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ABSTRACT
Chinese character style transfer is a very challenging problem be-
cause of the complexity of the glyph shapes or underlying structures
and large numbers of existed characters, when comparing with Eng-
lish letters. Moreover, the handwriting of calligraphy masters has
a more irregular stroke and is difficult to obtain in real-world sce-
narios. Recently, several GAN-based methods have been proposed
for font synthesis, but some of them require numerous reference
data and the other part of them have cumbersome preprocessing
steps to divide the character into different parts to be learned and
transferred separately. In this paper, we propose a simple but pow-
erful end-to-end Chinese calligraphy font generation framework
ZiGAN, which does not require any manual operation or redundant
preprocessing to generate fine-grained target style characters with
few-shot references. To be specific, a few paired samples from differ-
ent character styles are leveraged to attain fine-grained correlation
between structures underlying different glyphs. To capture valuable
style knowledge in target and strengthen the coarse-grained under-
standing of character content, we utilize multiple unpaired samples
to align the feature distributions belonging to different character
styles. By doing so, only a few target Chinese calligraphy charac-
ters are needed to generated expected style transferred characters.
Experiments demonstrate that our method has a state-of-the-art
generalization ability in few-shot Chinese character style transfer.
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1 INTRODUCTION
Chinese characters are an ancient and precious cultural heritage. In
China, Chinese characters are called ‘zi’. Since ancient times, count-
less outstanding calligraphers have left their valuable handwritings,
which have become the brilliant achievements of human civiliza-
tion. However, many valuable calligraphy works have been lost
in the long history [35]. Unlike English, which has only 26 letters,
there are tens of thousands of characters in Chinese characters, each
of which has a different glyph and represents a different meaning.
Furthermore, different calligraphers have their own writing styles
with special overall structure and stroke details. Therefore, it is very
meaningful and challenging to generate a complete personalized
font library with only a few references.

Some specific fonts have a relatively complete font library, for
example, the widely used Chinese font Sim Sun version 5.16 covers
28,762 Unicode characters. But for most calligraphy works, it is
almost impossible to get enough authentic works. The automatic
generation of glyph images can greatly reduce the labor cost of font
designers. Meanwhile, it is very helpful for calligraphy beginners
to emulate the masterpieces reproduced.

Early studies on Chinese character synthesis tend to decompose
characters into different radicals and regions, and then reassemble
them [43, 44]. But this kind of methods requires a lot of manual
intervention and is inefficient. Additionally, they still produce un-
desirable results.

With the development of deep learning and computer vision,
style transfer is discovered [9, 12, 17, 36], which is dedicated to
transforming one style of artwork into another. It achieves success
in texture features transfer tasks, but unable to adapt to the trans-
lation in large geometric variations. Subsequently, methods such
as pix2pix [15] and CycleGAN [51] are proposed to solve image-
to-image translation problem. But unlike photo-to-artwork task,
Chinese characters are made up of pure black and white. More
importantly, any lack of subtle structure or changes is unacceptable,
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Figure 1: The upper row is the input standard characters
in font style Song, and the following line is the generated
characters with target style. The generated calligraphy font
shown in the figure has been successfully implemented in
the application scenario.
while the GAN-based methods [4, 5, 20, 45] often lead to minor
inaccuracy or blur.

Recently, some studies have been conducted to generate fonts [16,
24, 37]. Zi2zi [34] is proposed based on the pix2pix framework,
which results in good synthesizing performance in some specific
font styles. On this basis, CalliGAN [41] further uses the prior in-
formation of Chinese character radicals to achieve better results.
But this leads to a more complex and fragmented network structure.
Furthermore, ChiroGAN [8] is committed to getting reasonable re-
sults without using paired data. But it cannot handle brush-written
calligraphy images with complex skeletons. Moreover, all the above-
mentionedmethods require a large number of style reference glyphs
to achieve acceptable results, whichmay be laborious or even impos-
sible to obtain in real-world scenarios. RD-GAN [13] is committed
to using only a few style references, but it still requires a lot of prior
knowledge of radicals, which will be very troublesome to process.
And it generates handwritten photo-style images, which is different
from our calligraphy written in ink on a white background.

In this paper, we propose ZiGAN, a novel end-to-end frame-
work for fine-grained Chinese calligraphy font generation with
few-shot target references. Given a few calligrapher’s characters
of the expected style, we can easily obtain the corresponding stan-
dard font images of the same characters and get the well-aligned
pairs. We leverage these small amounts of paired samples to attain
fine-grained correlation between structures underlying different
styles.

Meanwhile, brush-written calligraphic character images aremuch
more irregular than font-rendered character images. Few existing
papers use this type of images to conduct experiments. In order
to deal with this situation, we pioneer the utilization of numerous
other unpaired characters in the standard font library which can be
easily rendered. Although the glyphs of these characters are differ-
ent from the target, they contain rich structure and morphological
information. To capture valuable style knowledge in target and
strengthen the coarse-grained understanding of character content,
we utilize multiple unpaired samples to align the feature distri-
butions belonging to different character styles. Figure 1 shows a
successful application case of our method.

To sum up, our major contributions are summarized as follows:
(1) We propose a simple but effective end-to-end framework

that can generate fine-grained stylized calligraphy characters with
only a few references. And it can easily adapt to a new handwrit-
ing style transfer task without tedious manual operations or prior
knowledge.

(2) We innovatively learn the coarse-grained content knowledge
of unpaired characters in the standard font library. To capture valu-
able structural knowledge, we map the features of the characters in
different styles to Hilbert space and align the feature distributions.
By doing so, we not only retain the semantic information of the
character but also successfully translate the style from source to
target while only a few target Chinese calligraphy characters are
needed.

(3) Comprehensive experiments and analysis show that our ap-
proach can generate Chinese characters with state-of-the-art qual-
ity. More importantly, our method has been successfully imple-
mented in actual application scenarios.

2 RELATEDWORK
2.1 Generative Adversarial Networks
Generative Adversarial Networks (GAN) [10] has attracted a lot
of interest since it was proposed. It has been successfully applied
in many different fields and achieved impressive results, such as
image generation [18, 19, 26], image completion [14, 46, 47], image
editing [50], transfer learning [29, 31], image translation [4, 15, 20,
51], etc. The key to the success of GAN is that the discriminator tries
to distinguish the generated images from the realistic images, while
the generator tries to confuse the judgment of the discriminator. In
this paper, our model is based on GAN and only uses a few reference
data to learn the Chinese calligraphy character style translation.

2.2 Image-to-Image Translation
Image-to-image translation aims to learn a mapping function that
can transform an image from the source domain to the target do-
main. It has been widely used in many applications, for example,
for artistic style transfer [3, 17], semantic segmentation [23, 27, 28],
photo enhancement or object replacement.

A great quantity of GAN-based methods have been proposed,
quite a few of them condition on images [4, 5, 15, 38]. Pix2pix [15] is
the pioneering method to figure out image-to-image translation. It
follows the idea of conditional GAN, applying adversarial loss and
L1-loss, and achieves impressive results. After that, high-resolution
version is proposed to reinforce pix2pix in image synthesis and
semantic manipulation [38]. But those paired training data are
hard to obtain for some applications such as artistic style transfer.
To alleviate this pain point, unpaired image-to-image translation
frameworks have been proposed where no paired data are available
anymore [21, 22, 51]. It is a remarkable fact that CycleGAN [51] pro-
poses the cycle-consistent adversarial network, where two GANs
interact in a cycle and learn source and target image distributions
simultaneously. Based on CycleGAN, U-GAT-IT [20] proposes a
novel method for unsupervised image-to-image translation, which
incorporates a new attentionmodule and a new learnable normaliza-
tion function called AdaLIN in an end-to-end manner. It is effective
in the task of animating faces. In summary, the aforementioned
paired methods all require a lot of data for training, otherwise the
results will be unsatisfactory. Meanwhile, the unpaired methods
often cause missing or redundant construction. But in the task
of Chinese calligraphy character style translation, calligraphers’
handwriting is often difficult to obtain, and we cannot tolerate the
inconsistency of character structure.



2.3 Chinese Font Generation
Chinese font generation has been studied for a long time [40, 42].
The image-based methods [6, 44] split and reorganize the corre-
sponding strokes and radicals in the dataset to generate the charac-
ters we want. But these methods contain too much human inter-
vention, which is very inconvenient. With the development of deep
learning, people have paid more attention to GAN-based character
translation. Since character translation requires higher accuracy
according to its complex strokes and style, it is more difficult than
classic image-to-image translation problems. Transferring the styles
of the alphabet is quite helpful and efficient for English transla-
tion [1]. While it is not simple like this for Chinese character style
transfer because each Chinese character has its own glyph shape
and there is a large number of existed characters. The style of the
strokes in a certain character may quite different from the same
strokes in other characters [39], which makes the problem harder.

The first way to generate Chinese characters is following image-
to-image methods, like zi2zi [34], an open-source project that was
never published as a paper. It’s based on pix2pix, trying to translate
character images from source style to various target styles. Based
on zi2zi, DCFont [16] and PEGAN [33] have made improvements
and achieved better results. The second way to synthesize Chi-
nese characters often separates a character into two parts, which
are content and style [8, 39]. EMD [48] and SA-VAE [32] use two
different encoders to process content and style respectively. After
absorbing the advantages of the above methods, CalliGAN [41] adds
an extra component code of the character to train a conditional
GAN, exploiting prior knowledge to maintain the structure infor-
mation. While it needs a dictionary for each Chinese character to
save its component code, this is a complicated preprocessing work.
Unlike the aforementioned methods, ChiroGAN [8] uses erosion
and dilation operations to obtain the basic skeleton of characters,
then transfers style from source to target at the skeleton level. The
output of this module is the skeleton image so it has to use another
network to render the skeleton into the target character. Moreover,
it relies on the effects of corrosion and expansion algorithms so
that it often crashes on complex characters with numerous strokes
or irregular glyph styles.

In order to save the cost of multiple Chinese characters selec-
tion, several recent methods aim to generate new glyphs with few
numbers style references. DMfont [2] disassembles Korean or Thai
glyphs to stylize components and then reassembles them. But it
cannot handle complex Chinese characters. RD-GAN [13] aims to
generate unseen characters in the fixed style, but it still requires a
lot of prior knowledge of radicals, which will be very troublesome
to process. Other earlier few-shot methods also have fatal short-
comings, such as being unable to generate complex glyphs [1] or
failing to capture local styles [7, 32].

To sum up, part of the methods require lots of data, but the
handwritings of many ancient Chinese calligraphers are not handed
down so we cannot obtain them. The other parts of the methods are
doped with too much manual processing. Moreover, they utilize too
much intricate prior knowledge, which makes the preprocessing
work complicated and can only adapt to a single task. To overcome
these challenges, in this paper we propose a novel ZiGAN that
can learn an intact and delicate character style and structure when

Table 1: The architecture of encoder and decoder.

Layer Encoder Decoder
Input 256 × 256 × 3 1 × 1 × 512
L1 128 × 128 × 64 2 × 2 × 1024
L2 64 × 64 × 128 4 × 4 × 1024
L3 32 × 32 × 256 8 × 8 × 1024
L4 16 × 16 × 512 16 × 16 × 1024
L5 8 × 8 × 512 32 × 32 × 512
L6 4 × 4 × 512 64 × 64 × 256
L7 2 × 2 × 512 128 × 128 × 128
L8 1 × 1 × 512 256 × 256 × 3

only a few target characters are provided. ZiGAN is an end-to-
end framework, which can be easily and conveniently applied to
any character style translation task, and is capable of generating a
complete and consistent font library.

3 METHOD
We distinguish each Chinese character based on structure, radicals
and strokes. Therefore, each calligrapher writes the same content of
Chinese characters but in different styles. The goal of our proposed
method is to learn a way to generate Chinese character images with
the expected style from only a small amount of given characters.
Let 𝑠 be the style we want, and 𝑦 be a target image under the style
𝑠 . We use TrueType fonts to render a source image 𝑥𝑝 representing
the same character as𝑦 in black with font style Song as the standard
character image. Furthermore, we find that although we can only
obtain a few target character images, we can render a mass of source
character images from the TTF of font style Song. We randomly
render images from font style Song, defined as 𝑥𝑟 . In general, we
leverage the paired image sets {𝑥𝑝 } and {𝑦} to attain fine-grained cor-
relation between structures underlying different glyphs. Moreover,
the method we proposed learns the extra structural knowledge
in the unpaired data {𝑥𝑟 } simultaneously to strengthen the coarse-
grained understanding of the character content. Our framework
consists of two generators and two discriminators in two opposite
directions. Here we only explain the direction of 𝑥 → 𝑦 as the vice
versa should be straightforward.

3.1 Network architectures
Figure 2 shows the architecture of our network. We encode 𝑥𝑝
and 𝑥𝑟 into the feature space through an image encoder 𝐸𝑠 , and
then decode image features by an image decoder 𝐺𝑠 to generate
the stylized character images 𝑦𝑝 and 𝑦𝑟 . After that, we model on
CycleGAN [51] and set up a reversing generator, including encoder
𝐸𝑡 and decoder 𝐺𝑡 .
Image encoder and decoder. We use the encoder-decoder ar-
chitecture as our generator, which is based on pix2pix [15] and
zi2zi [34] with some improvements. Unlike zi2zi, we remove the
category embedding vector because it is inapplicable for our task
and will increase instability. The complete architecture of our gen-
erator is in Table 1. All convolution and deconvolution layers use
5-by-5 filters with stride size of 2, and apply batch normalization.
The encoder layers actually use LeakyReLU for activation function
with a slope of 2. While the decoder layers use the activation func-
tion ReLU. We use dropout with a rate of 0.5 only in L1 to L3 layers
of the decoder.
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Figure 2: Network architectures. ZiGAN is an end-to-end framework based on the encoder and decoder. The network can not
only learn style information from a few target images but also learn structure and content information fromnumerous source
images. An auxiliary classifier is added to the discriminator to force the model to focus on more important regions. ZiGAN
has 4 losses: GAN loss (Eq. (3)), consistency loss (Eq. (6)), alignment loss (Eq. (9)), style loss (Eq. (10)).

CAM Discriminator. We add an auxiliary classifier 𝜂𝐷𝑡 based
on Class Activation Map (CAM) [49] to the discriminator so that
the model can pay more attention to more important regions. For
different calligraphy, there may be subtle but critical differences
between the strokes and radicals. The local and global discriminator
with CAM attention module can help the model distinguish better
and generate finer characters of different styles. Unlike pix2pix [15]
and zi2zi [34], we don’t use conditional image knowledge to reduce
complexity so the discriminator does not observe 𝑥 . In Section 4, we
demonstrate that the CAM attention module can learn the details
successfully.

3.2 Loss Function
We define four losses in total. The loss items of 𝑥 → 𝑦 can be
written as:

GAN loss. GAN loss is divided into main and auxiliary parts. In
the main part, we impose adversarial loss to match the distribution
of the translated images and target images.We use the Least Squares
GAN [25] objective to train our model.

L𝑥→𝑦
𝑎𝑑𝑣

=E𝑦 [(𝐷𝑡 (𝑦))2]+
E𝑥 [(1 − 𝐷𝑡 (𝐺𝑠 (𝐸𝑠 (𝑥))))2] .

(1)

In addition, we add an auxiliary classifier𝜂𝐷𝑡 based on Class Acti-
vationMap(CAM) [49] to the discriminator𝐷𝑡 . Let𝑦∈ {𝑌 },𝐺𝑠 (𝐸𝑠 (𝑋 ))

represent a sample from the target domain and the translated source
domain. The discriminator 𝐷𝑡 consists of an encoder 𝐸𝐷𝑡 , a clas-
sifier 𝐶𝐷𝑡 , and an auxiliary classifier 𝜂𝐷𝑡 . The auxiliary classifier
is trained to learn the weight of the 𝑘-th feature map for the tar-
get domain, 𝑤𝑘

𝑡 , by using the global average pooling and global
max pooling, i.e., 𝜂𝐷𝑡 (𝑦) = 𝜎

(
Σ𝑘𝑤

𝑘
𝑡 Σ𝑖 𝑗𝐸

𝑘𝑖 𝑗
𝐷𝑡

(𝑦)
)
. By exploiting𝑤𝑘

𝑡 ,
we can calculate a set of domain specific attention feature map
𝑎𝐷𝑡 (𝑦) = 𝑤𝐷𝑡 ∗ 𝐸𝐷𝑡 (𝑦) =

{
𝑤𝑘
𝐷𝑡

∗ 𝐸𝑘𝐷𝑡
(𝑦) | 1 ≤ 𝑘 ≤ 𝑛

}
, where 𝑛

is the number of encoded feature maps. Then, our discriminator
𝐷𝑡 (𝑦) becomes equal to 𝐶𝐷𝑡 (𝑎𝐷𝑡 (𝑦)). By doing so, the discrimina-
tor can better distinguish the differences in the details of different
character styles, while 𝐸𝑠 and 𝐺𝑠 can make improvements in the
most important regions.

L𝑥→𝑦
𝑐𝑎𝑚 =E𝑦 [(𝜂𝐷𝑡 (𝑦))2]+

E𝑥 [(1 − 𝜂𝐷𝑡 (𝐺𝑠 (𝐸𝑠 (𝑥)))2] .
(2)

On the whole:

L𝑥→𝑦
𝐺𝐴𝑁 = L𝑥→𝑦

𝑎𝑑𝑣
+ L𝑥→𝑦

𝑐𝑎𝑚 . (3)

Consistency loss.We constrain the consistency of the model
from two parts. First, the model must have the ability to cycle
back. It means that after 𝑥 is translated to 𝑦, it must be successfully



translated back to the original domain:

L𝑥→𝑦
𝑐𝑦𝑐𝑙𝑒

=E𝑥 [|𝑥 −𝐺𝑡 (𝐸𝑡 (𝐺𝑠 (𝐸𝑠 (𝑥)))) |1] . (4)

Second, identity loss is used to constrain the color and shape of
the characters to not be distorted. Given an image 𝑦, after the
translation of 𝐸𝑠 and 𝐺𝑠 , it should be the same character in the
same style.

L𝑥→𝑦
𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦

=E𝑦 [|𝑦 − (𝐺𝑠 (𝐸𝑠 (𝑦))) |1] . (5)

So the total consistency loss is:

L𝑥→𝑦
𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = L𝑥→𝑦

𝑐𝑦𝑐𝑙𝑒
+ L𝑥→𝑦

𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦
. (6)

Alignment loss We align the content and feature levels of 𝑥𝑝
and𝑦 to leverage the paired samples to attain fine-grained structural
correspondence. In the font style translation task, the job of the
discriminator is still to distinguish which is generated or which is
real, but the generator is tasked to not only fool the discriminator,
but also to be as similar to the ground truth at the content level as
possible. We use the L1 loss to constrain the output of paired data
𝑥𝑝 ,

L𝑥→𝑦
𝐿1 =E𝑥,𝑦 [|𝑦 −𝐺𝑠 (𝐸𝑠 (𝑥𝑝 )) |1] . (7)

And in order to constrain the features of the generated image and
the real image to the same space, we apply constancy loss:

L𝑥→𝑦
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑐𝑦 =E𝑥,𝑦 [|𝐸𝑡 (𝑦) − 𝐸𝑡 (𝐺𝑠 (𝐸𝑠 (𝑥𝑝 ))) |2] . (8)

Therefore, the total alignment loss can be formulated as:

L𝑥→𝑦
𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡

= 𝛼L𝑥→𝑦
𝐿1 + L𝑥→𝑦

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑐𝑦 . (9)

where 𝛼 = 5.
Style loss For better understanding of coarse-grained charac-

ter content and a maturer style translation, we have introduced
style loss to take advantage of multiple unpaired samples 𝑥𝑟 . Unlike
paired data, unpaired data cannot simply be restricted by L1 or
L2 losses. Therefore, with comprehensive consideration of time
complexity and computational cost, we utilize MK-MMD [11, 30] to
match the feature distributions to retain style information. Denote
by H𝑘 be the reproducing kernel Hilbert space (RKHS) endowed
with a characteristic kernel 𝑘 . The mean embedding of distribu-
tion 𝑝 in H𝑘 is a unique element 𝜇𝑘 (𝑝) such that Ex∼𝑝 𝑓 (x) =

⟨𝑓 (x), 𝜇𝑘 (𝑝)⟩H𝑘
for all 𝑓 ∈ H𝑘 . The MK-MMD 𝑑𝑘 (𝑥,𝑦) between

probability distributions 𝑥 and 𝑦 is defined as the RKHS distance
between the mean embeddings of 𝑥 and 𝑦. The squared formulation
of style loss is defined as:

L2
𝑠𝑡𝑦𝑙𝑒 =| |E𝑦 [𝜙 (𝐸𝑡 (𝑦))] − E𝑥 [𝜙 (𝐸𝑡 (𝐺𝑠 (𝐸𝑠 (𝑥𝑟 ))))] | |2H𝑘

. (10)

where 𝜙 is the corresponding feature map. And it’s worth not-
ing that when 𝑥 = 𝑦, L𝑠𝑡𝑦𝑙𝑒=0. Here we choose Gaussian kernel
function as the kernel function:

𝑘
𝑟𝑏𝑓
𝜎 (𝑃𝑠 , 𝑃𝑡 ) = exp

(
− 1
2𝜎2

∥𝑥 − 𝑦∥2
)
. (11)

Full objective Finally, the full objective function is defined as:
L = 𝜆1L𝐺𝐴𝑁 + 𝜆2L𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 + 𝜆3L𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡

+ 𝜆4L𝑠𝑡𝑦𝑙𝑒 .
(12)

where 𝜆1 = 5, 𝜆2 = 10, 𝜆3 = 10, 𝜆4 = 10. Here L𝐺𝐴𝑁 = L𝑥→𝑦
𝐺𝐴𝑁 +

L𝑦→𝑥
𝐺𝐴𝑁 and the other losses are defined in the similar way.

Figure 3: Example characters in 9 different styles.(1-9 in or-
der)

Table 2: Data sets used in our experiments. Dataset Name is
the expert of themasterpiece and the sub-typeface for those
createdwith the samemaster. Samples is the number of char-
acters in each data set.

Style Dataset Name Samples
1 Chu Suiliang 7159
2 Liu Gongquan 6171
3 Ouyang Xun 6999

— Huangfu Dan Stele
4 Ouyang Xun 6901

— Inscription on Sweet Wine
Spring at Jiucheng Palace

5 Yan Zhenqing 6308
— Stele of the Abundant

Treasure Pagoda
6 Yan Zhenqing 7006

— Yan Qinli Stele
7 Yu Shinan 7008
8 XING 6800
9 CAO 6799

4 EXPERIMENT
4.1 Datasets
To better show our model’s performance, we use the same datasets
with CalliGAN [41]. The datasets could be downloaded from a Chi-
nese calligraphy character website1, where there are more than
20 kinds of brush-written calligraphy sets belonging to different
Chinese ancient experts. And 7 styles belonging to regular script
are used to complete our experiment. The 3rd and the 4th style sets
are the same ancient calligraphic expert’s masterpieces created in
different periods of his life. They are treated as two different style
sets due to the differences between them, which is also the rule
of thumb in the Chinese calligraphy community. The 5th and the
6th style sets are the same situation as above. In addition to the
above-mentioned dataset which is the same as CalliGAN, we also
test our model in other more irregular and challenging Chinese
character fonts like XING and CAO to prove that our method is
highly adaptable and robust to any font style. So our data set con-
sists of 9 fonts in total which are shown in Table 2. Figure 3 shows
example characters in 9 different styles.

We collect 61151 target images that cover 6560 characters in the
9 styles in all. And we use TTF of font style Song to render source
image 𝑥 . To explore the ability of our few-shot method, we create
two configurations for the dataset: 100-shot and 200-shot. Each style
has 100 or 200 randomly selected training examples respectively as
input 𝑦, while the remaining images as the test set. Such a training
set size is much smaller than other methods which often require
thousands of training images. Specific information is listed in Table

1http://163.20.160.14/~word/modules/myalbum/

http://163.20.160.14/~word/modules/myalbum/


Figure 4: Comparison of the results using each method in 9 different font styles. Characters in the purple box are generated
withmissing strokes, the yellow boxmeans incorrect extra strokes translation, and the blue box indicates conspicuous blurred
results.

Table 3: Statistics of our 100-shot and 200-shot configura-
tions.

Style 1 2 3 4 5 6 7 8 9
100shot-Train 100 100 100 100 100 100 100 100 100
100shot-Test 7059 6071 6899 6801 6208 6906 6908 6700 6699
200shot-Train 200 200 200 200 200 200 200 200 200
200shot-Test 6959 5971 6799 6701 6108 6806 6808 6600 6599

Total 7159 6171 6999 6901 6308 7006 7008 6800 6799

3. Given 𝑦, we can easily get the same character image 𝑥𝑝 in the
source domain. In the meantime, we randomly sample and render
6000 unpaired images with font style Song which cover a large
number of characters as input 𝑥𝑟 .

The images in this repository have various shapes depending
on the character’s shapes. We follow the preprocessing steps of
CalliGAN [41], but the only difference is that we process the images
into three-channel RGB images. So we get 256 × 256 × 3 images
as our ground truth 𝑦. All images are converted to tensors linearly
with a value range between -1 and 1 by our network.

4.2 Experiment Setup
We use standard methods to optimize our network: first optimize
on D, then on E and G together. Similarly, we also alternate training
on 𝑥𝑟 and 𝑥𝑝 . All models are trained using Adam with 𝛽1 = 0.5,
𝛽2 = 0.999. The learning rate is initialized to 0.0003 and drops by
half every 500 epochs. Because the number of training samples is
small, we train our model in 1500 epochs.

4.3 Qualitative Evaluation
To prove the advancement of our method in the field of few-shot
font style transfer, we have extensively compared various methods.
Six classic methods are used as the baselines, including zi2zi [34],
pix2pix [15], U-GAT-IT [20], CycleGAN [51], StarGAN [4], Calli-
GAN [41]. Among them, zi2zi, pix2pix and CalliGAN need paired
data for training. We use the same number of paired images as ours

Input x

ZiGAN w/o ℒ𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡

ZiGAN w/o ℒstyle

ZiGAN(Ours)

Ground truth y

ZiGAN w/o ℒcam

Figure 5: The ablation experiment of ZiGAN. All characters
are generated under style 1. The red rectangles mark the im-
perfect part of the character where some strokes are incom-
plete or fuzzy. It can be seen that every part of our method
is beneficial to the result.

to train their model in corresponding configurations. CycleGAN,
U-GAT-IT and StarGAN are unsupervised methods. We use 6200
images in font style Song as their source domain and 100 or 200
calligraphic images as their target domain for different configura-
tions so that the size of their training set is not smaller than ours.
Figure 4 shows the comparison of generation results.

CycleGAN not only did not fully learn the style of the characters
but also lost some strokes. StarGAN has lost the structural informa-
tion of the character and is completely unable to do this job. Pix2pix
barely maintains the structure of the characters, but there are too
many fuzzy and damaged places. U-GAT-IT seems to have learned
the style of the font, but there are still many erroneous and missing
strokes in the result. Although zi2zi and CalliGAN are professional
in font style translation, they produce unsatisfactory results which



Table 4: IOU for difference font style translation mode. Higher is better. The seventh and eighth methods show the results of
ablation experiments without L𝑠𝑡𝑦𝑙𝑒 or L𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 .

Intersection Over Union (IOU)

Type Method Style
1 2 3 4 5 6 7 8 9 Mean

100
-

shot

zi2zi 0.228 0.353 0.282 0.298 0.381 0.37 0.274 0.289 0.213 0.299
pix2pix 0.259 0.374 0.303 0.314 0.416 0.404 0.281 0.305 0.21 0.318

U-GAT-IT 0.234 0.315 0.261 0.264 0.346 0.342 0.243 0.292 0.211 0.279
CycleGAN 0.24 0.241 0.259 0.28 0.379 0.369 0.254 0.26 0.2 0.276
StarGAN 0.152 0.3 0.194 0.206 0.373 0.314 0.151 0.21 0.195 0.233
CalliGAN 0.241 0.345 0.277 0.293 0.382 0.391 0.278 0.306 0.218 0.303

ZiGAN w/o L𝑠𝑡𝑦𝑙𝑒 0.236 0.402 0.308 0.332 0.417 0.403 0.291 0.313 0.203 0.323
ZiGAN w/o L𝑎𝑙𝑖𝑔𝑛 0.229 0.326 0.291 0.309 0.383 0.377 0.272 0.296 0.19 0.297

ZiGAN(Ours) 0.273 0.389 0.317 0.333 0.408 0.413 0.293 0.334 0.226 0.332

200
-

shot

zi2zi 0.257 0.395 0.308 0.324 0.426 0.407 0.274 0.319 0.233 0.327
pix2pix 0.27 0.398 0.321 0.333 0.432 0.422 0.292 0.315 0.215 0.333

U-GAT-IT 0.239 0.339 0.255 0.267 0.367 0.35 0.249 0.296 0.216 0.286
CycleGAN 0.241 0.36 0.098 0.27 0.372 0.365 0.255 0.262 0.202 0.269
StarGAN 0.2 0.331 0.26 0.221 0.374 0.359 0.21 0.221 0.235 0.268
CalliGAN 0.267 0.347 0.319 0.324 0.414 0.404 0.289 0.327 0.236 0.325

ZiGAN w/o L𝑠𝑡𝑦𝑙𝑒 0.286 0.397 0.312 0.332 0.438 0.425 0.295 0.323 0.233 0.338
ZiGAN w/o L𝑎𝑙𝑖𝑔𝑛 0.284 0.379 0.302 0.303 0.394 0.403 0.287 0.333 0.23 0.324

ZiGAN(Ours) 0.290 0.407 0.319 0.357 0.436 0.427 0.316 0.344 0.236 0.348

Table 5: The top-1 accuracy of generated characters. We train a Resnet18 model as a Chinese character recognizer on the
ground truth of all styles. The recognition accuracy can show whether the characters retain the complete character structure
and content. The seventh and eighth methods show the results of ablation experiments without L𝑠𝑡𝑦𝑙𝑒 or L𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 .

Top-1 Accuracy

Type Method Style
1 2 3 4 5 6 7 8 9 Mean

100
-

shot

zi2zi 0.075 0.075 0.094 0.101 0.105 0.129 0.094 0.186 0.114 0.108
pix2pix 0 0 0.048 0.054 0 0.123 0.068 0.196 0.1 0.065

U-GAT-IT 0.156 0.025 0.156 0.139 0.128 0.2 0.166 0.102 0.11 0.131
CycleGAN 0.204 0.064 0.215 0.245 0.351 0.314 0.351 0.13 0.16 0.226
StarGAN 0.003 0.002 0.001 0.001 0.007 0.007 0.002 0.001 0 0.003
CalliGAN 0.091 0.083 0.089 0.099 0.108 0.184 0.104 0.104 0.11 0.108

ZiGAN w/o L𝑠𝑡𝑦𝑙𝑒 0.255 0.283 0.257 0.317 0.26 0.451 0.325 0.353 0.13 0.292
ZiGAN w/o L𝑎𝑙𝑖𝑔𝑛 0.199 0.16 0.195 0.237 0.294 0.334 0.288 0.336 0.12 0.24

ZiGAN(Ours) 0.567 0.740 0.647 0.625 0.592 0.733 0.694 0.404 0.158 0.573

200
-

shot

zi2zi 0.175 0.346 0.207 0.227 0.323 0.326 0.196 0.246 0.118 0.24
pix2pix 0.154 0.17 0.151 0.149 0.213 0.294 0.149 0.339 0.101 0.191

U-GAT-IT 0.236 0.268 0.131 0.132 0.283 0.246 0.184 0.32 0.12 0.213
CycleGAN 0.211 0.304 0.19 0.234 0.347 0.321 0.385 0.14 0.16 0.255
StarGAN 0.005 0.012 0.001 0 0.013 0.017 0.005 0.004 0.002 0.007
CalliGAN 0.192 0.169 0.26 0.212 0.276 0.353 0.23 0.334 0.117 0.238

ZiGAN w/o L𝑠𝑡𝑦𝑙𝑒 0.586 0.614 0.528 0.577 0.62 0.637 0.593 0.403 0.16 0.462
ZiGAN w/o L𝑎𝑙𝑖𝑔𝑛 0.528 0.583 0.568 0.347 0.566 0.24 0.582 0.396 0.146 0.44

ZiGAN(Ours) 0.631 0.631 0.636 0.591 0.689 0.703 0.722 0.488 0.176 0.585

contain too many meaningless blanks and blurs when few targets
are referenced. Only ZiGAN has found the law of calligraphy from
limited target characters.

4.4 Quantitative Evaluation
For quantitative evaluation, we evaluate it from two aspects: style
and content. For the former, we use Intersection Over Union(IOU)
to measure whether our results have completed the style translation.
IOU calculates the ratio of the intersection and union between the
generated character images and the real character images. The

Table 6: User study.We ask respondents to choosewhich gen-
erated character resembles the ground truth from these 7
methods.

Method Vote Rate(%) Method Vote Rate(%)
zi2zi 1.52 CycleGAN 1.68

pix2pix 1.44 StarGAN 0.31
U-GAT-IT 2.27 CalliGAN 1.80

- - ZiGAN(Ours) 90.98

higher the value indicates that the distribution of the generated
images is closer to the distribution of the real images, and the result



Table 7: Turing test samples. Each sample contains 6 fake
glyph images generated by ZiGAN and 6 real glyph images.
ZiGAN achieves an accuracy of 51.6%, which is very close to
random selection.

Sample 1 Sample 2 Sample 3

is better. As above, we compare six classic methods, and Table 4
shows that ZiGAN achieves the highest IOU scores.

Similarly, for content evaluation, we train a Resnet18 model as
a Chinese character recognizer on the ground truth of all styles.
And test it on the images generated by our test set. As we can
see from Table 5, the top-1 accuracy achieved by our method is
significantly ahead of other methods, which proves that our method
can effectively retain the structure and content information of the
character.

4.5 User Study
We implement user study to verify that our results are not only
better in the calculated indicators. 40 people who are familiar with
Chinese characters participate in the experiment. We randomly
select 65 characters in the test set, then use the compared methods
and the proposed method to generate images. Therefore, the par-
ticipants see a total of 520 images, including 390 images generated
by the compared methods, 65 images generated by our ZiGAN,
and 65 of ground truth. At each selection, participants will see 7
images generated by 7 different methods and ground truth. Overall,
the participant’s goal is to find the image that is most similar to
ground truth. In detail, participants are asked to prioritize finding
the images that are semantically consistent with the ground truth,
which means that the generated characters cannot have wrong
radicals or missing strokes. On this basis, consider which image
style is closer to the ground truth and has better details. Table 6
shows the respondents’ vote rates for each method.

Meanwhile, we build the Turing test set and make a Turing test.
As shown in Table 7, each sample contains 6 fake glyph images gen-
erated by ZiGAN and 6 real glyph images. We ask 50 professional
Chinese users to identify which images are generated in 30 sets of
samples. ZiGAN achieves an accuracy of 51.6%, which is very close
to random selection.

4.6 Empirical Analysis
Ablation Studies In order to verify that each step in our frame-
work is beneficial, we did an ablation experiment. The cam loss
helps the discriminator to better distinguish the differences in the
details of different character styles, while the generator can make
improvements in the most important regions. The style loss helps
our model learn additional style and structural knowledge of un-
paired data, and innovatively align the distribution of unpaired
source and target data in the feature space. The alignment loss
maintains the generated image with intact semantic information

(a)

(d)

(c)

(b)

Figure 6: Visualization of the attentionmaps:(a) Source style
characters,(b) Generated target style characters,(c) Atten-
tionmap of discriminator from source to target character,(d)
The ground truth of target style characters.

Ground 
truth

ZiGAN
(Ours)

Figure 7: Some unsatisfactory synthesis results.

from another level. The combination of these three forms our pro-
posed method. Figure 5 displays the 200-shot image generation
results without cam loss, style loss or alignment loss. Table 4 and
Table 5 also present the complete quantitative results of the ablation
experiment. These results show that every module of our method
is critical.
Analysis ofCAMAttentionWevisualize the local attentionmaps
of the discriminator in Figure 6. It shows which regions the dis-
criminator focuses its attention to determine whether the target
image is real or generated. In row(c) of Figure 6, we can find that
this attention module has successfully found the main body of the
characters, and pay more attention to the sharp strokes and radicals
with high recognition. This is consistent with our intuition, people
also distinguish font styles in this way.
Failure cases As shown in Figure 7, for some extremely complex
characters, there are still some subtle deficiencies in the generated
results. The lack of training data leads to poor generalization per-
formance in complex situations. For future work, We are planning
to work on using fewer target references and get more robust and
generalized model.

5 CONCLUSION
In this paper, we propose a novel ZiGAN, which can accomplish
fine-grained Chinese calligraphy font generation with few-shot
references. The main idea is that extra structural knowledge can
be learned by utilizing numerous unpaired characters. We also
groundbreakingly align the feature distribution of different font
styles to capture valuable style knowledge in target and strengthen
the coarse-grained understanding of character content. Besides,
our method is an end-to-end framework that does not require any
manual operation or redundant preprocessing. It can be easily and
quickly adapted to new tasks.
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SUPPLEMENTARY
Fréchet Inception Distance For quantitative evaluation, we also
use Fréchet Inception Distance to measure whether our results have
completed the style translation. FID calculates the distance between
the real image and the generated image in the feature space. And the
feature representations are extracted from the Inception network.
The lower the value indicates that the distribution of the generated
images is closer to the real images distribution, and the result is
better. As above, we compare six classic methods, and Table 1 shows
that ZiGAN achieves the lowest FID scores.

Additional Experimental Results In addition to the results pre-
sented in the paper, we randomly select 50 common characters for
each font with different styles and show supplement generation
results for the datasets in Figure 1 and Figure 2.
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Table 1: Fréchet InceptionDistance for difference font style translationmode. Lower is better. The seventh and eighthmethods
show the results of ablation experiments without L𝑠𝑡𝑦𝑙𝑒 or L𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 .

Fréchet Inception Distance (FID)

Type Method Style
1 2 3 4 5 6 7 Mean

100
-

shot

zi2zi 2.164 2.589 2.348 2.385 2.494 2.359 2.196 2.362
pix2pix 1.789 1.739 2.335 2.322 2.208 1.574 2.318 2.041

U-GAT-IT 1.222 0.904 1.273 0.920 0.968 1.218 1.288 1.113
CycleGAN 1.608 2.743 1.480 1.659 2.425 1.230 1.707 1.836
StarGAN 2.053 2.899 2.396 2.385 2.731 2.295 2.590 2.478
CalliGAN 2.091 2.527 2.340 2.355 2.366 2.201 2.142 2.289

ZiGAN w/o L𝑠𝑡𝑦𝑙𝑒 1.254 1.842 1.827 1.779 2.759 1.914 1.6 1.854
ZiGAN w/o L𝑎𝑙𝑖𝑔𝑛 1.312 1.924 1.586 1.547 1.874 1.368 1.252 1.552

ZiGAN(Ours) 1.047 0.845 0.816 0.816 1.189 1.109 0.669 0.927

200
-

shot

zi2zi 1.380 0.756 1.649 1.010 1.270 1.119 1.359 1.220
pix2pix 0.966 1.024 1.021 1.290 0.985 0.831 1.138 1.036

U-GAT-IT 1.065 0.691 0.583 0.662 0.667 0.689 0.686 0.720
CycleGAN 1.293 2.268 1.028 2.159 2.189 1.380 1.420 1.677
StarGAN 2.456 2.757 2.373 2.497 2.370 2.180 2.342 2.425
CalliGAN 1.331 1.808 1.615 0.916 1.423 1.001 1.208 1.329

ZiGAN w/o L𝑠𝑡𝑦𝑙𝑒 1.019 0.889 0.973 0.991 1.302 0.817 0.879 0.987
ZiGAN w/o L𝑎𝑙𝑖𝑔𝑛 0.517 0.582 0.616 0.574 0.883 0.720 0.729 0.660

ZiGAN(Ours) 0.279 0.868 0.476 0.678 0.687 0.663 0.654 0.615



Figure 1: Visual comparison of the results of the first to fifth styles. The first row shows the source characters. The second row
shows the characters generated by ZiGAN. And the third row shows the ground truth.



Figure 2: Visual comparison of the results of the sixth to ninth styles. The first row shows the source characters. The second
row shows the characters generated by ZiGAN. And the third row shows the ground truth.
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