elaborate on the details of the
overall training schemes in Section 3.3.

3.1 Preliminary Weakly-Supervised Learning
with Click Annotations

Training an image semantic segmentation network requires pairs
of input image 𝒙 and its annotation 𝒚, where each pixel is assigned
from 𝐶 classes. Let us denote 𝑁 as the total number of pixels in an
image, 𝒚̂𝑖 (𝑐) as the 𝑐𝑡ℎ class probability for pixel 𝒙𝑖 in the prediction
𝒚̂ = F (𝒙), where F is a segmentation network. In the click-based
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Figure 3: An overview of the proposedWeClick pipeline. (a) In the teacher net training phase, we pre-trained the cumbersome
teacher net only in the weakly training scheme via click annotations to obtain a segmentation network with high accuracy.
(b) During the student net training period, the teacher net and the flow net are pre-trained and their weights are fixed to assist
the optimization of the student net. The input of the student net is based onmulti-frames input pattern, which consists of the
target frame 𝒙𝑘 (marked with red border in the Figure) with click annotations and the 𝑛 − 1 neighboring frames {𝒙 𝑓 }𝑘−1𝑓 =𝑘−𝑛+1
without any labels, where 𝑓 denotes the frame index. The overall optimization of student net consists of three training schemes:
1) weakly training scheme to realize weakly-supervised learning with click annotations in VSS; 2) Memory Flow knowledge
Distillation (MFD) scheme that exploitsmemoryflow in abundant unlabeled video data; 3) KnowledgeDistillation (KD) scheme
formodel compression. (c) In the student net inference phase, the teacher net and theflownet are removed andonly the student
net remains with single-frame inference without additional computation cost.

learning, only a few pixels of the training images are annotated,
forming a partial map 𝒎 of the same size as 𝒚, where the element
𝑚𝑖 ∈ {0, 1}. The sparsity of 𝒎 depends on whether the correspond-
ing pixel is a click annotation. Since the unannotated pixels provide
little information in the learning process, they are left out of consid-
eration during the training phase. In general, partial Cross-Entropy
(pCE) loss is used in the click-based learning algorithm:

L𝑝𝐶𝐸 (𝒚̂,𝒚) =
∑𝑁
𝑖=1

∑𝐶
𝑐=1𝑚𝑖 [−𝒚𝑖 (𝑐) log 𝒚̂𝑖 (𝑐) ]∑𝑁

𝑖=1𝑚𝑖

. (1)

In click-based learning, the point annotation is usually applied as
the supervision signal seed and then propagated to the surrounding
pixels through regularization mechanisms [40, 50] for obtaining
more semantic information. In other words, the preliminary click-
based learning algorithm consists of two parts, i.e. the pCE loss
term and the regularization term. In this work, the Gated CRF [40]
is used as the regularization term for its great ability in mining
semantic information from click annotations.

3.2 WeClick Pipeline
We propose the WeClick pipeline for alleviating the fine-annotation
scarcity issue in video semantic segmentation with effective train-
ing schemes. An overview of WeClick shows in Figure 3.

In the teacher net training phase, we pre-trained the large teacher
net in the weakly training scheme with only click labels to obtain
a well-performed segmentation network (see Figure 3(a)). As Fig-
ure 3(b) illustrates, during the student net training phase, we apply
the pre-trained teacher net and the pre-trained flow net and freeze
their parameters to assist the optimization of the student net. The in-
put of the student net is based on multi-frames input pattern, which
consists of the target frame 𝒙𝑘 with click annotations and the 𝑛 − 1

neighboring frames {𝒙 𝑓 }𝑘−1𝑓 =𝑘−𝑛+1 without any labels, where 𝑓 de-
notes the frame index. We train the student net with three training
schemes: 1) weakly training scheme, where only the target frame
𝒙𝑘 is fed to the student net to learn semantic information from
click annotations; 2) Memory Flow knowledge Distillation (MFD)
scheme which utilizes memory flow by distilling the neighboring
predictions as extra supervised signals to the target frame via esti-
mated optical flow; 3) Knowledge Distillation (KD) scheme, which
learns soft knowledge from well-performed teacher net in both
the target frame 𝒙𝑘 and the neighboring frames {𝒙 𝑓 }𝑘𝑓 =𝑘−𝑛+1. In
the inference process, the teacher net and the optical flow net are
removed and only the compact student net remains for single-frame
inference with no additional computation cost (see Figure 3(c)).

3.3 Proposed Training Schemes
In this section, we elaborate on the detailed training schemes in
WeClick, which consists of three parts: weakly training scheme,
MFD strategy, and KD strategy.
Weakly Training Scheme. In WeClick, only the target frame 𝒙𝑘
has click annotation 𝒚𝑘 while other neighboring frames are unan-
notated. We applied weakly loss to the target frame prediction of
student net 𝒚̂𝑆

𝑘
, which is formulated as Eq. (2):

L𝑤𝑒𝑎𝑘𝑙𝑦 (𝒙𝑘 ) = L𝑝𝐶𝐸 (𝒚̂𝑆𝑘 ,𝒚𝑘 ) + 𝜆L𝐺𝐶𝑅𝐹 (𝒚̂𝑆𝑘 ), (2)

where GCRF stands for Gated CRF regularization terms [40] and 𝜆
is the loss weight hyper-parameter.
MFD Scheme. MFD is a temporal self-distillation mechanism that
distills knowledge within the network itself by transferring informa-
tion from neighboring frames to the target frame via the estimated
optical flow. The detailed MFD training scheme is illustrated in
Figure 4(a). We apply a pre-trained motion estimation (i.e. optical
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Figure 4: (a) In the MFD training scheme, both the teacher net and the optical flow net are pre-trained and their parameters
are fixed. Optical flow map 𝑀𝑓→𝑘 between the target frame 𝒙𝑘 and the neighboring frame 𝒙 𝑓 is warped with the neighboring
frame prediction 𝒚̂𝑆

𝑓
to get the warped mask 𝒚̂𝑆

𝑓→𝑘
. Note that the teacher net is only responsible for evaluating the quality of

the warped mask instead of directly providing soft labels to the student net, which is different from the common knowledge
distillation. Therefore, the objective of theMFD training scheme is tominimize the gap between 𝒚̂𝑆

𝑘
and 𝒚̂𝑆

𝑓→𝑘
with the assist of

the teacher net. (b) A consistencymatrix𝑊𝑓 is introduced to evaluate the quality of the warpedmask 𝒚̂𝑆
𝑓→𝑘

. During the student
net training phase, the consistency matrix adaptively decreases the weight of the unreliable region in the warped mask.

flow) net 𝑔(·) to estimate the optical flow map from the 𝑓 𝑡ℎ frame
𝒙 𝑓 to the target frame 𝒙𝑘 , i.e. 𝑀𝑓→𝑘 = 𝑔(𝒙 𝑓 , 𝒙𝑘 ) ∈ 𝑅𝑁×2, where
𝑁 is the total number of pixels in the frame and 𝑓 denotes the
neighboring frame index. Specifically, Δ𝑖 = 𝑀𝑓→𝑘 (𝑖) indicates that
the pixel on the position 𝑖 of the 𝑓 𝑡ℎ frame moves to the position
𝑖 + Δ𝑖 of the 𝑘𝑡ℎ frame. The estimated optical flow map𝑀𝑓→𝑘 are
applied to the 𝑓 𝑡ℎ frame prediction of the student net 𝒚̂𝑆

𝑓
to ob-

tain the warped probability map 𝒚̂𝑆
𝑓→𝑘

via resampling operation,
i.e. 𝒚̂𝑆

𝑓→𝑘
= ℎ(𝑀𝑓→𝑘 , 𝒚̂

𝑆
𝑓
). The warped probability map serves as

temporal constraints for the target frame prediction of student net.
However, error accumulates due to imprecise optical flow es-

timation and warping noise, which harms the segmentation per-
formance significantly. Therefore, as Figure 4(b) shows, we raise a
well-designed consistency matrix𝑊𝑓 to estimate the quality of the
warped probability map 𝒚̂𝑆

𝑓→𝑘
by introducing teacher net predic-

tion 𝒚̂𝑇
𝑘
, i.e.𝑊𝑓 = exp( |𝒚̂𝑆

𝑓→𝑘
− 𝒚̂𝑇

𝑘
|). The teacher net is pre-trained

in advance (see Figure 3(a)) and its parameters are fixed in the MFD.
Note that the teacher net here is only adopted in the consistency
matrix construction instead of directly providing soft knowledge
to the student net, which is different from the vanilla knowledge
distillation. The consistency matrix adaptively decreases the weight
of unreliable region in the warped mask 𝒚̂𝑆

𝑓→𝑘
. For the frame-pair

input (i.e. the target frame 𝒙𝑘 and the neighboring frame 𝒙 𝑓 ), the
objective for MFD training scheme is formulated as Eq. (3):

L𝑀𝐹𝐷 (𝒙𝑓 , 𝒙𝑘 ) =𝑊𝑓 ⊙ | |𝒚̂𝑆
𝑓→𝑘 − 𝒚̂𝑆

𝑘
| |22, (3)

where ⊙ denotes element-wise multiplication. With the proposed
MFD training strategy, the memory flow from abundant unlabeled
neighboring frames is effectively propagated to the target frame,
which stimulates the optimization of the VSS model.

KD Scheme. To alleviate the inference latency issue, we adopt the
knowledge distillation strategy to train the compact student net.
Note that the teacher net is pre-trained with click annotations under
the weakly training scheme in advance (see Figure 3(a)). We train
the compact student net with soft knowledge from the teacher net
using both the labeled frames and the abundant unlabeled frames.
The goal of the student net is to align the class probability of each
pixel in every corresponding mask generated by the teacher net.
Based on the single-frame input 𝒙 𝑓 , the loss for KD is as follow:

L𝐾𝐷 (𝒙𝑓 ) = KL(𝒚̂𝑆
𝑓
| |𝒚̂𝑇

𝑓
), (4)

where 𝒚̂𝑆
𝑓
and 𝒚̂𝑇

𝑓
∈ 𝑅𝐶×𝐻×𝑊 represent the 𝑓 𝑡ℎ frame prediction

maps of the student net and the teacher net, 𝐶 is the number of
class, 𝐻 and𝑊 is the height and width of the prediction maps, and
KL denotes Kullback-Leibler divergence.
Overall Optimization Process. The overall optimization process
for student net consists of the above three training schemes. Note
that only the target frame 𝒙𝑘 has click annotation and the 𝑛 − 1
neighboring frames {𝒙 𝑓 }𝑘−1𝑓 =𝑘−𝑛+1 remain unlabeled. The optimiza-
tion goal for the training phase is to minimize Eq. (5):

L = 𝛼L𝑤𝑒𝑎𝑘𝑙𝑦 (𝒙𝑘 )+𝛽
𝑘−1∑︁

𝑓 =𝑘−𝑛+1
L𝑀𝐹𝐷 (𝒙𝑓 , 𝒙𝑘 )+𝛾

𝑘∑︁
𝑓 =𝑘−𝑛+1

L𝐾𝐷 (𝒙𝑓 ), (5)

where the 𝛼 , 𝛽 and 𝛾 are modulating factors for the loss weights.

4 EXPERIMENTS
4.1 Datasets and Metrics
Datasets.We conduct the experiments on the standard benchmarks,
i.e. Cityscapes [8] and Camvid [2], for video semantic segmentation
(VSS). Cityscapes consists of 5000 sparsely-labeled video snippets
of urban scenes, each of which contains 30 frames and only the



20th frame is finely annotated in pixel level. The images are divided
into 2975, 500, 1525 for training, validation, and testing respectively.
Only 19 semantic classes and 1 void class are used for training. As
for the Camvid, it contains 4 videos that are annotated at 1 Hz, with
367 images for training, 100 for validation, and 233 for testing.
Metrics. We apply mean Intersection-over-Union (mIoU) [37] and
mean Pixel Accuracy (mPA) as the accuracy metrics. Besides, we
report the parameters (#Params) and Frames Per Second (FPS) to
evaluate the model efficiency.

4.2 Implementation Details
Click Annotations. In our experiments, we only use click annota-
tions instead of per-pixel annotations for training. Referring to the
click generation strategy in [1] and [40], we first divide the classes
into instance classes (e.g. car and person), and non-instance classes
(e.g. building, and road). Concerning instance classes, instance seg-
mentation masks are used to distinguish different instances. In
terms of non-instance classes, 8-connectivity component labeling
is applied and components with less than 512 pixels are discarded.
For the remaining non-instance objects and all the instance objects,
we select the centroid point of the semantic object as the click an-
notation if the point is within the object. Otherwise, we randomly
sample one point within the object as the click annotation. It is
noteworthy that the click annotation can be an arbitrary point
within the semantic object in practice.
Network Architectures.We apply two popular semantic segmen-
tation networks, i.e. DeeplabV3+ [6] and PSPNet [65] to perform
the experiments. For the teacher net, ResNet101 [16] is used as back-
bone. With respect to compact student net, we adopt ResNet18 and
MobileNetV2 [48]. Besides, We employ FlowNetV2 [24] to estimate
the optical flow between two frames.
Experimental Setup. The experiments are performed under a sin-
gle Nvidia Tesla V100 GPU, and Intel(R) Xeon(R) Platinum 8168
CPU @ 2.70GHz. During the training stage, common practices are
applied, i.e. backbone pre-training with ImageNet [10], Xavier ini-
tialization [13], data augmentations including random crop, random
scale in [0.5, 2.0], random horizontal flip, random mirror, etc. As
for the Cityscapes dataset, we train the model using stochastic
gradient descent (SGD) with initial learning rate 7𝑒−3, polynomial
learning rate decay scheduler power 0.9, momentum 0.9, weight
decay 1𝑒−4, batch size 4, and crop size 768 × 768 for 120 epochs.
For the Camvid dataset, we conduct experiments with initial learn-
ing rate 1𝑒−4, batch size 8, and crop size 360 × 360 for 200 epochs.
Besides, WeClick introduces several hyper-parameters, including
memory flow direction, input frame quantity, and sampling policy.
‘Memory flow direction’, is the direction of memory flow conveyed
to the target frame, e.g. the 20th frame in Cityscapes, during training.
‘Input frame quantity’, represents the number of frames to feed in
the WeClick training pipeline. In other words, input frame quantity
𝑛 indicates 1 target frame and 𝑛 − 1 neighboring frames. ‘Sampling
policy’, is the input frames selection strategy during training. We
conduct extensive ablation studies in Section 4.3 to show the impact
of these hyper-parameters. We set 𝜆 = 0.1 in Eq. (2), following the
setting in [40]. To balance the loss weights of Eq. (5), we set 𝛼 = 1,
𝛽 = 1, 𝛾 = 1 by simple attempts. For the reliability of the results, we
conduct the experiments for 5 times and report the average value.

Backbone Weakly KD MFD mIoU (%) mPA (%)
Teacher ResNet101 ! 58.35 67.24

Student
ResNet18 ! 52.88 62.21
ResNet18 ! ! 57.49↑4.61 65.10
ResNet18 ! ! ! 58.30↑5.42 66.39

Student
MobileNetV2 ! 51.99 62.77
MobileNetV2 ! ! 56.26↑4.27 66.14
MobileNetV2 ! ! ! 57.42↑5.43 66.89

Table 1: Ablation studies of different training schemes in
WeClick. With the proposed training schemes, student nets,
i.e. ResNet18 and MobileNetV2, obtain large performance
gains in terms of both mIoU and mPA. Note that the
ResNet18 and MobileNetV2 results are both under the best
hyper-parameter settings.

Backbone MFD Direction Input Frames mIoU (%)mPA (%)

ResNet18
Forward 18th, 19th, 20th 58.03 65.99

Bi-Direction 19th, 20th, 21st 57.56 66.16
Backward 20th, 21st, 22nd 57.24 65.50

MobileNetV2
Forward 18th, 19th, 20th 57.21 66.66

Bi-Direction 19th, 20th, 21st 57.09 66.12
Backward 20th, 21st, 22nd 56.94 65.51

Table 2: Comparison on different MFD directions in the stu-
dent nets DeeplabV3+ with ResNet18 and MobileNetV2. The
forward MFD is superior to both bi-direction and backward
MFD in terms of mIoU.

4.3 Ablation Studies
Effectiveness of the Proposed Training Schemes. To validate
the effectiveness of the training schemes, we conduct extensive ex-
periments on DeeplabV3+ with ResNet18 and MobileNetV2. Due to
the great regularization capability of the proposedWeClick pipeline,
the model accuracy increases dramatically. As Table 1 shows, the
mIoU gains of ResNet18 and MobileNetV2 reach 5.42% and 5.43%
respectively. It is noteworthy that the compact student net with
ResNet18 achieves 58.30% in terms of mIoU on Cityscapes valida-
tion set, nearly surpassing the teacher net with ResNet101, which
indicates the proposed method significantly boosts the performance
of the lightweight networks in the click-based VSS.
Impact of theMFDDirection. InWeClick, MFD propagates mem-
ory flow from preceding frames to the target frame by default, which
is denoted as forward MFD. We extend the direction of MFD to
three cases, including forward, backward, and bi-direction. In this
ablation study, we set the input frame quantity 𝑛 to 3 (i.e. including
1 target frame and 2 neighboring frames) and select the neighboring
frames with the fixed frame-interval 1. Note that we consider the
20th frame in each video snippet as the target frame in Cityscapes.



Figure 5: Comparison on different input frame quantities in
student net DeeplabV3+ with ResNet18 under forward and
bi-direction MFD settings. Note that we conduct a single-
frame experiment without MFD to act as the baseline. The
model trained with 3 input frames performs best.

Sampling Policy Forward Bi-Direction
mIoU (%) mPA (%) mIoU (%) mPA (%)

Fixed Frame-Interval 1 58.03 65.99 57.56 66.16
Fixed Frame-Interval 4 57.94 66.03 57.43 66.09
Fixed Frame-Interval 7 57.83 65.50 57.41 65.69
Random Sampling 58.30 66.39 57.74 66.43

Table 3: Comparison on different sampling policies in the
student net DeeplabV3+ with ResNet18 on 3 input frames
(including the target frame). Larger sampling intervals are
not conducive to improving performance, while random
sampling policy achieves performance gain.

Therefore, backward MFD indicates information transfers from sub-
sequent frames (i.e. 21st and 22nd frames) to the target frame, while
bi-direction MFD conveys information from both preceding and
subsequent frames (i.e. 19th and 21st frames) to the target frame.
Table 2 demonstrates that forward MFD outperforms the other two
cases in terms of mIoU on student nets DeeplabV3+ with ResNet18
and MobileNetV2 as backbones.
Impact of the Input Frame Quantity. In this section, we inves-
tigate the impact of input frame quantity 𝑛 (i.e. including 1 target
frame and 𝑛 − 1 neighboring frames), in student net DeeplabV3+
with ResNet18 under both forward and bi-direction MFD settings
with the fixed frame-interval 1. Note that we conduct a single-frame
experiment without the MFD scheme to act as the baseline. As Fig-
ure 5 illustrates, the model trained with 3 input frames outperforms
baseline, which indicates the effectiveness of the proposed MFD
strategy. However, the performance degrades consistently as the
quantity of input frames increases in both forward and bi-direction
MFD settings. It can be explained that the gain brought by additional
training data and temporal regularization from MFD is suppressed
by accumulated optical flow warping error from distant frames,
which harms the generalization capability of the student net.
Impact of the Sampling Policy. By default, under 3 input frames
setting, we select input frames from the consecutive neighbors of

Student Teacher mIoU (%) mPA (%) #Params (M) FPS
DL-R101 None 58.35 67.24 59.34 8.41
DL-R18 None 52.88 62.21 16.61 22.06
DL-R18 DL-R101 58.30↑5.42 66.39 16.61 22.06
DL-Mob None 51.99 62.77 13.35 25.97
DL-Mob DL-R101 57.42↑5.43 66.89 13.35 25.97

Student Teacher mIoU (%) mPA (%) #Params (M) FPS
PSP-R101 None 54.42 63.09 69.31 3.42
PSP-R18 None 50.53 59.86 13.80 15.63
PSP-R18 PSP-R101 55.25↑4.72 63.20 13.80 15.63
PSP-Mob None 42.20 54.32 10.31 52.23
PSP-Mob PSP-R101 52.44↑10.24 62.71 10.31 52.23

Table 4: Accuracy (mIoU/mPA) and inference speed (FPS)
on Cityscapes validation set. For short notation, DL-R101,
DL-R18, and DL-Mob denote DeeplabV3+ with ResNet101,
ResNet18, and MobileNetV2 as backbones. PSP-R101, PSP-
R18, and PSP-Mob represent PSPNet with ResNet101,
ResNet18, and MobileNetV2 as backbones, respectively. Our
proposed WeClick improves both the accuracy and infer-
ence speed substantially than baseline.

the target frame with the fixed frame-interval 1. In this experiment,
we investigate the impact of different sampling policies on student
net with 3 input frames, including the fixed frame-intervals (i.e.
1, 4, and 7), and random sampling strategy in a predefined range
(i.e. from 16th to 19th in the preceding frames and from 21st to 24th
in the subsequent frames). For instance, in the setting of forward
MFD with frame-interval 4, the selected input frames are 12th, 16th
and 20th. Table 3 reveals that, on the one hand, with a larger fixed
sampling frame-interval, the performance declines because of the
optical flow estimation noise between two distant frames. On the
other hand, with the random sampling policy, the mIoU is improved
slightly compared to the best results in the fixed frame-interval set-
tings, i.e. frame-interval 1. It can be explained that random sampling
policy sees more unlabeled video data, and capture both short-term
and long-term temporal information when training.
Impact of the Teacher Net and Student Net. In this section, we
show the generalization of our WeClick in different teacher-student
settings. Table 4 represents that our proposed method consistently
improves the performance of student nets without compromising
efficiency during inference. Specifically, student net PSPNet with
ResNet18 surpasses teacher net and outperforms baseline by 4.72%
mIoU. Moreover, MobileNetV2 in both DeeplabV2 and PSPNet reach
real-time execution under Nvidia Tesla V100 with only slight accu-
racy compromise compared with the teacher net, which indicates
the effectiveness and generalization of WeClick.



Figure 6: Comparison between WeClick and baseline in per-class IoU on DeeplabV3+ with ResNet18. WeClick improves the
performance for instance class, such as truck, bus, train, etc, which benefits from the memory flow introduced by MFD.

Method Task Supervision #Params(M) Cityscapes Camvid
mIoU (%) FPS mIoU (%) FPS

Bringing [46] VSS image-level – 24.9 - - –
ADVENT [52] ISS UDA – 48.0 7.1 – –

Gated CRF (DeeplabV3+ with ResNet34) [40] ISS click-level 26.72 57.43 17.3 46.9 99.1
Gated CRF (DeeplabV3+ with ResNet18) [40] ISS click-level 16.61 52.88 22.1 46.2 128.3
Our WeClick (DeeplabV3+ with ResNet18) VSS click-level 16.61 58.30 22.1 48.7 128.3

Our WeClick (DeeplabV3+ with MobileNetV2) VSS click-level 13.35 57.42 26.0 – –
Our WeClick (PSPNet with ResNet18) VSS click-level 13.80 55.25 15.6 – –

Our WeClick (PSPNet with MobileNetV2) VSS click-level 10.31 52.44 52.2 – –

Table 5: Comparison with weakly-supervised learning VSS methods on Cityscapes and Camvid. VSS and ISS represent video
semantic segmentation and image semantic segmentation, respectively. The label types include image-level, click-level, and
unsupervised domain adaptation (UDA). The results showsWeClick (DeeplabV3+ with ResNet18) outperforms other methods
consistently by a large margin and WeClick with MobileNetV2 reaches a real-time inference speed.

4.4 Comparison with the State-of-the-art
Methods

In this section, we compare our proposedWeClick with state-of-the-
art weakly-supervised methods, whose results are from their papers.
Table 5 demonstrates that our method outperforms other state-of-
the-art weakly-supervised methods, including image-level, click-
level and UDA weakly-supervised algorithms, by a large margin.
For example, WeClick (DeeplabV3+ with ResNet18) improves the
segmentation performance than [46] and [52] by 33.4% mIoU and
10.3% mIoU, respectively. It is noteworthy that WeClick is superior
to state-of-the-art click-based image semantic segmentationmethod
Gated CRF [40] in both accuracy and inference speed.

Besides, Figure 6 shows the per-class IoU of the methods with
and without WeClick. Our method significantly improves the per-
formance of instance classes, such as truck, bus, train, etc. It can
be explained that the memory flow enables the object classes with
significantly changing motion to perform better.

We further conduct additional experiments in DeeplabV3+ with
ResNet18 on the CamVid dataset to validate the generalization of the
WeClick across different datasets. As Table 5 shows, our proposed
WeClick stimulates the capability of the model and outperforms
the baseline by 2.5% mIoU. Our method can achieve 128.3 fps with
a 352 × 480 resolution on a single Nvidia Tesla V100. Consistent
mIoU improvements on both the Cityscapes and the Camvid verify

both the generalization and effectiveness of our proposed WeClick
pipeline for click-based VSS.

5 CONCLUSIONS
In this work, we make the first attempt to propose an effective
weakly-supervised video semantic segmentation pipeline with click
annotations, called WeClick, to save tedious annotating effort by
segmenting an instance of the semantic class with only a single
click during the training phase. To boost the performance, we de-
sign a novel memory flow knowledge distillation training scheme,
which utilizes temporal information in the unlabeled video frames.
WeClick learns compact video semantic segmentation models with
the low-cost click annotations in the training period yet achieves
real-time and accurate models during the inference phase. Exten-
sive experiments on the Cityscapes and Camvid show that the
compact models with the proposed training schemes outperform
state-of-the-art methods by a large margin, which demonstrates
the effectiveness and generalization of WeClick. We hope our work
could provide insights for researchers of this field to design novel
schemes for weakly-supervised video semantic segmentation.
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