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Abstract

Locating lesions is important in the computer-aided di-
agnosis of X-ray images. However, box-level annotation is
time-consuming and laborious. How to locate lesions accu-
rately with few, or even without careful annotations is an ur-
gent problem. Although several works have approached this
problem with weakly-supervised methods, the performance
needs to be improved. One obstacle is that general weakly-
supervised methods have failed to consider the characteris-
tics of X-ray images, such as the highly-structural attribute.
We therefore propose the Cross-chest Graph (CCG), which
improves the performance of automatic lesion detection by
imitating doctor’s training and decision-making process.
CCG models the intra-image relationship between different
anatomical areas by leveraging the structural information
to simulate the doctor’s habit of observing different areas.
Meanwhile, the relationship between any pair of images is
modeled by a knowledge-reasoning module to simulate the
doctor’s habit of comparing multiple images. We integrate
intra-image and inter-image information into a unified end-
to-end framework. Experimental results on the NIH Chest-
14 database (112,120 frontal-view X-ray images with 14
diseases) demonstrate that the proposed method achieves
state-of-the-art performance in weakly-supervised localiza-
tion of lesions by absorbing professional knowledge in the
medical field.

1. Introduction
Chest radiographs are a type of medical images that can

be conveniently acquired for disease diagnosis. With the
rapid development of deep learning, automatic disease de-
tection in chest X-ray images has become an important task
in the computer-aided diagnosis. Deep convolutional neu-
ral networks (DCNN) have been widely applied in many
computer vision tasks, such as image classification [6, 18]
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Figure 1. CCG network models the intra-image relationship be-
tween different anatomical areas by leveraging the structural infor-
mation to simulate the doctor’s habit of observing different areas.
Meanwhile, the relationship between any pair of images is mod-
eled by a knowledge-reasoning module to simulate the doctor’s
habit of comparing multiple images.

, object detection [3, 5, 16, 15, 10] and semantic segmenta-
tion [12, 17]. To achieve good performance in these tasks,
substantial images with careful annotations are needed. En-
couraged by the success of DCNN in computer vision, some
researches have directly applied DCNN models to analyze
the medical images but cannot achieve the same perfor-
mance as in the natural images. The reasons lie in two folds:
1. it is expensive to acquire accurate localization or classi-
fication labels in chest X-ray images. 2. there exists much
professional knowledge in medical images that DCNN can-
not exploit well. Therefore, how to exploit the professional
knowledge into DCNN models for solving these two ques-
tions still opens a fully challenging problem. Our work
transfers the knowledge into DCNN models to reduce the
problem of shortage of carefully annotated images.

Recent work paid much attention to utilize professional
knowledge of chest X-ray images into DCNN frameworks.
However, they just proposed a simple fused strategy to em-
bed low-level information of chest X-ray into models, such
as Liu et al. [9] utilized contrastive learning to provide more
localization information with the help of healthy images.
Zhao et al. [22] proposed to exploit the contralateral infor-
mation of chest X-ray via a simple fusion module. These
methods only exploit the apparent information of chest-
Xray images. They all overlooked the inner structure infor-
mation of chest X-rays. Therefore, they cannot apply their
methods into real applications.
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In this paper, we propose a Cross Chest Graph Network
(CCG-Net) as shown in Fig 1, which firstly utilizes deep ex-
pert knowledge to automatical detect disease in chest X-ray
images. We have known that medical experts have much ex-
perience in finding out disease and how to treat patients. In
fact, the actions of medical experts consist of two phases:
training and decision-making processes. They pay much
time to learn distinguish disease and embed their experi-
ence into the decision process. During the training process,
experts would like to observe different areas and find out
the relationship between any pair of images. Our CCG-
Net aims to model the observation way by a knowledge-
reasoning module to simulate the doctor’s habit of compar-
ing multiple images. Then we integrate intra-image and
inter-image information into a unified end-to-end frame-
work.

Inspired from the experience of medical experts, our pro-
posed CCG-Net consists of four modules, 1. an end-to-end
framework for deciding where and what is a disease, 2. a
inter-image relation module, which formulates the training
process of medical experts, to compare multiple images, 3.
a intra-image knowledge learning module, which builds the
local relation graph for different patches of chest X-ray im-
ages. Due to their highly structured property, every chest
X-ray image can be divided into several patches, we build
a patch-wise relation graph on them, 4. a knowledge rea-
soning module, which excavates the inner knowledge from
cross-image structural features. The last three operations
(2, 3, and 4) are similar to medical experts’ training pro-
cess, which learn intra-image and inter-image information
to gain professional knowledge. The first operation embeds
the learned knowledge into DCNN frameworks leading to
better disease diagnosis models. Above all, our contribu-
tion consists of three folds:

• We propose CCG-Net, which is the first to formulate
the medical experts’ training process by building rela-
tion graphs in the intra-image and inter-image informa-
tion of chest X-ray images. More generally, it provides
inspiration to address medical vision tasks with much
professional knowledge like in chest X-ray images.

• We divide the experts’ professional actions into two
stages including training and decision-making pro-
cesses. In addition, we utilize intra-image and inter-
image relation to learn much professional knowledge
that would be embedded in an end-to-end detection
framework.

• We achieve state-of-the-art results on the localization
of NIH ChestX-ray14.

2. Related Work

2.1. Disease Detection

Object detection is one of the most important computer
vision tasks, aiming to localize and classify. Due to their
strong feature representation ability, DCNN achieved much
progress in object detection tasks. For detection tasks,
DCNN methods consist of two style framework: 1. two-
stage models, such as RCNN series [16], 2. one-stage mod-
els, such as YOLO [15] and SSD [10]. However, for disease
detection, because of the shortage in careful annotations,
traditional detection framework cannot directly be applied
in chest X-ray images. Besides, since there is much distor-
tion caused by other chest X-ray tissues, such low contrast
also causes the difficulty of disease finding.

Weakly supervised object detection (WSOD) can be con-
sidered as an effective method to solve these problems.
Based on CAM [23], researchers proposed many tech-
niques to use only image-level labels to detect objects. Al-
though there is no enough detection supervision, WSOD
still achieved much progress. However, researchers still
face a big challenge when it comes to disease detection in
medical images. the existence of much professional knowl-
edge greatly limits the development of the applications of
DCNN in medical fields. Therefore, in this paper, we are
inspired by the experts’ learning and decision processes to
propose CCG-Net, which not only exploits a larger amount
of knowledge in chest X-ray images but also builds a unified
framework to detect disease in an end-to-end style.

2.2. Knowledge-based Disease Diagnosis

Automatical disease diagnosis is a key problem in med-
ical fields. However, due to the shortage of careful an-
notations and the existence of much professional knowl-
edge, DCNN methods cannot achieve a good performance
in medical tasks, especially such a tough problem: disease
detection in chest X-ray images. To exploit medical knowl-
edge and embed it into DCNN frameworks, researchers paid
much effort to utilize medical experts’ experience for dis-
ease diagnosis. Wang et al. [20] firstly proposed a carefully
annotated chest X-ray dataset and led to a series of work
that focuses on using image-level labels to localize the dis-
ease. Li et al. [8] integrated classification and localization in
a whole framework with two multi instance-level losses and
performed better. Liu et al. [9] improved their work to pro-
pose contrastive learning of paired samples, which utilizes
healthy images to provide more localization information for
disease detection. Zhao et al. [22] proposed to utilize the
symmetry information in a chest X-ray to improve the dis-
ease localization performance. Besides, many works ap-
plied relation knowledge models to chest X-ray diagnosis.
Ypsilantis et al. [21], Pesce et al. [14], and Guan et al. [4]
proposed to build a relation attention model fusing DCNN
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Figure 2. The network consists of four modules: 1. an end-to-end framework for disease detection under weakly-supervised settings, 2.
the inter-image relation module among different samples, 3. the intra-image knowledge learning module based on the thoracic spatial
structure, 4. the knowledge reasoning module mining cross-image structural features. Our four modules are tightly related and can be
easily integrated into an end-to-end framework.

models achieved much progress. Li et al. [7] proposed
a knowledge-graph based on medical reports and images
to determine the dependencies among chest X-ray images.
Cheng et al. [11] also proposed a new total strongly super-
vised dataset for tuberculosis detection. However, they all
overlooked the structural relation among chest X-ray im-
ages. In this paper, we propose to build a structural, rela-
tional graph for disease detection under weakly supervised
scenarios in chest X-ray images. Specifically, we build the
global and local graph in chest X-ray via three modules: 1.
a inter-image relation module, 2. a intra-image knowledge
learning module, 3. knowledge reasoning module. Further-
more, we integrate three modules into an end-to-end frame-
work to jointly train our network. Our proposed three rela-
tional modules provide better supervision since we exploit
the local structural knowledge and global relation among
different samples.

3. Method
3.1. Overview

Given the images X = {x1, x2, ..., xn}. Our proposed
framework consists of four modules:

• The End to End Framework is to localize and classify

the disease in chest X-ray images. In our paper, we
utilize the same multi-instance level losses used in [9]
and [8].

• Inter-image Relation Module, which includes a learn-
able matrix G ∈ Rn×n. We also use a contrast-
constrained loss to share similar information of X and
exploit their contrasted structural knowledge. We build
a cross-sample graph for them to exploit the dependen-
cies among different samples. The graph G ∈ Rn×n

is to build the inter-image relation among sampled
samples, which is a learnable matrix, and every el-
ement is initialized by 1

n . The element gij of G,
i, j ∈ {1, 2, ..., n}, represents the similarity wight of
images xi and xj .

• Intra-image Knowledge Learning, which firstly ac-
quires patch-wise features of different images. Then
the network can achieve a new image graph via build-
ing a structural knowledge-based module. We denote
this graph as Gk ∈ Rn×n. Assumed that the num-
ber of patches are |pi| and |pj | of images xi and xj .
The graph Gk would be calculated on using the graph
Gl ∈ R|pi|×|pj |, which learns the relationship between
different paired patches of images.
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• Knowledge Reasoning Module, which is based on
cross image structural knowledge. When we get the
whole structural information of different images, we
will utilize it to reason the inner structural dependen-
cies among different patches in different images.

3.2. End to End Framework

The end to end framework is to localize and classify
the disease in chest X-ray images in a coarse-grained style.
More specifically, the input imagesX = {x1, x2, ..., xn} of
the module are resized to 512×512. ResNet-50 pre-trained
from the ImageNet dataset is adopted as the backbone for
this module. We use the feature map F after C5 (last con-
volutional output of 5th-stage), which is 32 times down-
sampled from the input image, and of size 2048× 16× 16.
Each grid in the feature map denotes the existent probabil-
ity of disease. We pass F through two 1 × 1 convolutional
layers and a sigmoid layer to obtain the class-aware feature
map P of sizeC×H×W , whereC is the number of classes.
Then we follow the paradigm used in [9], computing losses
and making predictions in each channel for the correspond-
ing class. For images with box-level annotations, if the grid
in the feature map overlaps with the projected ground truth
box, we assign label 1 to the grid. Otherwise, we assign 0 to
it. Therefore, we use the binary cross-entropy loss as used
in [9] for each grid:

Lk
i (P) =

∑
j

−ykij log(pkij)−
∑
j

(1−ykij) log(1−pkij) (1)

where k, i, and j are the index of classes, samples, and grids
respectively. ykij denotes the target label of the grid and pkij
denotes the predicted probability of the grid.

For images with only image-level annotations, we use
the MIL loss used in [8].

Lk
i (P) = −yki log(1−

∏
j

(1− pkij))

−(1− yki ) log(
∏
j

(1− pkij))
(2)

where yki denotes the target label of the image. For this end
to end framework, the whole loss Lbase as shown in Fig. 2,
is formulated as follows.

Lbase =
∑
i

∑
k

λki βBL
k
i (P) + (1− λki )Lk

i (P) (3)

where λki ∈ 0, 1 denotes if the kth class in the ith sample
has box annotation, and βB is the balance weight of the two
losses and is set to 4.

3.3. Inter-image Relation Module

Inter-image relation is formulated as a learnable matrix
G ∈ Rn×n. A contrast-constrained loss is used to share

similar information of X and exploit their contrasted struc-
tural knowledge, as following equation.

LIR =

∑
(u,v)∈GG(u, v)D(Fu, Fv)

n× n
(4)

D(·) is the distance metric function, where it is a Euclidean
distance. Fu and Fv means the feature map after C5 of the
image xu and xv . We build a cross-sample graph for them
to exploit the dependencies among different samples. The
graph G ∈ Rn×n is to build the inter-image relation among
sampled samples, which is a learnable matrix, and every
element is initialized by 1

n . The element gij of G, i, j ∈
{1, 2, ..., n}, represents the similarity wight of images xi
and xj . G is adaptively adjusted during training processes
and changes with diverse inputs to exploit the relationship
fully.

3.4. Intra-image Knowledge Learning

Intra-image Knowledge Learning, which firstly utilizes
Simple linear iterative clustering (SLIC) [1], a super-
pixel method to generate the patches for different im-
ages. Assumed that the patches of the image xi is pi =
pi1, p

i
2, ..., p

i
m. Then the network can achieve a new im-

age graph via building a structural knowledge-based mod-
ule with the help of pi, i ∈ 1, 2, ..., n. We denote the graph
as Gk ∈ Rn×n, which is the intra-image graph between
paired images xi and xj . The graph Gk is calculated on
using the graph Gl ∈ R|pi|×|pj |, which learns the depen-
dencies among different paired patches of images. Then the
same contrast-constrained loss using this graph to provide
more structural knowledge for the whole framework.

LIK =

∑
(u,v)∈Gk

Gk(u, v)D(Fu, Fv)

n× n
(5)

Gk =Wl(Gl) (6)

Where, Wl is a fully connected layer and

Gl(l, p) = D
′
(Hl, H

′

p), l ∈ 1, 2, ..., |pi|, p ∈ 1, 2, ..., |pj |
(7)

Hl is the hash code [19] of the patch pil in the image xi and
H

′

p is the hash code of the patch pjp in the image xj . D
′
(·)

is the Hamming distance.

3.5. Knowledge Reasoning Module

In addition to previous efforts to focus on information in
a whole image, we also explored the value of cross-image
semantic relations in the medical object. The correlations
between patches across images are emphasized, especially,
the correlations between corresponding patches in two im-
ages.
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Knowledge Reasoning Module focuses on the correla-
tions of two images. After getting the feature map Fu and
Fv of the images, the affinity matrix P is firstly calculated
between Fu and Fv .

P = FT
u WPFv ∈ RHW×HW

where the feature map Fu ∈ RC×HW and Fv ∈ RC×HW

are flattened into matrix formats, and WP ∈ RC×C is a
learnable matrix. The affinity matrix P represents the simi-
larity of all pairs of patches in Fu and Fv .

Then P is normalized column-wise to get the attention
map of Fu for each patch in Fv and row-wise to get the
attention map of Fv for each patch in Fu.

F
′

u = Fusoftmax(P ) ∈ RC×HW

F
′

v = Fvsoftmax(P
T) ∈ RC×HW

where softmax(P ) and softmax(PT) pay attention to the
similar patches of the feature map Fu and Fv respectively.
Therefore, they can be used to enhance Fu and Fv respec-
tively, so that similar patches in Fu and Fv are highlighted.

The cross-image method can extract more contextual in-
formation between images than using a single image. This
module exploits the context of other related images to im-
prove the reasoning ability of the feature map, which is
beneficial to the localization and classification of disease
in chest X-ray images. Furthermore, we exploit the en-
hanced feature map to calculate the new similarity between
the paired images to gain a more strong supervisor.

LKR =

∑
(u,v)∈G′

k
G

′

k(u, v)D(F
′

u, F
′

v)

n× n
(8)

The graph G
′

k is calculated on using the graph G
′

l ∈
R|pi|×|pj |.

G
′

k =W
′

l (G
′

l) (9)

where W
′

l is a fully connected layer and

G
′

l(l, p) =D
′
(Pl, Pp),

l ∈ {1, 2, ..., |pi|}, p ∈ {1, 2, ..., |pj |}
(10)

Pl is the l-th feature patch of F
′

u and Pp is the p-th feature
patch of F

′

v , respectively.

3.6. Training Loss

The overall loss function during the training is a
weighted combination of four loss functions,

Lall = w1Lbase + w2LIR + w3LIK + w4LKR (11)

where
∑4

i=1 wi = 1. In our experiments, we always set
wi = 0.25, i ∈ 1, 2, .., 4.

3.7. Training and Test

Training All the models are trained on NIH chest X-ray
dataset using the SGD algorithm with the Nesterov momen-
tum. With a total of 9 epochs, the learning rate starts from
0.001 and decreases by 10 times after every 4 epochs. Ad-
ditionally, the weight decay and the momentum is 0.0001
and 0.9, respectively. All the weights are initialized by pre-
trained ResNet [6] models on ImageNet [2]. The mini batch
size is set to 2 with the NVIDIA 1080Ti GPU. All mod-
els proposed in this paper are implemented based on Py-
Torch [13].

Testing We also use the threshold of 0.5 to distinguish
positive grids from negative grids in the class-wise feature
map as described in [8] and [9]. All test setting is same
as [9], we also up-sampled the feature map before two last
fully convolutional layers to gain a more accurate localiza-
tion result.

4. Experiments
4.1. Dataset and Evaluation Metrics

Dataset. NIH chest X-ray dataset [20] include 112,120
frontal-view X-ray images of 14 classes of diseases. There
are different diseases in each image. Furthermore, the
dataset contains 880 images with 984 labeled bounding
boxes. We follow the terms in [8] and [9] to call 880 images
as “annotated” and the remaining 111,240 images as “unan-
notated”. Following the setting in [9], we also resize the
original 3-channel images from resolution of 1024 × 1024
to 512× 512 without any data augmentation techniques.

Evaluation Metrics. We follow the metrics used in [8].
The localization accuracy is calculated by the IoU (Inter-
section over Union) between predictions and ground truths.
Since it is a coarse-grained task, our localization predic-
tions are discrete small rectangles. The eight diseases with
ground truth boxes is reported in our paper. The localization
result is regarded as correct when IoU > T (IoU), where
T(*) is the threshold.

4.2. Comparison with the State-of-the-art

In order to evaluate the effectiveness of our models for
weakly supervised disease detection, we design the exper-
iments on three sets of data and conduct a 5-fold cross-
validation. In the first experiment, we use the 50% unan-
notated images and 80% annotated images for training, and
test the models with the remaining 20% annotated images.
In the second experiment, we use the 100% unannotated
images and no any annotated images for training, and test
the models with all annotated images. In the third experi-
ment, we use the 100% unannotated images and 40% anno-
tated images for training, and test the models with remain-
ing 60% annotated images. Additionally, our experimen-
tal results are mainly compared with four methods. The
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T (IoU) Models Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean

0.3
X, Wang [20] 0.24 0.46 0.30 0.28 0.15 0.04 0.17 0.13 0.22

Z, Li [8] 0.36 0.94 0.56 0.66 0.45 0.17 0.39 0.44 0.49
J, Liu [9] 0.53 0.88 0.57 0.73 0.48 0.10 0.49 0.40 0.53

Ours 0.44 0.86 0.68 0.84 0.47 0.29 0.67 0.40 0.60

0.5
X, Wang [20] 0.05 0.18 0.11 0.07 0.01 0.01 0.03 0.03 0.06

Z, Li [8] 0.14 0.84 0.22 0.30 0.22 0.07 0.17 0.19 0.27
J, Liu [9] 0.32 0.78 0.40 0.61 0.33 0.05 0.37 0.23 0.39

Ours 0.27 0.86 0.48 0.72 0.53 0.14 0.58 0.35 0.49

0.7
X, Wang [20] 0.01 0.03 0.02 0.00 0.00 0.00 0.01 0.02 0.01

Z, Li [8] 0.04 0.52 0.07 0.09 0.11 0.01 0.05 0.05 0.12
J, Liu [9] 0.18 0.70 0.28 0.41 0.27 0.04 0.25 0.18 0.29

Ours 0.20 0.86 0.48 0.68 0.32 0.14 0.54 0.30 0.44

Table 1. The comparison results of disease localization among the models using 50% unannotated images and 80% annotated images. For
each disease, the best results are bolded.

T (IoU) Models Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean

0.1
Z, Li [8] 0.59 0.81 0.72 0.84 0.68 0.28 0.22 0.37 0.57
J, Liu [9] 0.39 0.90 0.65 0.85 0.69 0.38 0.30 0.39 0.60

Ours 0.66 0.88 0.79 0.85 0.69 0.28 0.40 0.47 0.63

0.3
J, Liu [9] 0.34 0.71 0.39 0.65 0.48 0.09 0.16 0.20 0.38
Baseline 0.36 0.69 0.35 0.64 0.44 0.08 0.02 0.23 0.35

Ours 0.31 0.79 0.37 0.75 0.40 0.06 0.24 0.27 0.40

0.5
J, Liu [9] 0.19 0.53 0.19 0.47 0.33 0.03 0.08 0.11 0.24
Baseline 0.18 0.51 0.14 0.47 0.27 0.03 0.01 0.12 0.22

Ours 0.19 0.71 0.14 0.52 0.31 0.08 0.05 0.13 0.27

0.7
J, Liu [9] 0.08 0.30 0.09 0.25 0.19 0.01 0.04 0.07 0.13
Baseline 0.11 0.34 0.06 0.32 0.20 0.01 0.00 0.06 0.14

Ours 0.06 0.64 0.08 0.38 0.19 0.01 0.08 0.09 0.19

Table 2. The comparison results of disease localization among the models using 100% unannotated images and no any annotated images.
For each disease, the best results are bolded.

first method is X, Wang [20], which proposes a carefully
annotated chest X-ray dataset and a unified weakly super-
vised multi-label image classification and disease localiza-
tion framework. The second method is Z, Li [8], which uses
fully convolutional neural network to localize and classify
the disease in chest X-ray images. The third method is J,
Liu [9], which proposes contrastive learning of paired sam-
ples to provide more localization information for disease
detection. The last method is our baseline model, which is a
unified end-to-end framework that doesn’t use our approach
to locate and classify the disease.

In the first experiment, we compare the localization re-
sults of our model with [20], [8] and [9]. We can observe
that our model outperforms existing methods in most cases,
as shown in Table 1. Particularly, with the increase of
T(IoU), our model has greater advantages over the refer-
ence models. For example, when T(IoU) is 0.3, the mean
accuracy of our model is 0.60, and outperforms [20], [8]
and [9] by 0.38, 0.11 and 0.07 respectively. However, when
T(IoU) is 0.7, the mean accuracy of our model is 0.44, and
outperforms [20], [8] and [9] by 0.43, 0.32 and 0.15 re-
spectively. Overall, the experimental results shown in Table
1 demonstrate that our method is more accurate for disease
localization and classification, which provides a great role
for clinical practices.

In the second experiment, we train our model without
any annotated images comparing the first experiment. Since

[8] only provides the results when T(IoU) = 0.1, in order
to better show the performance of our model, we add an
evaluation method of T(IoU) = 0.1. It can be seen that our
model outperforms [8] and [9] in most cases, as shown in
Table 2. For example, when T(IoU) is 0.1, the mean accu-
racy of our models is 0.63, which is 0.06 higher than [8],
and 0.03 higher than [9]. Furthermore, when T(IoU) is 0.7,
the mean localization result of our model is 0.19, which is
0.06 higher than [8] and 0.05 higher than [9]. Compared
with the baseline model, our approach performs better in
most classes except for “Atelectasis” and “Nodule”. The
trend stays the same that at higher T(IoU), our approach
demonstrates more advantages over baseline methods. The
added unannotated training samples contribute more than
the removed annotated ones in those classes, which implies
that our approach can better utilize the unannotated sam-
ples. The overall results show that even without annotated
data used for training, our approach can achieve decent lo-
calization results.

In the third experiment, we use more annotated images
comparing the second experiment. We compare the lo-
calization results of our model with [9] in same data set-
ting. It can be seen that our model outperforms [9] in most
cases, as shown in Table 3. With T(IoU) = 0.3 and 0.7,
our model outperforms [9] by 0.02 and 0.05 respectively.
Similar improvements are achieved comparing the second
experiment. Overall, the experimental results demonstrate
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T (IoU) Models Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean

0.3
J, Liu [9] 0.55 0.73 0.55 0.76 0.48 0.22 0.39 0.30 0.50
Baseline 0.47 0.84 0.65 0.82 0.33 0.04 0.57 0.29 0.50

Ours 0.49 0.87 0.66 0.88 0.48 0.10 0.51 0.20 0.52

0.5
J, Liu [9] 0.36 0.57 0.37 0.62 0.34 0.13 0.23 0.17 0.35
Baseline 0.27 0.76 0.39 0.58 0.24 0.02 0.39 0.21 0.36

Ours 0.26 0.80 0.41 0.67 0.15 0.06 0.42 0.18 0.37

0.7
J, Liu [9] 0.19 0.47 0.20 0.41 0.22 0.06 0.12 0.11 0.22
Baseline 0.14 0.62 0.20 0.42 0.07 0.00 0.23 0.08 0.22

Ours 0.18 0.71 0.20 0.50 0.20 0.02 0.29 0.06 0.27

Table 3. The comparison results of disease localization among the models using 100% unannotated images and 40% annotated images.
For each disease, the best results are bolded.

Atelectasis Cardiomegaly

Mass Nodule

Effusion                                                                                     Infiltration 

Pneumonia                                                                                 Pneumothorax

Figure 3. Visualization of the predicted results on both the baseline model and our method. The first column shows the original images, the
second and third columns show baseline and our method. The green bounding box and red area mean the the ground truth and prediction.

that our method can improve the performance of models
with limited annotated images.

To better demonstrate the final effect of our approach on
disease localization and classification, we visualize some
of typical predictions of both the baseline model and our
method, as shown in Figure 3. The first column shows the
original images, the second and third columns show base-
line model and our method. The green bounding box and
red area mean the ground truth and prediction. It can be
seen that our models can predict more accurate in most
cases comparing the baseline model. For example, the class
“Atelectasis” and “Nodule”, the localization reslut of the
baseline model is completely inconsistent with the ground
truth, but the localization reslut of our method is consistent
with the ground truth. It shows that using the structural in-

formation of intra-image and inter-image can improve the
performance of automatic lesion detection. Additionally,
we also visualize the generated heatmap and ground truth
of our model, as shown in Figure 4. It can be seen that the
proposed method can effectively locate and classify medical
images.

4.3. Ablation Studies

In this section, we explore the influence of different mod-
ules on our method for ablation studies. To evaluate our
method more comprehensively, we build 6 models, includ-
ing the model of the end to end framework (Baseline), the
model with the intra-image knowledge learning (IK), the
model with the inter-image relation module (IR), the model
with the knowledge reasoning (KR), the model combining
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Figure 4. Visualization of the generated heatmap and ground truth of our method, where the green bounding box means the ground truth.

Data Models Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean

0.5 0.8

X, Wang [20] 0.01 0.03 0.02 0.00 0.00 0.00 0.01 0.02 0.01
Z, Li [8] 0.04 0.52 0.07 0.09 0.11 0.01 0.05 0.05 0.12
J, Liu [9] 0.18 0.70 0.28 0.41 0.27 0.04 0.25 0.18 0.29
Baseline 0.34 1.00 0.40 0.68 0.11 0.14 0.65 0.00 0.41

IK 0.22 0.82 0.36 0.56 0.32 0.14 0.25 0.35 0.38
IR 0.24 0.82 0.40 0.56 0.32 0.07 0.38 0.30 0.39
KR 0.24 0.89 0.32 0.68 0.26 0.14 0.21 0.30 0.38

(IR+IK) 0.20 0.86 0.48 0.68 0.32 0.14 0.54 0.30 0.44
IR+IK+KR 0.27 0.86 0.40 0.56 0.37 0.14 0.13 0.30 0.38

1.0 0.0

J, Liu [9] 0.08 0.30 0.09 0.25 0.19 0.01 0.04 0.07 0.13
Baseline 0.11 0.34 0.06 0.32 0.20 0.01 0.00 0.06 0.14

IK 0.10 0.59 0.07 0.37 0.20 0.00 0.13 0.06 0.19
GR 0.06 0.61 0.07 0.28 0.14 0.00 0.05 0.08 0.16
IK 0.09 0.63 0.06 0.36 0.22 0.00 0.09 0.07 0.19

IR+IK 0.06 0.64 0.08 0.38 0.19 0.01 0.08 0.09 0.19
IR+IK+KR 0.12 0.51 0.07 0.36 0.22 0.03 0.02 0.07 0.17

1.0 0.4

J, Liu [9] 0.19 0.47 0.20 0.41 0.22 0.06 0.12 0.11 0.22
Baseline 0.14 0.62 0.20 0.42 0.07 0.00 0.23 0.08 0.22

IK 0.14 0.66 0.09 0.47 0.15 0.00 0.30 0.06 0.23
GR 0.14 0.75 0.24 0.42 0.11 0.00 0.26 0.12 0.25
KR 0.13 0.68 0.20 0.47 0.19 0.06 0.17 0.08 0.25

IR+IK 0.13 0.72 0.13 0.43 0.20 0.00 0.23 0.06 0.24
IR+IK+KR 0.18 0.71 0.20 0.50 0.20 0.02 0.29 0.06 0.27

Table 4. The comparison results of disease localization among the models using three sets of data at T(IoU)=0.7, including 50% unan-
notated and 80% annotated images (0.5 0.8), 100% unannotated and no any annotated images (1.0 0.0), and 100% unannotated and 40%
unannotated images (1.0 0.4). For each disease, the best results are bolded.

the inter-image relation module and the intra-image knowl-
edge learning (IR+IK), the model combining the inter-
image relation module, the intra-image knowledge learning
and the knowledge reasoning module (IR+IK+KR).

Table 4 shows the results of the three experiments men-
tioned in section 4.2 at T(IOU)=0.7. It can be seen that our
method performs better in most classes except for “Atelec-
tasis”, “Effusion” and “Mass” comparing [20], [8] and [9].
Furthermore, comparing the baseline model, it can be ob-
served that the performance of our other models are im-
proved in most cases, which shows that our method is effec-
tive for improving model performance. However, a model
does not always maintain the advantage in the three exper-
iments, for example, the model (IR+IK) achieves the best
performance in the data (0.5 0.8), the model (IK), the model
(KR) and the model (IR+IK) achieve the best performance
in the data (1.0 0.0), and the model (IR+IK+KR) achieves
the best performance in the data (1.0 0.4). Overall, the
experimental results demonstrate that using structural rela-
tional information can improve the performance of models.
For different experimental data, our models can achieve dif-
ferent results. It is difficult for us to determine which model
is the best, but we can be sure that our method is effective,

because no matter what kind of data we use, our models
achieve great improvement. Particularly, the method can
achieve good localization results even without any annota-
tion images for training.

5. Conclusion

By imitating doctor’s training and decision-making pro-
cess, we propose the Cross-chest Graph (CCG) to improve
the performance of automatic lesion detection under lim-
ited supervision. CCG models the intra-image relationship
between different anatomical areas by leveraging the struc-
tural information to simulate the doctor’s habit of observing
different areas. Meanwhile, the relationship between any
pair of images is modeled by a knowledge-reasoning mod-
ule to simulate the doctor’s habit of comparing multiple im-
ages. We integrate intra-image and inter-image information
into a unified end-to-end framework. Experimental results
on the NIH Chest-14 dataset demonstrate that the proposed
method achieves state-of-the-art performance in diverse sit-
uations.
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