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ABSTRACT
In this paper, we propose a novel data augmentation strategy named
Cut-Thumbnail, that aims to improve the shape bias of the network.
We reduce an image to a certain size and replace the random region
of the original image with the reduced image. The generated image
not only retains most of the original image information but also has
global information in the reduced image. We call the reduced im-
age as thumbnail. Furthermore, we find that the idea of thumbnail
can be perfectly integrated with Mixed Sample Data Augmenta-
tion, so we put one image’s thumbnail on another image while the
ground truth labels are also mixed, making great achievements on
various computer vision tasks. Extensive experiments show that
Cut-Thumbnail works better than state-of-the-art augmentation
strategies across classification, fine-grained image classification,
and object detection. On ImageNet classification, ResNet-50 archi-
tecture with our method achieves 79.21% accuracy, which is more
than 2.8% improvement on the baseline.
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1 INTRODUCTION
In recent years, the deep convolutional neural network (CNN) has
made remarkable achievements in computer vision, including im-
age classification [15, 20, 28, 31], object detection [12, 14, 27], and
semantic segmentation [3, 24]. However, its huge structure and
massive parameters pose a challenge to the training of the network.
Many data augmentation and regularization approaches have been
proposed to solve this problem.

As an important technology to generate more useful data from
existing ones, data augmentation can significantly enhance net-
work performance. The most commonly used data augmentation
methods are spatial transformations, including random scale, crop,
flip and random rotation [20]. Cutout [6] and Random Erasing [41]
randomly set black blocks or place noises in one or more areas.
Color distortion [31] changes the brightness of training images.
Mixup [40] and CutMix [38] combines the two images with differ-
ent strategies, and two images’ labels are also mixed. In a word, the
most existing data augmentation techniques improve the general-
ization ability and robustness of the network by changing spatial
or color information, adding noise, or mixing information from
different images.
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Figure 1: Comparison between existing data augmentation
methods with Cut-Thumbnail.

In this paper, we introduce the idea of thumbnail into data aug-
mentation and propose a novel augmentation strategy named Cut-
Thumbnail. Figure 1 illustrates the comparison between existing
data augmentation methods and Cut-Thumbnail. We reduce an
image to a small size thumbnail and replace the original image’s
random area with it. Though being reduced, the thumbnail still
contains most semantic information of the original image. By doing
this, we not only make the network learn the features of images
with different sizes, but also strengthen the network’s capture of
shape information. Furthermore, Cut-Thumbnail can be perfectly
integrated with Mixed Sample Data Augmentation (MSDA), which
refers to the combination of data samples according to a certain
strategy. It is because when using a thumbnail to replace another
image’s random area, the thumbnail can completely contain the
global information of its original image without taking up much se-
mantics of another image. Therefore, we use a thumbnail to replace
another image’s random region, and mix their labels with certain
weights. Besides, we find introducing two or more thumbnails into
another image can also improve the network’s effect on specific
datasets. We specify a series of strategies around Cut-Thumbnail
that will be presented in Section 3.

To demonstrate Cut-Thumbnail’s effectiveness, we conduct ex-
tensive experiments on various CNN architectures, datasets, and
tasks. On ImageNet [28], Cut-Thumbnail can improve the accu-
racy of ResNet-50 [15] from 76.32% to 79.21%, more effective than
state-of-the-art method CutMix, which accomplishes 78.40%. On CI-
FAR100 [19], applying Cut-Thumbnail to ResNet-56 andWideResNet-
28-10 [39] has improved the classification accuracy by +3.07%
and +2.45%, respectively. Furthermore, On the CUB-200-2011 [35]
dataset for the fine-grained classification task, Cut-Thumbnail in-
creases the accuracy of ResNet-50 from 85.31% to 87.76%. On the
Pascal VOC [8] dataset for the object detection task, our method
increases the mAP of RetinaNet [23] from 70.14% to 72.16%.

To sum up, this paper makes the following contributions:

• We propose Cut-Thumbnail, a simple but effective data aug-
mentation strategy first introducing the idea of thumbnail to
data augmentation, which aims to make the network better
learn the shape information.

• We combine Cut-Thumbnail with MSDA, the generated im-
ages of Thumbail are natural and contain most semantics of
the reduced image.

• We conduct extensive experiments on classification, fine-
grained classification and object detection. Comparing with
state-of-the-art data augmentation methods, the experimen-
tal results demonstrate that our method achieves the best
performance.

2 MOTIVATION
Shape v.s Texture: Recent studies have shown that CNN is texture-
biased, 𝑖 .𝑒 . CNN relys more on local texture rather than global shape
in decision-making [1, 2, 9, 10, 29]. CNN can classify texture images
well, but it is not sensitive to the shape of objects. For example, CNN
tends to classify an image with a cat shape filled with an elephant
skin texture as an elephant instead of a cat [10]. [10, 29] denote that
improving the shape bias of CNN can improve the accuracy and
robustness. However, the shape information contained in image is
scarce and vague, making the network difficult to capture effective
shape information.

Figure 2: This image shows an example of reduced images
that we call thumbnails. After reducing the image to a cer-
tain size 112×112 or 56×56, we can still recognize a dog in
the image even though lots of local details are lost.

.

Different from [10] which consumes lots of computational over-
head to generate images with little texture information, we push
forward a novel data augmentation strategy to force the network
to perceive more shape information by utilizing the property of
thumbnail. As shown in Figure 2, we can still recognize that there
is a dog in the image after reducing the image to a certain size. We
call the reduced image as a thumbnail. Although lots of the texture
details are lost, we can still identify the target in the thumbnail.
This is because human usually relies on the global information of
the image [7, 21], such as shape, for image classification, which
is still reserved by the thumbnail. We consider using the shape
information that the thumbnail contained is a simple but effective
way to improve the shape bias of network. When we put the thumb-
nail on its original image, the network can learn both the shape
information and the texture information simultaneously. To verify
whether the network trained with Cut-Thumbnail can improve the
shape bias of CNN, we conduct an experiment that can be seen in
SubSection 3.4. The result shows that our network performs better
on the dataset with the grayscale images that contain more shape
information and less texture information than other methods.
Cut-Tumbnail v.s CutMix: While both replacing the image re-
gion, CutMix [38] tends to use a random patch from another image,
which is quite possible to be uninformative. Cut-Tumbnail over-
comes this problem by using the thumbnail, which retains most
semantics of another image. Note that CutMix uses the patch of
the image with no complete shape information, and just strengths
the texture learning of CNN. While Cut-Thumbnail uses thumbnail
that contains complete shape information and improves the shape
bias of CNN. As can be seen in later experiments, this strategy



Figure 3: Illustration of Cut-Thumbnail. We put a single thumbnail or multiple thumbnails on the thumbnail’s original image
or another image, and thus get different strategies.

significantly improves network performance and gets better results
in classification, fine-grained classification, and object detection
than CutMix.

3 OUR APPROACH
Cut-Thumbnail is an effective albeit simple data augmentation
technique for CNN. For a given training sample (𝑥,𝑦) which 𝑥 ∈
R𝑊 ×𝐻×𝐶 denotes the training image and 𝑦 denotes the training
label, we get a thumbnail image 𝑇 (𝑥) by simply taking one pixel
out of a certain number of pixels of the image 𝑥 . We put a single
thumbnail ormultiple thumbnails on the thumbnail’s original image
or another image, and thus get different strategies. Next, we will
introduce them in turn.

3.1 Self Thumbnail (ST)
In our first strategy, we use the thumbnail 𝑇 (𝑥) ∈ R𝑤×ℎ×𝐶 to
replace a random region of the original image 𝑥 and do not change
the label, which is called Self Thumbnail as shown in Figure 3(b).
For a given training sample (𝑥1, 𝑦1), We define this operation as

𝑥 = M ⊙ 𝑥1 + Φ(𝑇 (𝑥1))
𝑦 = 𝑦1

(1)

where (𝑥,𝑦) denote the generated sample, M ∈ {0, 1}𝑊 ×𝐻 is the
binary mask indicating where to drop out and fill in from origin
image and thumbnail, and ⊙ is element-wise multiplication. To
sample the binary maskM, we first sample the bounding box co-
ordinates B = (𝑟𝑥 , 𝑟𝑦, 𝑟𝑤 , 𝑟ℎ) indicating the cropping regions on
𝑥1. The region B in 𝑥1 is removed and filled in with the thumbnail
𝑇 (𝑥1). The box coordinates are uniformly sampled according to

𝑟𝑥 ∼ Unif (0,𝑊 ), 𝑟𝑤 = 𝑤

𝑟𝑦 ∼ Unif (0, 𝐻 ), 𝑟ℎ = ℎ
(2)

where 𝑤,ℎ denote the width and height of the thumbnail 𝑇 (𝑥1),
which are usually set to half the width and height of the original
image. With the cropping region, the binary mask M is decided by
filling with 0 within the bounding box B, otherwise 1. Φ(·) denotes
the padding operation that generates an image with the same size
as 𝑥1. Φ first generates a binary mask M̃ = 1 − M, 1 is a binary
mask filled with ones. The bounding box coordinates B still exists
in M̃, so we put the thumbnail𝑇 (𝑥1) in B and the generated image
is Φ(𝑇 (𝑥1)). This strategy enables the network to learn the same
image at different scales. In addition to the information obtained

from the original image, the thumbnail can provide the global infor-
mation for the training, which plays a guiding role in the network
learning.

3.2 Mixed Single Thumbnail (MST)
The idea of thumbnail is very suitable for Mixed Sample Data Aug-
mentation (MSDA), which involves combining data samples ac-
cording to a certain policy to create an augmented data set. In
our second strategy, one image’s random region is replaced by an-
other’s thumbnail where their labels are multiplied by different
weights and added, so that most of the generated images contain
the information of two images as shown in Figure 3(c). We call this
strategy as Mixed Single Thumbnail. For a pair of given training
sample(𝑥1, 𝑦1) and (𝑥2, 𝑦2), we define this combining operation as

𝑥 = M ⊙ 𝑥1 + Φ(𝑇 (𝑥2))
𝑦 = (1 − 𝜆)𝑦1 + 𝜆𝑦2

(3)

whereM, Φ, and the size of thumbnail𝑇 (𝑥2) is set in the same way
as Self Thumbnail. This strategy combines the idea of thumbnail
with MSDA, so that the network can learn the original informa-
tion of one image and the complete information of another image
simultaneously.

3.3 Mixed Multiple Thumbnails (MMT)
One of thumbnail’s advantages is that it can introduce one image’s
complete semantics by occupying a small area of another image.
Besides, unlike the simple overlay in Mixup, Cut-Thumbnail does
not make the original image appear unnatural. Therefore, we can
further expand Cut-Thumbnail’s superiority by putting two or more
thumbnails on another image as shown in Figure 3(d). Take adding
𝑛 thumbnails to another image as an example, for given training
samples (𝑥1, 𝑦1) , (𝑥2, 𝑦2) , ... , (𝑥𝑛, 𝑦𝑛), we define this combining
operation as

𝑥 = M ⊙ 𝑥1 +
𝑛∑︁
𝑖=2

Φ𝑖 (𝑇 (𝑥𝑖 ))

𝑦 = 𝜆1𝑦1 +
𝑛∑︁
𝑖=2

𝜆𝑖𝑦𝑖

(4)

where M contains 𝑛 − 1 bounding box coordinates B2, B3, ... , Bn

corresponding to Φ2, Φ3, ... , Φ𝑛 . Unlike CutMix, the weight of
image labels 𝜆𝑖 is not determined by the area of the thumbnails. It is
because CutMix only adds the random parts of two images, but the



thumbnail has most of the original image’s semantics, it should have
a higher weight, which can be seen in Section 4.5. Mixed Multiple
Thumbnails can make each training image contain more images’
global information, improving the network training efficiency. We
find that Mixed Multiple Thumbnails significantly improves the
network performance on datasets with the larger image size and
less data volume like CUB-200-2011 [35].
During training, we randomly choose 80% of batches using Cut-
Thumbnail rather than every batch. We call the rate of batches
applying Cut-Thumbnail as 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 . Note that although
our method has achieved a high level of improvement, we have not
deliberately sought for the optimal combination of these strategies
due to the limitation of time and computing resources. In other
words, the potential of Cut-Thumbnail can be explored in future
work.

3.4 Why Does Cut-Thumbnail Help?
Graysacle image recognition: The shape information contained
in thumbnail, together with the texture bias of CNN, further moti-
vates our proposed method that aims to improve the shape bias of
CNN. To verify that Cut-Thumbnail can indeed make the network
learn more shape information, we use grayscale images as the test
set to compare the performance of the networks trained by different
methods. Due to the lack of color information, graysacle images
have less texture details, but its shape information is not affected.
Therefore, the recognition of grayscale image requires the network
to rely more shape information compared with color images.

Model Greyscale Image(%)
ResNet-50(Baseline) 64.70
ResNet-50+CutMix 67.61(+2.91)
ResNet-50+ST 66.95(+2.25)
ResNet-50+MST 68.63(+3.93)

Table 1: Comparison of CutMix and Cut-Thumbnail on
greyscale image with ResNet-50. ST denotes Self Thumbnail
and MST denotes Mixed Single Thumbnail.

We transform all the images in ImageNet’s verification set into
grayscale images as a new verification set. The tested networks are
trained on regular Imagenet training set with different methods, and
the training details can be seen in SubSection 4.1. As demonstrated
in Table 1, The network trained with Mixed Single Thumbnail(MST)
has achieved the highest results(+3.93%) on grayscale image. The
performance on grayscale image of our method shows that the
shape information contained in the thumbnail is helpful for improv-
ing the shape bias of CNN. In the absence of texture information,
the grayscale image recognition of network trained by MST is bet-
ter than CutMix, which shows that our method can enhance the
learning of image shape.
Network visualization: To analyze what the model trained with
Cut-Thumbnail learns, we compute class activation mapping (CAM)
for ResNet-50 model trained with ST and MST on ImageNet. We
also show the CAM for models trained with baseline augmentation
and CutMix for comparison in Figure 4. The models trained with

Figure 4: Class activation mapping (CAM) [42] for ResNet-
50model on ImageNet, with baseline augmentation, CutMix,
ST or MST.

ST and MST both tend to focus on large important regions, while
the network trained by CutMix tends to focus on local regions. This
proves that the network trained with Cut-Thumbnail is biased to
the global information of the image for object recognition, which is
different from CutMix that makes the network pay more attention
to the local regions.

4 EXPERIMENT
In this section, we investigate the effectiveness of Cut-Thumbnail
for several major computer vision tasks. We first conduct exten-
sive experiments on image classification and fine-grained image
classification. Next, we study the effect of Cut-Thumbnail on ob-
ject detection. All experiments are performed with Pytorch [25] on
Tesla M40 GPUs.

4.1 ImageNet Classification
ImageNet-1K [28] contains 1.2M training images and 50K validation
images labeled with 1K categories. We use the standard augmenta-
tion setting for ImageNet dataset such as resizing, cropping, and
flipping. For fair comparison, the model is trained from scratch for
300 epochs with batch size 256 and the learning rate is decayed
by the factor of 0.1 at epochs 75, 150, 225, as done in CutMix [38].
We evaluate classification accuracy on the validation set and the
highest validation accuracy is reported over the full training course
following the common practice. For Self Thumbnail (ST) and Mixed
Single Thumbnail (MST), we set the 𝑡ℎ𝑢𝑚𝑏𝑛𝑎𝑖𝑙_𝑠𝑖𝑧𝑒 to 112×112



Model Method Accuracy(%)
·

ResNet-18

baseline 69.90±0.09
+CutMix 70.30±0.03
+ST (ours) 71.92±0.04
+MST (ours) 71.34±0.07

ResNet-50

baseline 76.32±0.02
+Cutout 77.07±0.04
+Mixup 77.42±0.06
+AutoAugment* 77.63
+DropBlock* 78.13±0.05
+CutMix 78.40±0.04
+ST (ours) 77.74±0.05
+MST (ours) 79.21±0.04

Table 2: Summary of validation accuracy of the ImageNet
classification results based on ResNet-18 and ResNet-50. ST
denotes Self Thumbnail and MST denotes Mixed Single
Thumbnail. We report average over 3 runs. ‘*’ means results
reported in the original paper.

which is half of the image width and height, and 𝜆 in MST is set
to 0.25. We explore the performance of different data augmenta-
tion methods on ResNet-18 and ResNet-50 [15]. The results are
illustrated on Table 2.
Performance onResNet-18:With ST, we improve the accuracy of
ResNet-18 from 70.10% to 71.92% (+1.82%), which surpasses CutMix
significantly. The improvement of CutMix on ResNet-18 is not
obvious, we speculate that it is because the images generated by
CutMix are relatively complex for ResNet-18 with weak learning
ability. ST uses the image’s own thumbnail to replace its random
region without adding the extra image information, which may be
more beneficial to the training of small networks like ResNet-18.
Performance on ResNet-50: ResNet-50 is a widely used CNN ar-
chitecture for image recognition. We can observe that MST achieves
the best result, 79.21% top-1 accuracy, among the considered aug-
mentation strategies. Cutout [6] randomly masks square sections
of the image. We set the mask size for Cutout to 112 × 112 and the
location for dropping out is uniformly sampled. Inspired by Cutout,
DropBlock [11] randomly drops some contiguous regions of a fea-
ture map. MST outperforms Cutout and DropBlock by +2.14% and
+1.08%, respectively.

Mixup and CutMix are the successful variants of MSDA, which
achieve excellent results in classification tasks. We set 𝛼 = 1 in both
Mixup [40] and CutMix. MST outperforms Mixup and CutMix, by
+1.79% and +0.81%, respectively. It shows that the images generated
with thumbnail are more conducive to network learning.

Note that ST also achieves a great performance on ResNet-50.
ST utilizes only one image’s information, but it performs better
than Mixup using multiple images’ information. Besides, AutoAug-
ment [5] uses reinforcement learning to find a combination of
existing augmentation policies. ST, by simply putting the image’s
own thumbnail on itself, even exceeds the performance of AutoAug-
ment, which demonstrates the effectiveness and generality of our
method.

Figure 5: Training and validation accuracy comparison
among baseline, CutMix andMST on ImageNet with ResNet-
50.

Training and validation accuracy comparison among baseline,
CutMix and MST on ImageNet with ResNet-50 can be seen in Fig-
ure 5. Due to the mixing of labels and images, the accuracy of MSDA
methods such as Mixup and CutMix is far lower than the baseline,
and MST is no exception. But the validation accuracy of CutMix
and MST is much higher than baseline and the accuracy of MST
is higher than that of CutMix, which shows that our method can
significantly improve the generalization of the network.

4.2 Tiny ImageNet Classification
Tiny ImageNet dataset is a subset of the ImageNet dataset with 200
classes. Each class has 500 training images, 50 validation images,
and 50 test images. All images are with 64 × 64 resolution. We
test the performance of ResNet-110 on this dataset. The learning
rate is initially set to 0.1 and decayed by the factor of 0.1 at epochs
150 and 225. For ST and MST, we set the size of the thumbnail
to 32×32, and 𝜆 in MST is set to 0.25. The hole size of Cutout is
set to 32×32. For Mixup and CutMix, the hyper-parameter 𝛼 is set
to 1.0. The results are summarized on Table 3. MST achieves the
best performance 66.45% on Tiny ImageNet. This proves that our
method is also generalized for datasets with different data sizes.

Model Accuracy(%)
ResNet-110 (baseline) 62.42±0.02
ResNet-110+Cutout 64.71±0.09
ResNet-110+Mixup 65.34±0.14
ResNet-110+CutMix 66.13±0.02
ResNet-110+ST (ours) 64.85±0.04
ResNet-110+MST (ours) 66.45±0.03

Table 3: Comparison of state-of-the-art data augmentation
methods on Tiny ImageNet with ResNet-110.

4.3 CIFAR Classification
The CIFAR10 [19] dataset collects 60,000 32×32 color images of 10
classes, each with 6000 images including 5,000 training images and
1,000 testing images. The CIFAR100 [19] dataset has the same num-
ber of images but 100 classes. To test the universality of our method



Figure 6: CIFAR100 validation accuracy against 𝒕𝒉𝒖𝒎𝒃𝒏𝒂𝒊𝒍_𝒔 𝒊𝒛𝒆, 𝒑𝒂𝒓𝒕 𝒊𝒄 𝒊𝒕𝒑𝒂𝒕 𝒊𝒐𝒏_𝒓𝒂𝒕𝒆, and 𝝀 with ResNet-56. We set
𝒕𝒉𝒖𝒎𝒃𝒏𝒂𝒊𝒍_𝒔 𝒊𝒛𝒆 = 16, 𝒑𝒂𝒓𝒕 𝒊𝒄 𝒊𝒕𝒑𝒂𝒕 𝒊𝒐𝒏_𝒓𝒂𝒕𝒆 = 0.8, and 𝝀 = 0.25 as the default parameter settings.

.

under different network structures, ResNet-56 and WideResNet-28-
10 are selected as baseline. For WideResNet-28-10, the learning rate
is decayed by the factor of 0.1 at epochs 60, 120, 160; for ResNet-56,
the learning rate is decayed by the factor of 0.1 at epochs 150, 225.
For ST and MST, we set the 𝑡ℎ𝑢𝑚𝑏𝑛𝑎𝑖𝑙_𝑠𝑖𝑧𝑒 to 16×16, and 𝜆 in MST
is set to 0.25. The hole size of Cutout is set to 16×16. For Mixup and
CutMix, the hyper-parameter 𝛼 is set to 1.0.

Model Method Accuracy(%)
·

ResNet-56

baseline 73.71±0.12
+Cutout 74.64±0.15
+Mixup 75.97±0.26
+CutMix 76.57±0.13
+ST (ours) 75.58±0.11
+MST (ours) 76.78±0.08

WideResNet-28-10

baseline 81.06±0.03
+Cutout 81.86±0.08
+Mixup 82.57±0.12
+CutMix 83.13±0.06
+ST (ours) 81.41±0.04
+MST (ours) 83.35±0.05

Table 4: Comparison of Top-1 accuracy of ResNet-56 and
WideResNet-28-10 on the CIFAR100 validation set. MST ob-
tains the best performance on both networks.

As shown in Table 4, on CIFAR100 dataset, MST provides bet-
ter results over ResNet-56 and WideResNet-28-10 compared to
Cutout, Mixup and CutMix. For ResNet-56, MST achieves a sig-
nificant 3.07% improvement over the base model. ST outperforms
Cutout on ResNet-56, showing that pasting the image’s own thumb-
nail is better than black block. Generalization is an essential prop-
erty of data augmentation methods, experiments show that our
method is suitable for networks with different structures.

As shown in Table 5, on CIFAR10 dataset, MST improves the per-
formance by +1.24% on ResNet-56, but slightly lower than 1.33% of

Model Accuracy(%)
ResNet-56 (baseline) 94.00±0.14
ResNet-56+Cutout 94.80±0.18
ResNet-56+Mixup 95.01±0.16
ResNet-56+CutMix 95.33±0.11
ResNet-56+ST (ours) 95.03±0.09
ResNet-56+MST (ours) 95.24±0.12

Table 5: Impact of Cut-Thumbnail on CIFAR10 for ResNet-
56.

CutMix.We consider it may be that images in CIFAR10 are relatively
simple with low pixels, the information provided by thumbnails is
limited. But for CIFAR10 and CIFAR100 with images of very small
sizes, our method can also achieve significant performance improve-
ment, which demonstrates Cut-Thumbnail applies to various types
of datasets.

4.4 Ablation Studies
We conduct ablation studies on CIFAR100 dataset using the same
experimental settings of ResNet-56 in Subsection 4.3.
Analysis on 𝒕𝒉𝒖𝒎𝒃𝒏𝒂𝒊𝒍_𝒔 𝒊𝒛𝒆: We evaluate Cut-Thumbnail with
𝑡ℎ𝑢𝑚𝑏𝑛𝑎𝑖𝑙_𝑠𝑖𝑧𝑒 ∈ {10,12,14,16,18,20}. As shown in Figure 6(a), with
the increasing of 𝑡ℎ𝑢𝑚𝑏𝑛𝑎𝑖𝑙_𝑠𝑖𝑧𝑒 , the accuracy first rises and then
decreases after reaching the highest when the 𝑡ℎ𝑢𝑚𝑏𝑛𝑎𝑖𝑙_𝑠𝑖𝑧𝑒 is
16, which is half of the image width or height. It denotes that the
small thumbnail does not have enough semantics to guide network
training, while the large one affects the semantics of the original
image. Therefore, we generally select the thumbnail with the half
width and height of the original image.
Effect of the 𝒑𝒂𝒓𝒕 𝒊𝒄 𝒊𝒑𝒂𝒕 𝒊𝒐𝒏_𝒓𝒂𝒕𝒆: Specially, we call the ratio of
batches using Cut-Thumbnail to all batches as the𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 .
As shown in Figure 6(b), when the participation_rate between 0.7
and 0.9, the difference in network performance is not obvious,
but they are significantly better than the performance when the
𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 is 1. This shows that our method is not sensitive



to 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 as long as the 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 is higher
than 0.7 and not to be 1. We consider the reason may be that the
network needs to supplement a small number of normal images for
comparative learning with thumbnail.
Exploration to 𝝀: We test the effect of 𝜆 on the training, which is
the weight multiplied by the image label. The results are given in
Figure 6(c), when the 𝜆 is set to 0.25, the model performance is the
best. Besides, the difference in network performance is not obvious
either when the 𝜆 is between 0.25 and 0.35. We consider it because
the thumbnail contains most semantics of the original image, so
multiplying the thumbnail’s label with a higher weight is beneficial
to network training.

4.5 Fine-grained Image Classification
The fine-grained image classification aims to recognize similar
subcategories of objects under the same basic-level category. The
difference of fine-grained recognition compared with general cat-
egory recognition is that fine-grained subcategories often share
the same parts and usually can only be distinguished by the subtle
differences in texture and color properties of these parts. CUB-200-
2011 [35] is a widely-used fine-grained dataset which consists of
images in 200 bird species. There are about 30 images for training
for each class.

To verify the generalization of different types of computer vision
tasks, we use ResNet-50 to test the performance of our method
on CUB-200-2011. The training starts from the model pretrained
on ImageNet. The mini-batch size is set to 16 and the number
of training epoch is set to 95. The learning rate is initially set
to 0.001 and decayed by the factor of 0.1 at epochs 30, 60 and 90.
During network training, the input images are randomly cropped to
448×448 pixels after being resized to 600×600 pixels and randomly
flipped. As shown in Table 6, with Mixed Double Thumbnail (MDT)
which denotes two images’ thumbnails are put on another image, we
improve the accuracy of ResNet-50 from 85.31% to 86.72%(+1.41%),
which surpasses previous data augmentation methods significantly.
It also shows that the shape information has a high gain effect even
on fine-grained image classification which requires more subtle
differences.

Model Accuracy(%)
ResNet-50 (baseline) 85.31±0.21
ResNet-50+Cutout 85.68±0.13
ResNet-50+Mixup 85.91±0.31
ResNet-50+CutMix 86.12±0.16
ResNet-50+ST (ours) 85.72±0.11
ResNet-50+MST (ours) 86.56±0.16
ResNet-50+MDT (ours) 86.72±0.12

Table 6: Performance of data augmentation methods on
CUB-200-2011. MDT denotes Mixed Double Thumbnial.
Both MDT and MST outperform CutMix.

Performance ofMixedMultiple Thumbnails:Unlike the above
classification datasets, the number of each category’s images in

CUB-200-2011 is smaller, and each image’s resolution is higher. This
drives us to put more than one thumbnail on another image, as
shown in Figure 7. It is because putting more thumbnails on each
image will not take up much semantics of the original image with
such high resolution. We set the thumbnail size to 130×130, the
weight of the origin image label 𝜆1 is set to 0.6, and the weight
of the thumbnail label 𝜆𝑖 is set to 0.2. As shown in Figure 8, with
the increase in the number of thumbnails, the accuracy first rises
and then falls and achieves the highest (86.62%) when the number
is two. Besides, we note that the original image still retains more
than 60% of area when mixed with 5 thumbnails, so the network
performance can still be significantly improved.

Figure 7: Examples of training images using MixedMultiple
Thumbnails on CUB-200-2011.

Figure 8: Performance of Mixed Multiple Thumbnails with
different number of mixed thumbnails on CUB-200-2011.
The network achieves the best performance when 2 thumb-
nails are pasted on each training image.

Transfer Learning of PretrainedModel: ImageNet pre-training
is de-facto standard practice for many visual recognition tasks. We
examine whether Cut-Thumbnail pre-trained models lead to better
performances in fine-grained image classification. As shown in
Table 7, the ResNet-50 with MST pre-trained model performs better



than baseline. Furthermore, on the basis of taking the network
pretrained by MST as the backbone, we have superimposed MST
in the training, and the result achieves 87.76%, which is more than
2.45% improvement on the baseline.

Model Accuracy(%)
ResNet-50 (baseline) 85.31±0.21
ResNet-50+MST 86.56±0.16
ResNet-50+MST pre-trained 86.17±0.12
ResNet-50+MST pre-trained+MST 87.76±0.13

Table 7: Fine-grained image classification results on CUB-
200-2011 with different backbone models.

4.6 Object Detection in PASCAL VOC
In this subsection, we show Cut-Thumbnail can also be applied
for training object detector in Pascal VOC [8] dataset. We use
RetinaNet [23] framework composed of a backbone network and
two task-specific subnetworks for the experiments. The ResNet-
50 backbone which is responsible for computing a convolutional
feature map over an entire input image is initialized with ImageNet-
pretrained model and then fine-tuned on Pascal VOC 2007 and 2012
trainval data. Models are evaluated on VOC 2007 test data using
the mAP metric. We follow the fine-tuning strategy of the original
method.

Model mAP(%)
RetinaNet (baseline) 70.14±0.17
RetinaNet+CutMix pre-trained 71.01±0.21
RetinaNet+ST pre-trained (ours) 71.01±0.15
RetinaNet+MST pre-trained (ours) 72.16±0.19

Table 8: Object detection results on Pascal VOC with Reti-
naNet. The model pre-trained with MST achieves the best
accuracy.

As shown in Table 8, the model pre-trained with MST achieves
the best accuracy (72.16%), +2.02% higher than the baseline per-
formance(70.14%). It proves that our method is suitable for object
detection task. Besides, CutMix works better than ST in Imagenet
classification task, but the model pre-trained by ST performs equal
to CutMix in object detection task. The results suggest that the
model trained with Cut-Thumbnail can better capture the target
objects.

5 RELATEDWORK
Regularization: The regularization methods are effective for train-
ing neural networks. Dropout [30] injects noise into feature space
by randomly zeroing the activation function to avoid overfitting.
Besides, DropConnect [37], Spatial Dropout [33], Droppath [22],
DropBlock [11] and Weighted Channel Dropout [16] were also pro-
posed as variants of Dropout. Besides, Batch Normalization [17]

improves the gradient propagation through network by normalizing
the input for each layer.
Data augmentation: Data augmentation generates virtual train-
ing examples in the vicinity of the given training dataset to improve
the generalization performance of network. Random cropping and
horizontal flipping operatings [20] are the most commonly used
data augmentation techniques. By randomly removing contiguous
sections of input images, Cutout [6] improves the robustness of
network. Random Erasing [41] randomly selects a rectangle region
in an image and erases its pixels with random values. Hide-and-
Seek [26] and GridMask [4] can be regarded as upgraded versions of
Cutout. AutoAugment [5] improves the inception-preprocess using
reinforcement learning to search existing policies for the optimal
combination.
Mixed SampleDataAugmentation (MSDA):Mixed SampleData
Augmentation has received increasing attention in recent years.
Input mixup [40] creates virtual training examples by linearly inter-
polating two input data and corresponding one-hot labels. Manifold
mixup [34] is the variance of mixup, which encourages neural net-
works to predict less confidently on interpolations of hidden repre-
sentations. Random image cropping and patching randomly [32]
crops four images and patches them to create a new training im-
age. Inspired by Cutout and Mixup, CutMix [38] cut patches and
pasted among training images. Based on CutMix, Attentive Cut-
Mix [36], FMix [13] and Puzzle Mix [18] aim to capture the most
important region(s) of one image and paste it(them) on another
one. Cut-Thumbnail can be perfectly integrated with MSDA, be-
cause Cut-Thumbnail can introduce most semantics of one image
to another image with occupying a small area of it.

6 CONCLUSION
We propose a simple, general and effective data augmentation
method named Cut-Thumbnail, which is the first data augmentation
method that introduces the idea of thumbnail to data augmentation
strategy. We reduce an image to a small size and put it on itself
or another image. Different strategies are designed to verify the
effectiveness of the thumbnail, and finally Mixed Single Thumbnail
works best on different visual tasks. On the ImageNet dataset, Cut-
Thumbnail increases the baseline by 2.89%. In fine-grained image
classification, Cut-Thumbnail increases the accuracy of ResNet-50
from 85.31% to 87.76% on CUB-200-2011. In the task of Pascal VOC
object detection, we improve the baseline by 2.02% on RetinaNet.
Extensive experiments have proved that Cut-Thumbnail makes the
network better learn shape information and is suitable for different
networks, datasets, and tasks. For future work, we plan to find
better strategies and hyper-parameters for Cut-Thumbnail using
reinforcement learning and apply Cut-Thumbnail to more types of
visual tasks.
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