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ABSTRACT

Translating e-commercial product descriptions, a.k.a product-oriented

machine translation (PMT), is essential to serve e-shoppers all over
the world. However, due to the domain specialty, the PMT task is
more challenging than traditional machine translation problems.
Firstly, there are many specialized jargons in the product descrip-
tion, which are ambiguous to translate without the product image.
Secondly, product descriptions are related to the image in more
complicated ways than standard image descriptions, involving vari-
ous visual aspects such as objects, shapes, colors or even subjective
styles. Moreover, existing PMT datasets are small in scale to support
the research. In this paper, we first construct a large-scale bilingual
product description dataset called Fashion-MMT, which contains
over 114k noisy and 40k manually cleaned description translations
with multiple product images. To effectively learn semantic align-
ments among product images and bilingual texts in translation,
we design a unified product-oriented cross-modal cross-lingual
model (UPOC?) for pre-training and fine-tuning. Experiments on
the Fashion-MMT and Multi30k datasets show that our model signif-
icantly outperforms the state-of-the-art models even pre-trained on
the same dataset. It is also shown to benefit more from large-scale
noisy data to improve the translation quality. We will release the
dataset and codes at https://github.com/syuqings/Fashion-MMT.

CCS CONCEPTS

+ Computing methodologies — Machine translation; Natu-
ral language generation.

KEYWORDS
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timodal Transformer

1 INTRODUCTION

With the rapid development of e-commerce, more and more people
go shopping online because of its convenience and efficiency. In
order to better serve e-shoppers all over the world, it is necessary to
translate e-commercial product descriptions into various languages.
Therefore, the product-oriented machine translation (PMT) task
[5, 6, 47] has received growing research attentions recently.
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SRC: Windowpane checks create a
neat grid atop this jaunty knotted tank.
NMT: WY BN AL RE
TERITRER G T — MRS A%

GT: WRTERSAEX M F7 U5 4T 45
i BT T — NSRRI

SRC: are having fun playing
with a toy car.

NMT: A B ZAET MR
GT: N B BT A EGRRIT .

Figure 1: Examples of MMT and PMT tasks. The colored text
are visually relevant phrases. The underlined words are spe-
cialized jargons which are ambiguous and translated incor-
rectly by current machine translation system.

The domain specialty makes the PMT task more challenging than
traditional machine translation problems. Firstly, product descrip-
tions contain many specialized jargons, which could be ambiguous
in different contexts. It is hard to understand and translate these de-
scriptions without the corresponding product images. For example,
in Figure 1, the word “checks” in the source product description
means “grids” and the word “tank” means “vest”. The meanings of
these two words are different from their common meanings. There-
fore, the current text-based machine translation system cannot
translate them correctly. Secondly, although the visual context is
beneficial to the translation, the relevance between product image
and text description is more complex than that in conventional
multimodal machine translation (MMT) task. As shown in Figure 1,
in the MMT task, the text description explicitly describes the major
objects in the image. However, in the PMT task, text descriptions
are related to images in very different aspects, such as products,
shapes, colors or even more subjective styles. Therefore, it requires
PMT models to dynamically extract different types of information
from images to help the text translation. Last but not least, existing
resources for PMT research are rather limited, for example, the
latest PMT dataset IKEA [47] contains only 3,600 data samples in
the <image, source sentence, target translation> triplet format. It is
extremely expensive to manually annotate translations for product
descriptions as it demands the annotator to master multiple lan-
guages as well as knowledge about the products. The scarcity of
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PMT datasets further constrains the automatic translation quality
of product descriptions.

In this paper, we construct a large-scale bilingual product de-
scription dataset, Fashion-MMT, which is based on automatically
crawled product images and English descriptions from e-commerce
website [40]. The dataset covers various fashion products from 78
categories, including dresses, shoes, pants, sunglasses, earrings and
so on. We create two types of translation annotations. The first
type, called Fashion-MMT(L), contains 114,257 automatic Chinese
translations of original English product descriptions via a state-of-
the-art text-based machine translation system. Although it is easy
to achieve large-scale, such translations are noisy. The second type,
called Fashion-MMT(C), is a cleaned subset of Fashion-MMT(L) and
contains 40,000 <image, English description, Chinese translation>
triplets with the manually annotated Chinese translations.

In order to take advantage of the large-scale Fashion-MMT
dataset to learn semantic alignments among product images and
bilingual texts, we propose a Unified Product-Oriented Cross-lingual
Cross-modal (UPOC?) model for pre-training and fine-tuning. The
UPOC? model is based on multimodal transformer [9, 24, 28] and
we design three proxy tasks to effectively learn the inter rela-
tionships among images and bilingual texts in pre-training, in-
cluding multi-modal translation language modeling (MTLM), im-
age source-sentence matching (ISM), and product attribute predic-
tion (ATTP) tasks. Experimental results on Fashion-MMT(C) and
Multi30k benchmark datasets show that even pre-trained on the
same dataset without any extra data, our model outperforms the
state-of-the-art model by a large margin due to its better abilities
in cross-modal fusion, i.e., +5.9% BLEU@4 score on Multi30k and
+2.1% on Fashion-MMT(C). When augmented with large-scale noisy
triplet data in Fashion-MMT(L), our model achieves more gains by
+1.4 BLEU@4 score and +17.6 CIDEr score.

The main contributions of our work are summarized as follows:

e We propose the first large-scale PMT dataset Fashion-MMT
to support the PMT research and e-commerce applications.

e We design a unified pre-training and fine-tuning model
UPOC? and three cross-modal cross-lingual proxy tasks to
enhance product machine translation.

e Our model achieves the state-of-the-art results on both the
Multi30k and Fashion-MMT datasets, and demonstrates its
robustness to benefit from large-scale noisy data.

2 RELATED WORKS

Multimodal Machine Translation. The common visual world is
shown to be beneficial to bridge different languages [7, 8, 21, 33,
34]. Therefore, recent research works have paid more attentions
to the Multimodal Machine Translation (MMT) task [16], which
aims to leverage visual context to aid textual machine translation.
Calixto and Liu [2] explore to integrate global image feature into
the encoder or decoder of the NMT model, while works in [1, 3,
12, 26, 41] employ more fine-grained image context such as spatial
image regions via attention mechanism. Caglayan et al. [1] and
Calixto et al. [3] apply concatenation or mean pooling on two
independently attended contexts, including the textual context of
source words and visual context of image regions, when predicting

each target word. To avoid noise of irrelevant information in the
image, Delbrouck and Dupont [12] propose a gating mechanism to
weight the importance of the textual and image contexts. Recently,
more works [22, 27, 39, 42] propose to represent the image with a
set of object features via object detection, considering the strong
correspondences between image objects and noun entities in the
source sentence. Yang et al. [39] propose to jointly train source-
to-target and target-to-source translation models to encourage the
model to share the same focus on object regions by visual agreement
regularization. Yin et al. [42] propose to construct a multi-modal
graph with image objects and source words according to an external
visual grounding model for the alignment of multi-modal nodes.
However, the visual relevance between images and descriptions in
PMT is more complex than MMT, which not only includes explicit
correspondence such as products, but also implicit relevance such
as shape, texture or even subjective style.

E-commerce Related Tasks. Fashion-oriented tasks [19, 38, 40,
43, 44] have been recently studied due to the rapid development of e-
commerce platforms. Han et al. [19] propose to learn compatibility
relationships among fashion items for fashion recommendation.
Zhang et al. [44] propose to generate a short title for user-generated
videos. Yang et al. [40] and Zhang et al. [43] propose to generate
detailed descriptions for product images/videos. Guo et al. [38]
propose to retrieve expected products given a similar product image
and a modifying text description. However, no previous studies
focus on fashion product description translation.

Transformer-based Pre-training. Recently, self-supervised pre-
training has been witnessed a great success on multiple down-
stream tasks. Devlin et al. [14] propose a monolingual pre-trained
language model named BERT and achieves the state-of-the-art
results on eleven natural language processing tasks via simply
pre-training with two self-supervised tasks. Afterwards, multilin-
gual pre-trained language models [10, 11, 14] and multimodal pre-
trained models [9, 23-25, 28, 46] are further proposed to support
multilingual or multimodal scenarios. The multilingual pre-training
models show strong abilities on zero-shot cross-lingual transfer,
while the vision-language pre-training models outperform the state-
of-the-art task-specific models on both vision-language understand-
ing tasks, e.g., image retrieval [18], and generation tasks, e.g. image
captioning [37]. However, there are few works [29, 48] studying
the multimodal multilingual pre-training models, and none of them
verify the effectiveness on MMT or PMT tasks.

3 FASHION-MMT DATASET

3.1 Data Collection

We build the Fashion-MMT dataset based on the fashion captioning
dataset FACAD [40]. The FACAD dataset contains 126,753 English
product descriptions with corresponding product images crawled
from the Nordstrom website. Each description is aligned with av-
erage 6~7 product images of different colors and poses. There are
also product category and attributes labels for each product.

To extend the FACAD dataset for the PMT task, we first auto-
matically translate the English product descriptions into Chinese
with Google English—Chinese translation system. We remove re-
dundant examples and the examples whose English description
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(category) dress
(attributes) ruffle, trim, floral, print, vintage
(en) Ruffle trim and an elaborate floral print amplify the vintage vibes of this
perfectly flared dress.

(zhy) 7 UL FURE AL B RTECR T XKL R R R
(zhe) ML REAHATRE R LT B R T XY ER BT E L.

(category) top

(attributes) windowpane, grid

(en) Windowpane checks create a neat grid atop this jaunty knotted tank.
(zhy) HHFERELXANMLA ST HETRTERAIE T — MBI M% .

(zhe) B B SEIXAFTE 77 DU BAT 45 7 4l LR R T — SN B R A%

Figure 2: Examples from Fashion-MMT(L) and Fashion-
MMT(C) datasets.

Table 1: Data splits of Fashion-MMT datasets.

Dataset ‘ Split ‘ Train  Validation  Test
. #Triplets | 110,257 2000 2,000
Fashion-MMT(L) | umages | 853,503 15974 15,767
. #Triplets | 36,000 2,000 2,000
Fashion-MMT(C) | yppages | 280915 15974 15767

is shorter than 6 words, or longer than 35 words, or the Chinese
translation is shorter than 15 characters. Finally, we obtain 114,257
English-Chinese parallel description pairs with 885,244 product
images, denoted as the Fashion-MMT(L) dataset.

Since the automatically translated Chinese translations contain
noise, we manually clean a subset of the Fashion-MMT(L) dataset
to further benefit the field. We sample 40,000 triplets from Fashion-
MMT(L) dataset and conduct manual annotation on the Alibaba
Data Service platform !. All workers are native Chinese speakers
with good English skills, and are asked to modify the automatically
translated Chinese description given the images and English de-
scription. To ensure annotation quality, each translation is further
reviewed and accepted by another two independent workers. The
whole data collection window is around one month. More than
98.5% of automatic Chinese translations have been post-edited,
and the average Levenshtein distance between before and after
manual edition for each sentence is 20.2. It suggests that the state-
of-the-art text-based machine translation system is far from perfect
to translate product descriptions. We denote the cleaned version
as Fashion-MMT/(C) dataset. Examples from Fashion-MMT(L) and
Fashion-MMT(C) datasets are presented in Figure 2.

Thttps://smartdata.taobao.com

Table 2: Comparison with other MMT datasets. Avg_len de-
notes the average English sentence length. Avg_img denotes
the average number of images for each parallel text pair.

Dataset ‘ #lmage #Triplet Avg len Avg img
Multi30k [16] 31,014 31,014 13.1 1.00
IKEA [47] 3,600 3,600 714 1.00
Fashion-MMT(C) | 312,656 40,000 20.8 7.82
Fashion-MMT(L) | 885,244 114,257 22.6 7.75

3.2 Dataset Statistics

We split each version of Fashion-MMT into three sets as shown
in Table 1. Since the validation and test set should be clean to
correctly evaluate different models, for the Fashion-MMT(L) dataset,
we use the same clean validation and test set with the Fashion-
MMT(C) dataset and exclude the corresponding 4,000 triplets from
the training set.

In Table 2, we compare our Fashion-MMT datasets with other
existing MMT datasets. Both of our Fashion-MMT(C) and Fashion-
MMT(L) datasets have more triplets than the Multi30k [16] bench-
mark and the commercial domain IKEA [47] dataset. Compared
with the IKEA dataset, our Fashion-MMT datasets covers more
diverse fashion product categories, while the IKEA dataset only
focuses on furnishings. Furthermore, for each parallel text pair
in the Fashion-MMT, there are multiple images associated with
it, while previous MMT datasets only contain one image for each
parallel text. Multiple product images are more common in the
real-world scenario as products on the e-commerce platform are
usually associated with more than one image with different poses
or colors, showing various product details.

4 UPOC?: A UNIFIED PRE-TRAINING AND
FINE-TUNING FRAMEWORK FOR PMT

In this section, we introduce our UPOC? model and the proposed
cross-modal cross-lingual pre-training tasks for the product de-
scription translation. Figure 3 illustrates the architecture of our
UPOC? model. It is stacked with multiple multi-layer transformer
encoders and follows a unified pre-training and fine-tuning scheme
[14, 25, 46]. We first pre-train our model with three cross-modal
cross-lingual pre-training tasks to effectively learn semantic align-
ments between images and bilingual texts, including multimodal
translation language modeling (MTLM), image source-sentence
matching (ISM) and product attribute prediction (ATTP). Then, we
fine-tune the pre-trained model for the PMT task.

4.1 Model Architecture

Input Representation. The input sequence is the concatenation
of Image-Source-Target triplet (V, X, Y), where V is the global
embedding sequence of product images, X is the word embedding
sequence of the source language product description and Y is the
word embedding sequence of the target language translation. For
eachv; in V = {vg, - ,v;,--- ,uN}, We extract the global visual
feature for the i-th image via ResNet-101 [20]. Then, a linear layer
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Figure 3: Illustration of the proposed UPOC? model based on the cross-modal cross-lingual pre-training framework. Three
independent transformer encoders are first employed to capture the intra context of each modality and language, and then a
multi-layer cross encoder is adopted to encode the multimodal and multilingual context via three pre-training tasks.

is employed to map the visual feature to the same dimensionality
as the word embedding. For the source and target sentences, we
add a special start token ([SOS]) and a special end token ([EOS]) to
the start and end of each sentence, and represent each token in the
sentence with a word embedding vector learned from scratch. To
distinguish different modalities and languages of each element in
the whole input sequence (V, X, Y), we add a learnable modality
embedding to each element indicating whether it belongs to the
image modality, source language sentence or the target language
sentence. Specially, we also add positional embeddings to the tokens
of source and target language sentences. The illustration of input
representations is shown in the right part of Figure 3.

Multimodal Transformer. Our UPOC? model contains four multi-
layer transformer [35] encoders, including three independent en-
coders and a cross encoder. We first employ independent encoders
to encode the image sequence, source sentence and target sentence
to capture their intra-context information, which have L,, Ls and
L; layers respectively. The outputs of the three encoders are then
concatenated as a whole input sequence to the cross encoder. The
cross encoder is also a multi-layer transformer encoder, which is
used to encode the inter-context across different modalities and
languages. We denote the number of cross encoder layers as L,
hidden size as H, and the number of self-attention heads as A. We
share the parameters of the source sentence encoder and the target
sentence encoder in pre-training, and separate them when adapt-
ing to the PMT task. Because the target sentence encoder will be
learned as the translation generator in the fine-tuning stage.

4.2 Pre-training Tasks

To learn the cross-lingual correspondence between source and
target language sentences and enhance the cross-modal fusion
between images and texts for better translation, we pre-train our
model with three pre-training tasks, described in this section.

Task #1: Multimodal Translation Language Modeling (MTLM)
The cross-lingual alignment is important to machine translation.
Inspired by the multilingual pre-training task (translation language
modeling (TLM) proposed in XLM [11]), and the multimodal pre-
training task (masked language modeling (MLM) generally used
in V+L pre-training models [9, 23, 28]), we propose to combine
them for the multimodal multilingual scenario as the multimodal
translation language modeling (MTLM) task for the PMT.

The goal of MTLM is to predict the masked words in both lan-
guages with the context information of images, the surrounding
words in the same language, and all the words in the other lan-
guage. We randomly choose 15% word tokens in both languages for
prediction. Each chosen word is replaced with a special [MASK]
token 80% of the time, another random word 10% of the time and
the original word 10% of the time. Note that the random words
could be foreign words. The MTLM task takes the fused feature
from cross encoder as the input and predict the original word with
an output softmax layer, which is tied with input embeddings. We
share the vocabulary and softmax prediction layer across languages.
The training objective of MTLM can be expressed as follows:

Lyrim = -Ewx,y)~p log p(xm, ym|x\m’ Y Vs ®) (1)

where D denotes the whole training set, x,,, and y,,, denote the
masked words in X and Y, and © denotes all learnable parameters
of the pre-training model. Note that x,, and y,, are not semantically
aligned words. With the MTLM pre-training task, the model learns
the semantic alignments between source and target language words.
However, since the translation guidance from the images is much
weaker than that from the source words, the model tends to ignore
the visual modality with only the MTLM task for the target trans-
lation. Therefore, we further propose to enhance the cross-modal
fusion between images and texts via cross-modal pre-training tasks.



Task #2: Image Source-Sentence Matching (ISM) The cross-
modal matching task has been widely used in vision-language pre-
training models, which is helpful to learn the semantic alignment
between the visual and textual modalities. Considering that for the
PMT/MMT task, the effective fusion between image and source
sentence is important, we conduct the semantic matching between
the image and source sentence. We pad the target language sentence
Y except for the start [SOS] token, which is further used to predict
whether the images V and source sentence X are semantically
matched. Specifically, the output of the [SOS] token is fed to a
linear layer with the sigmoid function to predict a matching score
s(V, X) between 0 and 1. We construct the negative pair by replacing
the source sentence in a matched pair with another one. Since
different types of products are significantly different, to avoid an
oversimplified ISM task, we choose hard negatives by randomly
sampling negative source sentences from the set which describes
products in the same category as the original sentence. In this way,
the model will focus more on the product details rather than the
product category to determine whether the image and description
are matched. The training objective of the ISM task can be expressed
as follows:

Lism = -Ewx)~plllogs(V,X;0) + (1 1) log(1 - s(V,X;0))]

@)
where [ € [0, 1] indicates whether the input image-source pair is
a negative or positive sample. With the ISM pre-training task, the
start [SOS] token of the target language sentence will encode rich
fused information from images and the source language sentence
to benefit the target language translation.

Task #3: Product Attribute Prediction (ATTP) The product at-
tributes describe important information of the commercial products,
including the decorations, shapes, colors or styles of the product as
shown in Figure 2. To help the model to extract these information
from images for better translation, we propose to further enhance
the semantic encoding of the [SOS] token by predicting the prod-
uct attributes according to the images. Specifically, we extend the
binary classification of the ISM task to a multi-class classification
task for the attribute prediction. We employ another linear layer
with softmax function to predict the product attributes based on the
output of [SOS] token. Since the ground-truth attributes in FACAD
dataset [40] is extracted from the source sentence (the nouns and
adjectives in the source sentence), it is easy to predict attributes
with the source sentence as context. Therefore, for the ATTP task,
we mask the source words that express product attributes, and force
the model to predict attributes relying on the images. We adopt the
categorical cross-entropy as the training objective as follows:

Larrp = ~Ex)~p ), 10gpc(V.X;©) (3)
ceC

where C denotes the ground-truth attributes set.

4.3 Fine-tuning in PMT task

After pre-training with the above three pre-training tasks, we adapt
our pre-trained model to the PMT task. The PMT/MMT task gen-
erates the target translation with the context of source sentence
and images. It is a generation task, hence, the current generated

word cannot “see” the future words. Therefore, we adapt our bi-
directional pre-trained model to a uni-directional generator by
constraining the self-attention mask of the target language sen-
tence. Similar to the MTLM pre-training task, we randomly choose
15% of target sentence words and replace them with the [MASK]
token 80% of the time, another random word 10% of the time and the
original word 10% of the time. We predict the masked target word
with the context information from all the images, all the source
sentence words and the target sentence words before its position.
The training objective can be expressed as follows:

Lemr = -Ew x,y)~p 10g p(yYmly<m. X, V;0) (4)

where y,, denote the masked words in Y, and © denotes all learnable
parameters of the pre-trained model.

During inference time, we first encode the images, source sen-
tence and the start [SOS] token of the target translation as the
input. The [SOS] token encodes rich fused information from source
sentence and images due to the ISM and AT TP pre-training tasks.
Then, we start to generate the target language translation word by
word through feeding a [MASK] token and sampling the predicted
token from the softmax output layer. At the next step, the previ-
ous [MASK] token is replaced by the generated token, and a new
[MASK] token is fed to the model for the next word generation
until a [EOS] token is generated.

5 EXPERIMENTS

We evaluate our UPOC? model on the Multi30k [16] benchmark
dataset and the new proposed Fashion-MMT(C/L) datasets. To
demonstrate the effectiveness of our cross-modal cross-lingual pre-
training scheme for the PMT/MMT task, we experiment with two
settings: 1) pre-training on the same downstream dataset without
extra data and 2) pre-training with additional noisy triplet data.

5.1 Experimental Settings

Datasets. Multi30k [16] is the benchmark dataset for the conven-
tional MMT task, where the images are about human daily activities.
It contains 29,000 images for training, 1,014 for validation and 1,000
for testing (aka Test2016). Each image is annotated with an English
description and its human translation to German (DE). Besides the
official testing set of Multi30k, we also evaluate on another testing
set (aka Test2017) released for the multimodal translation shared
task [15], which is more difficult to translate. We adopt the byte pair
encoding [32] with 10,000 merge operations to get both the source
and target language vocabularies. For the Fashion-MMT(L/C), we
segment the Chinese translation with raw Chinese characters to
get the target language vocabulary.

Metrics. We follow previous works [22, 42] to use BLEU [30] and
METEOR [13] to evaluate the translation qualities. The BLEU met-
ric computes the precision of n-grams and the METEOR metric
employs more flexible matching, including exact, stem, synonym,
and paraphrase matches between words and phrases. Furthermore,
we also report the CIDEr [36] score, which is commonly used in the
image/video captioning tasks and pays more attention to visually
relevant words based on the term frequency and inverse document
frequency (tf-idf).



Table 3: PMT results with different pre-training tasks and pre-training data on Fashion-MMT(C) dataset.

‘ ‘ Pre-training tasks ‘ Validation ‘ Test
Row Extra data
| | MTLM ISM ATTP | BLEU@4 METEOR CIDEr | BLEU@4 METEOR CIDEr
1| - | | 3939 34.69 28542 | 3941 34.59 281.94
2 - Vv 41.45 35.79 307.61 41.17 35.55 303.58
3 - Vv v 41.79 35.84 308.59 41.38 35.68 305.21
4 - N N v 41.93 36.01 313.46 41.56 35.87 306.82
5 | Fashion-MMT(L) | v v v | 43.06 36.64  324.36 | 43.00 36.68  324.46
:z'z zzz 2’2 zzz of our UPOC? model for the PMT task. The row 1 stands for a non-
. 167 426 64 pretrain baseline, which is directly trained with the fine-tuning
430 366 424 362 task on Fashion-MMT(C) dataset. When first pre-trained with the
209 36.5 422 36.0 MTLM task on the same dataset, and then fine-tuned for the PMT
428 364 420 35.8 evaluation, the model is improved significantly by over 2 points
42.7 363 418 35.6 on BLEU@4 as shown in row 2, which demonstrates the effective-
426 362 416 354 ness of our pre-training and fine-tuning schemes on the PMT task.
2.5 < METEOR | 361 414 — METEOR | i35, . .
Gradually combining the ISM and ATTP tasks with the MTLM task
0 1 2 3 4 5 6 7 improves the BLEU@4 score from 41.45 to 41.93, and the CIDEr
(2) Independent Encoder Layers (b) Cross Encoder Layers score from 307.61 to 313.46, which indicates the effectiveness of ISM

Figure 4: Results variation with different layer numbers of
encoders on Fashion-MMT test set.

Implementation Details. We pre-train two model variants for
different experimental settings. For the setting with no extra pre-
training data, we set the layer number of independent encoders
Ly = Lg = L; = 1, the layer number of cross encoder L. = 3, the
hidden size H = 512, and the head number A = 8. For the setting
of data augmentation with noisy data, we drop the independent
encoders to avoid the influence of noise from target translations,
and set the the layer number of cross encoder L, = 6. An ablation
study of the layer number settings can be found in Section 5.2. We
initialize all the model parameters from scratch.

When pre-training the model, we sample the batch of each pre-
trained task with the proportion of MTLM:ISM:ATTP=9:2:1 except
for Multi30k. Since there is no attribute in the Multi30k dataset, we
pre-train the model without the ATTP task, and sample the batch of
the two other tasks with the the proportion of MTLM:ISM=3:1. We
pre-train our model with at most 250K iterations and a warm-up
strategy of 10,000 steps. When fine-tuning the pre-trained model
on PMT/MMT task, we set the learning rate as 6e-5.

For the images in Fashion-MMT(C/L), we use the ResNet-101
[20] pre-trained on ImageNet to encode the global feature for each
image. To narrow the large domain gap between ImageNet and our
Fashion-MMT dataset, we fine-tune the conv4_x and the conv5_x
layers of ResNet-101 with the objectives of product category classi-
fication and attribute prediction. For the images in Multi30k, we
follow previous works [27, 42] to represent each image with object
region features. We detect up to 20 object regions and extract their
corresponding visual features by Faster R-CNN [31].

5.2 Pre-training for PMT

Pre-training Tasks and Data. In Table 3, we experiment with
different pre-training tasks and data to evaluate the effectiveness

and ATTP tasks. Pre-training with the three tasks together finally
achieves the best translation results on the Fashion-MMT(C) dataset.
Inrow 5, we add the noisy triplet data from Fashion-MMT(L) dataset
in the pre-training stage, and fine-tune the model on the clean
Fashion-MMT(C) dataset, which achieves significant additional
gains compared with row 4. It shows that our model can benefit
from machine generated noisy data which are easy to acquire by
simply translating the existing extensive mono-lingual product de-
scriptions through machine translation system. We also evaluate
our UPOC? model in a lower-resource setting in Section 5.4, where
the model is pre-trained on the noisy Fashion-MMT(L) dataset and
fine-tuned with less clean PMT data.

Different Layer Numbers of Encoders. In our UPOC? model,
there are three independent encoders to encode the intra-context
information for each modality and language, and a cross encoder to
capture the cross-modal and cross-lingual information. We set the
layer number of independent encoders as 1 and that of the cross en-
coder as 3 when only using clean data in the pre-training. However,
when adding more noisy data for pre-training, we study the transla-
tion performance with respect to different layer numbers in Figure 4.
The left figure shows that increasing the layer number of indepen-
dent encoders will lead to performance degradation, because the
noise in the machine generated target translations will influence
the language modeling of target sentence encoder. Therefore, we
drop independent encoders in this setting and directly encodes the
concatenated input sequence with a unified cross encoder. In the
right figure, we experiment with different cross encoder layers. It
shows that with the number of cross encoder layers increasing, the
translation performance improves until the layer number exceeds
6. It is also found that when the number of layers are less than 4,
the model achieves even worse results than that without additional
pre-training data, which implies that too simple model architecture
will hinder the performance gains from data augmentation.



Table 4: Experimental results on EN=ZH translation task on the Fashion-MMT(C) dataset.

‘ ‘ ‘ Validation ‘ Test
Row = Method Extra data

| | | BLEU@4 METEOR CIDEr | BLEU@4 METEOR CIDEr
1| Transformer [35] - 4058 3584 30369 | 40.61 3577 3023
2 | Multimodal Graph [42] - 41.07 3555 307.38 | 40.70 3545  305.08
3 | UPOC? (ours) - 41.93 36.01 31346 | 41.56 35.87  306.82
4 Transformer [35] Fashion-MMT(L) 41.28 36.06 315.15 41.21 35.91 312.34
5 | Multimodal Graph [42] | Fashion-MMT(L) | 4139 3596 31621 | 41.49 3595 31268
6 | UPOC? (ours) Fashion-MMT(L) | 43.06 36.64  324.36 | 43.00 36.68 32446

Table 5: EN=DE translation results on Multi30k dataset,
where B denotes BLEU, and M denotes METEOR.

| Test2016 | Test2017

Model
B@4 M |B@4 M

INIT [2] 373 551 | - -
DATTN [3] 365 550 | - -
SATTN [12] 382 554 | - -
Imagination [17] 36.8  55.8 - -
VMMTE [4] 37.7 56.0 30.1 49.9
Deliberation [22] 38.0 55.6 - -
VGR [39] - - | 295 503
UVR [45] 369 - | 286 -
Multimodal Transformer [41] | 38.7  55.7 -
Multimodal Graph [42] 39.8 57.6 | 322 519
DCCN [27] 39.7 56.8 31.0 49.9
UPOC? (ours) | 408 58.9 | 34.1 534

5.3 Comparison with the State-of-the-arts

To demonstrate the effectiveness of our proposed UPOC? model in
the PMT and MMT tasks, we compare our model with the following
state-of-the-art NMT and MMT baselines:

o Transformer [35]: The state-of-the-art text purely NMT model.

e Multimodal Graph [42]: The state-of-the-art MMT model,
which constructs a multimodal graph with the source sen-
tence and image.

Table 4 and Table 5 report the translation results of different
models on the Fashion-MMT(C) and Multi30k datasets respectively.
Even without any extra data for pre-training, our UPOC? model out-
performs the state-of-the-art MMT model on both datasets, which
demonstrates the effectiveness of our pre-training and fine-tuning
strategies for PMT and MMT tasks. Comparing row 1 and row 2 in
Table 4, it shows that the conventional state-of-the-art MMT model
has limited improvements over the pure text NMT model when
adapting to the PMT task. It further validates the challenge of the
PMT task, that is, the visual relevance between the product image
and description is more complex than that in image captioning data
and it is difficult to capture via simply connecting the source enti-
ties with visual objects. However, our UPOC? model achieves the
best performance on both PMT and conventional MMT tasks even
without any extra data for pre-training, due to its good cross-modal
fusion abilities through multiple pre-training tasks.

When pre-training with more noisy triplet data annotated by
machine translation system, our model achieves additional gains,

while the NMT and state-of-the-art MMT models receive limited im-
provement due to the noise influence. However, with the proposed
multiple cross-modal cross-lingual pre-training tasks, our model
has better abilities to alleviate the influence of noise from the train-
ing data than the models solely based on the maximum likelihood
estimation (MLE) objective over the ground-truth translation.

5.4 Lower-resource Learning Results

Considering that the manually annotated PMT triplets are rather
rare in reality, while there are a lot of mono-lingual product descrip-
tions available at the e-commerce platform, we conduct experiments
in a lower-resource setting where our UPOC? model is pre-trained
only with machine generated noisy triplets in Fashion-MMT(L) and
fine-tuned with fewer clean triplet data in Fashion-MMT(C). Table 6
shows the translation results with different numbers of triplets used
in the fine-tuning stage. With only 15,000 annotated triplets (~40%
of the dataset) used for fine-tuning, our model achieves compara-
ble results with the state-of-the-art MMT model (row 5), which is
trained on the full set of Fashion-MMT(C). It demonstrates that our
model can greatly alleviate the demand of annotated triplets and
effectively benefit from the noisy data which can be easily acquired
from the existing large-scale mono-lingual product descriptions.
The result of our model fine-tuned on the full set in row 4 is slightly
inferior than our final result in row 6 of Table 4. It is because our
final model is pre-trained on both the Fashion-MMT(L) and Fashion-
MMT(C) datasets, while in the lower-resource setting, we pre-train
the model only on the noisy Fashion-MMT(L) dataset.

5.5 Qualitative Results

In Figure 5, we visualize the EN=ZH translation results of our
UPOC? model and other compared baselines on the Fashion-MMT(C)
dataset. Our model is pre-trained and fine-tuned on the same dataset
without any extra data. In the first example, the text-only trans-
former and the state-of-the-art MMT model both literally translate
the source words “edge” and “top”, while in this example, the word
“edge” means “style” and the word “top” means the blouse. With the
help of the cross-modal information, our model correctly under-
stands and translates these words. In the second example, the NMT
model and MMT model both incorrectly understand the source
word “grounded”, and translate it as the word “foundation”. How-
ever, our model correctly translates it with the meaning of sole.

In Figure 6, we visualize the attention map on the source sentence
and images at each translation generation step. Each generated
target word is shown to align well with the corresponding source



Table 6: EN=ZH translation results on Fashion-MMT dataset with different number of clean triplets for fine-tuning,.

ine-tuni Validation Test
Row ‘ Method ‘ Fine tur.nng ‘ ‘
\ | data (#Triplets) | BLEU@4 METEOR CIDEr | BLEU@4 METEOR CIDEr
1 UPOC? 5,000 38.33 34.06 281.18 38.13 33.92 276.74
2 UPOC? 10,000 40.32 34.92 298.31 39.95 35.01 293.69
3 UPOC? 15,000 41.28 35.63 307.15 40.89 35.48 306.28
4 UPOC? 36,000 (full) 42.44 36.21 323.22 42.43 36.25 320.25
5 Multimodal Graph [42] 36,000 (full) 41.07 35.55 307.38 40.70 35.45 305.08
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Figure 5: The yellow represents incorrect translations of un-
derlined source words, while our model translates them cor-
rectly, which are colored in blue.

word, which demonstrates that our model learns a good bi-lingual
semantic alignment for the accurate translation. For the visual
attention, the model is shown to attend more on the detailed partial
images (IMG5-6) when translating the source words “pearly button”,
while it attends more on other full body images when translating
the word “dress”. It shows that our model can focus on the related
images when translating different source words.

6 CONCLUSION

In this paper, we propose a large-scale product-oriented machine
translation (PMT) dataset Fashion-MMT with two versions to sup-
port the PMT research. Considering that the relevance between
product images and descriptions is more complex than that in im-
age captioning dataset, we propose a unified pre-training and fine-
tuning framework called UPOC? to enhance the cross-modal fusion

IMGl IMG2 IMG3 IMG4 IMGS IMG6 IMG7 IMG8 IMGY IMGIO
Figure 6: Visualization of the attention map on the images

and source sentence at each EN=ZH translation step.

ability. We propose three cross-modal cross-lingual pre-training
tasks to improve the semantic alignments between images and
texts, and demonstrate its effectiveness on both the PMT and the
conventional MMT tasks. Experimental results on the proposed
Fashion-MMT dataset and the Multi30k benchmark dataset show
that our model outperforms the state-of-the-art models even when
pre-trained on the same dataset without any extra data. Further-
more, our model also shows the good ability to exploit more noisy
triplet data to improve the translation quality and alleviate the
demand of expensive manual annotations.
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