
MBRS : Enhancing Robustness of DNN-based Watermarking by
Mini-Batch of Real and Simulated JPEG Compression

Zhaoyang Jia
jzy_ustc@mail.ustc.edu.cn

University of Science and Technology
of China

Hefei, Anhui, China

Han Fang∗
fanghan@mail.ustc.edu.cn

University of Science and Technology
of China

Hefei, Anhui, China

Weiming Zhang∗
zhangwm@ustc.edu.cn

University of Science and Technology
of China

Hefei, Anhui, China

ABSTRACT
Based on the powerful feature extraction ability of deep learning ar-
chitecture, recently, deep-learning based watermarking algorithms
have been widely studied. The basic framework of such algorithm
is the auto-encoder like end-to-end architecture with an encoder,
a noise layer and a decoder. The key to guarantee robustness is
the adversarial training with the differential noise layer. However,
we found that none of the existing framework can well ensure the
robustness against JPEG compression, which is non-differential
but is an essential and important image processing operation. To
address such limitations, we proposed a novel end-to-end training
architecture, which utilizesMini-Batch of Real and Simulated JPEG
compression (MBRS) to enhance the JPEG robustness. Precisely,
for different mini-batches, we randomly choose one of real JPEG,
simulated JPEG and noise-free layer as the noise layer. Besides,
we suggest to utilize the Squeeze-and-Excitation blocks[15] which
can learn better feature in embedding and extracting stage, and
propose a “message processor” to expand the message in a more
appreciate way. Meanwhile, to improve the robustness against crop
attack, we propose an additive diffusion block into the network.
The extensive experimental results have demonstrated the superior
performance of the proposed scheme compared with the state-of-
the-art algorithms. Under the JPEG compression with quality factor
𝑄 = 50, our models achieve a bit error rate less than 0.01% for ex-
tracted messages, with PSNR larger than 36 for the encoded images,
which shows the well-enhanced robustness against JPEG attack.
Besides, under many other distortions such as Gaussian filter, crop,
cropout and dropout, the proposed framework also obtains strong
robustness. The code implemented by PyTorch [6] is avaiable in
https://github.com/jzyustc/MBRS.

KEYWORDS
robust watermarking; JPEG compression; neural networks

1 INTRODUCTION
Digital watermarking was first introduced and defined by Ron van
Schyndel in 1994 [23], and then was widely used for the protec-
tion of intellectual property of images [5, 13], videos [7, 16] and
audios [4, 26]. Specifically, the digital image watermarking aims
to embed the secret message in an invisible method, and then ex-
tract them from the encoded image even if the image is modified,
which means that both image quality and robustness are required.
The earliest research [23] encodes the secret message on the least
significant bits (LSB) of the image pixels, but this method can be

∗Corresponding author.

Figure 1: Our model can embed a given secret message into
a cover image, to produce an encoded image. The message
can be extracted from the compressed encoded images with
different quality factors.

easily detected by statistical measures [8, 9]. Then, the researchers
turned to focus on the frequency domain, and they found it much
more robust to encode messages in DCT domain [12] and DWT
domain [11]. However, all those traditional methods rely heavily
on shallow hand-craft image features, which indicates that they are
not able to make full use of the cover images, therefore have many
limitations in robustness. In recent years, with the development of
deep learning, many DNN-based models [1, 17, 22, 27] have been
applied in digital image watermarking for stronger robustness. Zhu
et. al [27] proposed a DNN-based auto-encoder to jointly train the
encoder and decoder with a noise layer. It succeed in both image
quality and robustness of various distortions, and over-performs
most of traditional methods greatly.

However, most of the DNN-based watermarking frameworks
don’t perform well in the robustness against JPEG compression[24],
which is the most common lossy-compression method on the Inter-
net. In JPEG compression, we need to quantize the DCT coefficients
of image blocks, and this step is non-differential, which makes the
gradients propagated passed [20] to the encoder become zero. In
this case, the encoder cannot update the parameters according to
the decoding loss, leading to the wrong direction of enhancing
robustness. Many methods have been proposed to solve this non-
differential problem. Some of them [1, 22, 27] utilize the One-stage
End-to-end training with Differential Simulated JPEG compression
(OEDS) method to meet the request of back-propagation gradi-
ents. But the results are not satisfactory because of the natural lack
of replacing real noise with simulations. A Two-stage Separable
framework with Real JPEG compression (TSR) [17] is proposed to
separate the training process of the encoder and the decoder, so as
to eliminate the differential limitation of noise layer. In this method,
the model is jointly trained without noise in stage one, and then
the decoder is trained alone under real JPEG compression. This is a
fantastic idea to solve the problem, but the encoder also can’t get

ar
X

iv
:2

10
8.

08
21

1v
1

 [
cs

.C
V

]
 1

8
A

ug
 2

02
1

https://github.com/jzyustc/MBRS

Figure 2: The encoder-decoder structure is widely used in DNN-basedwatermarkingmodels. The left top image shows the One-
stage End-to-end training with Differential Simulated JPEG compression (OEDS) method, where the encoder and decoder are
jointly trained with simulated noise layer. The left bottom image shows the Two-stage Separable framework with Real JPEG
compression (TSR) proposed in [17], where the encoder and decoder train together without noise in stage one, and train the
decoder alone with real JPEG noise in stage two. The right image is our Mini-Batch of Real and Simulated JPEG compression
(MBRS) method, which random changes the noise layer from the simulated JPEG, real JPEG and noise-free (called Identity)
layer for each mini-batch.

information about decoding with JPEG distortion, as a result the
performance is not good enough.

Both OEDS and TSR don’t performwell under JPEG compression,
but we can enhance the robustness by combining the advantages
of 1) OEDS to jointly train the model, and of 2) TSR to train the
decoder with real JPEG compression. However, it’s a difficult task
to merge those two methods in an appropriate way. An intuitive
approaches is to replace noise-free layer with simulated JPEG in
stage one of TSR and maintain the stage two. Unfortunately, this
method still has a poor performance against JPEG compression,
which can be interpreted as the two-stage strategy can only find the
optimal solution for each single stage instead of the global optimal
solution.

To address such limitations of above methods, in this paper, we
propose our Mini-Batch of Real and Simulated JPEG compression
(MBRS) method. As is shown in Figure 2, for each mini-batch, we
change the noise layer randomly from real JPEG, simulated JPEG
and noise-free layer, so that different mini-batches can train the
model for different purpose: 1) real JPEG help the decoder to obtain
robustness under the JPEG compression, 2) simulated JPEG train the
encoder-decoder jointly, and 3) the noise-free layer makes sure the
decoding ability without compression. The frequent switching of
noise layer in eachmini-batch helps themodel to search the solution
in different directions, which guarantees the optimal solution for
the whole task. Although in some batches the non-differential real
JPEG is applied for end-to-end training, we can use momentum-
based updating optimization method to ensure the correctness of
the whole updating direction.

What’s more, we present an auto-encoder based network to
make the best use of the MBRS method. JPEG compression can be
demonstrated as a kind of limitation of high frequency part of DCT

coefficients, so we utilize Squeeze-and-Excitation(SE) blocks [15]
to learn features from the frequency domain. And we also propose
a block denoted as a “message processor” to auto-learn a better
way to expand the secret messages and achieve redundancy. In this
process, we use the trick of strength factor to adjust the trade-off
between image quality and robustness. Experiments shows that our
architecture achieves a high image quality, and the decoding bit
error rate is reduced to almost 0%. And we can also use a similar
way to train a model that is robust against many other distortions,
such as Gaussian filter, Dropout, etc.

Lastly, in order to enhance robustness against crop and cropout
attack, we add a diffusion block and an inverse diffusion block to
diffuse the secret message into the whole image. As a result, the
model can be much more robust against crop and cropout attack,
while the decoding accuracy under other noises won’t decrease too
much.

In summary, we list the contribution in this paper as below :

1. We introduce a novel MBRS training method to enhance the
robustness against JPEG compression greatly.

2. We propose an auto-encoder based network utilizing SE
blocks and a message processor for higher embedding and
extracting ability.

3. As a supplement, we propose an independent diffusion block
and inverse diffusion block for robustness against crop at-
tack.

The reminder of the paper is arranged as following. In Section 2
we review some related works about the DNN-based watermark-
ing frameworks and methods to approximate JPEG. The details of
the proposed architecture are introduced in Section 3. The results

from experiment are presented in Section 4. And finally we make a
conclusion in Section 5.

2 RELATEDWORKS
Deep Learning for Digital Watermarking. Recently, many deep learn-
ing based watermarking framework are proposed, which greatly
utilize the powerful feature extraction ability of neural network
architecture. For example, Zhu et. al. [27] proposed an end-to-end
DNN-based model for watermarking. The main architecture is an
auto-encoder like encoder-noise layer-decoder structure, and a dis-
criminator is used for more realistic visual effect. Ahmadi et. al
[1] proposed a framework which supports operating on different
domains like DCT domain, and it uses a residual structure for the
encoder with a strength factor to control the strength of watermark
patterns in the image. And Tancik et. al [22] focuses on a specific
robustness: print-shooting robustness. To achieve such special ro-
bustness, they simulated the print-shooting process with several
differential operation and apply them in the noise-layer.

Although the end-to-end framework facilitated the joint learning
of encoder and decoder, the differential limitation of the noise
layer makes it inapplicable in practice. As a result, a two-stage
separable deep learning framework [17] is proposed for practical
watermarking, the encoder and decoder are initialized without
noise layer in stage one and the decoder will be enhanced alone by
non-differential distortions in the stage two.

All these deep learning basedmethods achieve great performance
in terms of image quality and some image processing robustness,
but none of them can well deal with JPEG compression distortion.
Since JPEG compression is a non-differential process, the end-to-
end framework cannot be directly applied, and under OEDS method
the simulated distortion cannot guide the correct updating direction
of model. Besides, for the two-stage framework with TSR method,
the JPEG compression may greatly influence the encoder feature, so
that even with adversarial training, the decoder still cannot extract
enough feature for decoding. In fact, the two-stagemethod is similar
to a Greedy algorithm, so it may find the local optimal results but
cannot find the global optimal results.

Adversary Networks. The adversarial training was first intro-
duced by Goodfellow in 2014 [10] to estimate generative models.
And many improvements are proposed to generate lots of variants
of GAN, such as DCGAN [19] and WGAN [3] to improve the sta-
bility of training and quality of generated images, CycleGAN [28]
and pix2pix [14] models for image to image translation, and CGAN
[18] to add more conditions for image generating. Many models
for watermarking also use an adversary for the encoder to obtain
higher image quality, and they all get excellent results.

JPEG simulations. For the encoder-decoder structure in image
watermarking, to meet the requirement of the one-stage end-to-
end training, many methods have been proposed to use several
differential operations to simulate the JPEG compression. In [27],
Zhu et. al proposed a method named JPEG-Mask, which zeros a
fixed set of high frequency coefficients, and only maintain the 5× 5
low frequency region of Y channel, 3 × 3 low frequency region for
U and V channels. By utilizing this method, the network can obtain
JPEG robustness in some extend. And some other researches focus

on the simulation of the quantization function in JPEG compression.
Shin and Song [21] only approximate the quantization step near
zero, with the piece-wise function

𝑞(𝑥) =
{
𝑥3 : |𝑥 | < 0.5

𝑥 : |𝑥 | ≥ 0.5
(1)

We denoted the method in [21] as JPEG-SS in the following sec-
tions.

3 PROPOSED FRAMEWORK
3.1 Model Architecture
Our goal is to train an end-to-end watermarking model that is
robust to JPEG compression. As showed in Figure 3, this model
architecture includes five components : 1) Message Processor MP
with parameters \𝑀 receives the binary secret message𝑀 ∈ {0, 1}𝐿
of length 𝐿, and outputs a message feature map𝑀𝑒𝑛 ∈ R𝐶′×𝐻×𝑊 ,
where 𝐶 ′ is the channel number of the feature map.2) Encoder 𝐸
with parameters \𝐸 receives the RGB cover image 𝐼𝑐𝑜 in the shape
of 3 ×𝐻 ×𝑊 and the message feature map𝑀𝑒𝑛 as input, and prod-
uct the encoded image 𝐼𝑒𝑛 of shape 3 × 𝐻 ×𝑊 . 3) Noise Layer 𝑁
randomly selects noise according to the MBRS method. It receives
𝐼𝑒𝑛 and outputs the noised image 𝐼𝑛𝑜 of the same shape. 4) Decoder
𝐷 with parameters \𝐷 recovers the secret message 𝑀 ′ of length
𝐿 from the noised image 𝐼𝑛𝑜 . 5) Adversary discriminator 𝐴 with
parameters \𝐴 receive the image 𝐼𝑒𝑛 or 𝐼𝑐𝑜 to predict the probability
of a given image being encoded.

Message Processor . In order to better support the encoding
process, the message should be redundant and expanded in a more
appropriate approach. To this end, we add the message processor to
process the message and then feed the feature map to the encoder.
In the first step, the secret message𝑀 with a length of 𝐿 is reshaped
to 0, 11×ℎ×𝑤 where 𝐿 = ℎ × 𝑤 . It is amplified by a single 3 ×
3 convolution layer, followed by batch normalization and ReLU
activation (denoted as ConvBNReLU), and then expanded to 𝐶 ×
𝐻 ×𝑊 (𝐶 is the feature channel number, and 𝐻,𝑊 are the height
and width of the cover images) by several transposed convolution
layers with stride = 2. After that, the features of the "message image"
are extracted by several SE blocks that maintains the shape. The
message feature map is then sent to the encoder to be concentrated
with the image features.

During the expanding step, because each transposed convolu-
tional layer causes the width and height of the input tensor to
double, the secret message’s length 𝐿 and the cover image’s shape
𝐻 ×𝑊 are generally required to follow this relationship :

𝐿 = ℎ ×𝑤 = (𝐻/2𝑛) × (𝑊 /2𝑛)

where 𝑛 ∈ 𝑍 ∗ is an integer decided by 𝐿, 𝐻 and𝑊 .

Encoder . The encoder aims to encode the watermark into the
host image with low visual distortion. So such task should be done
with a fully understanding of the image. To learn better image fea-
tures, we utilize the structure of SE block which is widely used in
feature learning tasks as the basic block. Firstly, we amplify the
cover image 𝐼𝐶𝑂 of shape 3×𝐻 ×𝑊 through a 3× 3 ConvBNReLU

Figure 3: Model overview. The message processor auto-learns methods for expanding message and realizing redundancy; the
encoder with SE blocks embeds the secret message into the cover image; the JPEG noise layer change the kind of noise ac-
cording to MBRS method; and the decoder extracts the secret message from the embedded image. An additional adversary
discriminator is used to distinguish the cover image and the embedded image.

layer then extracts image features of the same shape with several
SE blocks. Obtaining the features of the cover image and the mes-
sage feature map from the message processor, the encoder simply
concentrates them and then mapped through a 3× 3 ConvBNReLU
layer. Finally, we concentrate the obtained tensor and the cover
image to a new tensor , and it’s fed into a 1 × 1 convolutional layer
to obtain the encoded image 𝐼𝐸𝑁 .

The object of encoder training is to minimize the 𝐿2 distance
between 𝐼𝐶𝑂 and 𝐼𝑒𝑛 by updating parameters \𝐸 to make them the
visually similar:

𝐿𝐸1
= 𝑀𝑆𝐸 (𝐼𝑐𝑜 , 𝐼𝑒𝑛) = 𝑀𝑆𝐸 (𝐼𝑐𝑜 , 𝐸 (\𝐸 , 𝐼𝑐𝑜 , 𝑀))

Decoder . In the decoder, the noised image 𝐼𝑛𝑜 is also amplified
by a 3 × 3 ConvBNReLU layer, and then turned into 𝐶 × ℎ ×𝑤 by
several SE blocks. Finally, we use a 3 × 3 convolutional layer to
convert the multi-channels tensor into 1-channel, and reshape it to
get the decoded message𝑀 ′.

The object of decoder training is to minimize the 𝐿2 distance
between𝑀 and𝑀 ′ by updating parameters \𝐷 to make them the
same :

𝐿𝐷 = 𝑀𝑆𝐸 (𝑀,𝑀 ′) = 𝑀𝑆𝐸 (𝑀,𝐷 (\𝐷 , 𝐼𝑛𝑜))

Adversary. The adversary discriminator is simply consists of
several 3 × 3 convolutional layers and a global average pooling
layer. The discriminator performs as an adversary of the encoder,
which means it needs to distinguish the encoded image while the
encoder should prevent it from doing this:

Update parameters \𝐴 to minimize

𝐿𝐴 = log(1 −𝐴(\𝐴, 𝐸 (\𝐸 , 𝐼𝑐𝑜 , 𝑀))) + log(𝐴(\𝐴, 𝐼𝑐𝑜))

And update parameters \𝐸 to minimize

𝐼𝐸2
= log(𝐴(\𝐴, 𝐼𝑒𝑛)) = log(𝐴(\𝐴, 𝐸 (\𝐸 , 𝐼𝑐𝑜 , 𝑀)))

In total, the target loss function is 𝐿 = _𝐸𝐿𝐸1
+_𝐷𝐿𝐷 +_𝐴𝐿𝐸2

for the
encoder and decoder, and loss 𝐿𝐴 for the adversary discriminator.

3.2 Noise Layer
Real JPEGCompression in Encoder-Decoder Structure. Asmen-
tioned in Section 1, in JPEG compression, we need to quantize the
DCT coefficients according to the quantization tables, but this pro-
cess is non-differential. That is, the gradient propagated back will
be zero, so the decoding loss that used to guide the encoder will
also be zero: 𝜕𝐿𝐷

𝜕\𝐸
= 0. And this means the encoder cannot update

the parameters according to the decoding results. So that the whole
architecture will behaved as: Encoder only tries to generate better
image, and decoder tries to recover the message, but not jointly
trained for better performance, which may resulted in the best vi-
sual quality but worst robustness since the encoder may not realize
the embedding process at all.

Our MBRS Methods. To overcome such limitations, we use a
novel Mini-Batch of Real and Simulated JPEG compression (MBRS)
method in our model. In each mini-batch, we random choose one
from a real JPEG compression layer, a differential simulation of
JPEG layer and a noise-free layer (called Identity) as the noise layer
in training. We believe such design will help the model to find the
global optimal solution. The functionality of each operation MBRS
method are demonstrated as:

1. Real JPEG Layer: Real JPEG Layer is used for decoder to
learn enough feature for decoding even after real JPEG Com-
pression.

2. JPEG Mask Layer: As a simulation of JPEG compression,
JPEG-Mask provide the gradient that can be propagated back
to the encoder, so that not only the encoder and the decoder
can be both joint-trained.

3. Identity: The existence of identity layer ensures the decoding
ability without JPEG compression.

And by updating in different directions for each mini-batch, we
except to obtain the global optimal solution.

Why the combined noise-layer works. As mentioned in the
previous paragraph, only using real JPEG for iterations will lead
to a lack of robustness, but with the MBRS method, such limita-
tions can be greatly reduced. The reason can be explained as: the

mini-batch with real JPEG is usually applied after a mini-batch
with JPEG Mask or Identity. So even the encoder is not updated
according to the decoding loss, the encoder is still updated with
the momentum that with the former mini-batch, which ensures
the correctness of the direction. So in such mini-batch, even the
encoder and decoder is not joint trained, they are still updating
in the right way. That is, encoder tries to create better image not
only with high visual quality, but also with robustness features, and
decoder tries to recover the feature after real JPEG compression.
And with the real JPEG layer, the "overfitting" of the simulated
JPEG attack can be prevented too. To support this process, we can
use momentum-based updating methods like Adam in optimization.

Different from TSR. The difference between MBRS and TSR
can be summarized as: In TSR, there is only one switch from stage
one with identity noise layer to stage two with real JPEG. But in
our model, the "stage" changes randomly for each mini-batch. In
other words, TSR uses a Greedy algorithm to find partial optimal
solutions for each stage. As is known, a Greedy algorithm cannot
get the best result in most situations. Our MBRS method is designed
to search the global optimal solution in the entire solution space
step by step in different directions for each mini-batch, so it is more
likely to get a better solution.

3.3 Strength Factor
We can get the residual signal of the encoded image and cover
image 𝐼𝐷𝑖𝑓 𝑓 = 𝐼𝐸𝑁 − 𝐼𝐶𝑂 , then adjust the trade-off between the
quality of encoded images and the recovery messages’ accuracy by
a strength factor 𝑆 : 𝐼𝐸𝑁,𝑆 = 𝐼𝐶𝑂 + 𝑆 · 𝐼𝐷𝑖𝑓 𝑓 . Note that this trick is
used only in the encoder, and in decoding process we will not use
the cover image. That is, we apply a blind watermarking method in
the architecture.

Figure 4: Choose two images from the validation dataset
randomly to show the image quality. We test them with
JPEG (𝑄=50), and result shows that (top) BER = 0.0%, PSNR
= 40.13 and SSIM = 0.9802, (bottom) BER = 0.0%, PSNR =
41.26 and SSIM = 0.9491. From left to right are: the cover
image 𝐼𝐶𝑂 , the encoded image 𝐼𝐸𝑁 , the residual signal of
them 𝑅 = |𝐼𝐸𝑁 − 𝐼𝐶𝑂 |, the normalization of residual signal
𝑅𝑀 = (𝑅 −𝑚𝑖𝑛(𝑅))/(𝑚𝑎𝑥 (𝑅) −𝑚𝑖𝑛(𝑅)) × 255 .

4 EXPERIMENTS
Implementation Details. The model is trained on 10,000 images
from the ImageNet dataset, and evaluated on a 5000 images test
set from COCO dataset to ensure the generalization of the trained
model. The whole framework is implemented by PyTorch[6] and ex-
ecuted on NVIDIA RTX 2080ti. Messages are sampled randomly at
each bit. We train the model with the proposed MBRS method, and
test with the JPEG compression function in PIL package in Python.
Strength Factor is set as 1 during training. For the weight factors
of the loss function, we choose _𝐸 = 1, _𝐷 = 10 and _𝐴 = 0.0001.
And for gradient descent method, we use Adam with a learning
rate of 10−3 and default hyperparameters. The size of mini-batch
is 16, and the model is trained for 100 epochs.

Metric. There are two main indicators to judge our model : ro-
bustness, measured by Bit Error Rate (BER) of decoded message;
and image quality, measured by PSNR [2] and SSIM [25].

Baseline. Our baseline for comparison are [27], [17] and [22].
All of these works are deep learning based watermarking schemes.
The authors of [22] open source of both their codes and their model,
so we use the pre-trained model for comparison. We also try to
conduct experiments of [27] and [17], but cannot achieve the best
performance as they have reported. So in order to respect the results
they have reported, we directly use the results published in [27]
and [17].

4.1 Visual Quality
We train the basic model of our architecture and show the visual
quality of encoded images. The basic model is trained with JPEG-
Mask, real JPEG (𝑄 = 50), and Identity layer with mini-batch strat-
egy. The visual quality of the encoded images is shown in Figure
4, the residual signal 𝑅 = |𝐼𝐸𝑁 − 𝐼𝐶𝑂 | and the normalized resid-
ual image 𝑅𝑀 = (𝑅 −𝑚𝑖𝑛(𝑅))/(𝑚𝑎𝑥 (𝑅) −𝑚𝑖𝑛(𝑅)) × 255 are also
shown. We can see that the proposed encoder can adaptively em-
beds the message into the cover image while maintains the high
visual quality. Besides, from the residual signal, we can see that
the texture complex region of the image is embedded with more
message information which greatly improve the transparency.

4.2 Comparison with Previous Methods
In this section, we compare our model with three SOTA models,
[27], [17] and [22]. Since the input image size message length of
each methods varies, for a fair comparison, we train our model with
the same image size and the similar message length. Specifically,
we use 𝐿 = 64 for 3× 128× 128 images, and 𝐿 = 625 for 3× 400×
400 images, both of which have higher message capacity than the
original articles. The detailed information is shown in Table 1.

4.2.1 JPEG Compression. In this section, we mainly show and
discuss the JPEG robustness of the proposedmethod. The test model
is trained by MBRS method with JPEG-Mask, real JPEG with (𝑄 =

50), and Identity layer. All the testing process is carried out under
real JPEG compression with 𝑄 = 50. For [27] and [17] we use the
results of the model that is specified for JPEG compression. As
shown in Table 1, our model can not only maintain higher image

Table 1: Comparison with the SOTA results. We train our models with MBRS of JPEG-Mask, real JPEG (𝑄=50) and Identity. We
test [22] with the open source pre-trainedmodel, while directly use results reported in [27] and [17] for comparison. However,
SSIM is not reported in [27] and [17], for which we empty these items. PSNR is measured for RGB channels, except in [27]
they use Y channel of YUV color space.

Model [27] (specified) [17] (specified) Ours [22] Ours
Image size 128 × 128 128 × 128 128 × 128 400 × 400 400 × 400

message length 30 30 64 100 625
Noise Layer JPEG-Mask JPEG Mixed(MBRS) JPEG-SS Mixed(MBRS)

PSNR (for Y) 30.09 33.51 36.49 32.36 39.32
SSIM - - 0.9173 0.8506 0.9504
BER 15% 22.3% 0.0092% 0.2418% 0.0012%

Table 2: Results of robustness against other distortions. Our model with the original structure is not robust enough against
crop, cropout and dropout, so we add an additive diffusion block, and then make a comparison with model from [27] an [17]
trained by combined noise layer. Strength factor is adjusted for comparison under 𝑃𝑆𝑁𝑅 = 33.5.

Noise message length Identity Cropout (𝑝 = 0.3) Dropout (𝑝 = 0.3) Crop (𝑝 = 0.035) GF (𝜎 = 2) JPEG (𝑄=50)
Ours(w/o diffusion block) 64 0% 32.86% 8.12% 45.86% 0.0032% 4.14%
Ours(w/ diffusion block) 30 0% 0.0027% 0.0087% 4.15% 0.011% 4.48%

[27] (combined) 30 0% 6% 7% 12% 4% 37%
[17] (combined) 30 0% 2.7% 2.6% 11% 1.4% 23.8%

quality but also lower BER. In particular, our model achieves the
BER that is less than 0.01%, which shows that our architecture
enhance the robustness against JPEG compression evidently.

4.2.2 Other Distortion. In addition to JPEG compression distortion,
the proposed arcchitecture can be also used for other image pro-
cessing distortions such as Gaussian Filter, crop, cropout, dropout,
etc. We train a model to embed 64 bits message into 128 × 128
image with mini-batch strategy and the noise layer is consist of
JPEG-Mask, real JPEG (𝑄=10), Identity, Gaussian Filter (GF, 𝜎 = 2)
and Crop (𝑝 = 0.0225). Since our decoder is designed for extract-
ing from a fixed size of images, we pad the cropped images with
pixels expressed as (255, 255, 255) in RGB color space. We test the
model with Identity, Cropout (𝑝 = 0.3), Dropout (𝑝 = 0.3), Crop
(𝑝 = 0.035), Gaussian Filter (𝜎 = 2) and real JPEG compression
(𝑄=50), each time for one kind of distortions. As is shown in Table 2,
to compare with model trained from [27] and [17], we find that our
model over-performs their model under Identity, JPEG compression
and Gaussian filter distortions. However, our model also shows the
weakness towards the cropout and crop attack, which accounts for
the special structure of our network. To solve this problem, we add
an additive diffusion and inverse-diffusion block into the model,
and result in Table 2 shows that the model with diffusion block
successfully obtains robustness again crop, dropout and cropout.
More detailed demonstrations and the structure of diffusion block
will be discussed in Section 4.3.5.

4.3 Ablation Study
In this section, we mainly conduct the ablation experiments to
better illustrated the proposed architecture.

4.3.1 Strength Factor. Strength factor is the parameter used for bal-
ance the robustness and transparency. To choose the best strength

factor for experiment, we set the value of strength factor 𝑆 from 0.1
to 3.0, with an interval of 0.1, and test the model under different
quality factor for JPEG compression. The results are shown in Table
3. As can be seen, with the increment of 𝑆 , PSNR and SSIM values
decrease, which indicates the visual quality becomes worse while
the extraction accuracy becomes higher. For different performance
requirements of application, we can choose different 𝑆 , and in this
paper, we adjust the value of 𝑆 to obtain similar visual quality of
different models for fair comparison.

4.3.2 Quality Factor and Simulated JPEG in Training. For all JPEG
compression above, we choose quality factor 𝑄 = 50 for real JPEG
in training. We also try to train with a much lower𝑄 = 10 for com-
parison, to show how the quality of compression during training
influences the performance. And we also train with another kind of
simulated JPEG compression: JPEG-SS in training for comparison.
The results are shown in Table 4. JPEG with 𝑄 = 10 is a much
stronger noise than with𝑄 = 50, but our model still obtains robust-
ness toward it. In fact, models trained under𝑄 = 10 perform better
than under 𝑄 = 50 against low compression quality but perform
worse against high quality, which shows the trade-off between ro-
bustness against strong and weak distortions. And model trained
with JPEG-Mask also shows better performance than JPEG-SS for
high compression quality while performs worse for low quality
factor. Think of the fact that we hardly use JPEG compression with
Q less than 50 (which affect the visual quality too much), we ap-
ply JPEG-Mask and real JPEG with 𝑄 = 50 in training for better
performance against high quality compression.

4.3.3 Real, Simulated, and Identity Combination. In our MBRS
method, the real JPEG compression, Simulated JPEG-Mask com-
pression and Identity layer are used for different purpose. To better

Table 3: BER, PSNR and SSIM value under several strength factors. BER is tested under different quality factor of JPEG com-
pression. For different applications, we can adjust strength factor to obtain a BER of 0.00% with PSNR=34, or a much higher
image quality with PSNR=42 and BR=1.35%.

Strength factor 0.6 0.8 1.0 1.2 1.4 2.0 2.4
Q=10 40.74% 36.91% 33.17% 29.50% 26.19% 18.26% 14.49%
Q=30 19.76% 12.64% 8.58% 5.90% 4.01% 0.13% 0.015%

BER Q=50 11.81% 5.27% 1.35% 0.17% 0.036% 0.00024% 0.00%
Q=70 2.37% 0.14% 0.0098% 0.0017% 0.00024% 0.00% 0.00%
Q=90 0.51% 0.020% 0.00063% 0.00016% 0.00% 0.00% 0.00%

PSNR 46.48 43.98 42.04 40.46 39.12 36.02 34.44
SSIM 0.9890 0.9808 0.9707 0.9589 0.9459 0.9012 0.8690

Table 4: Test with different quality of JPEG varying from 10 to 90, and two kinds of simulated JPEG compression. PSNR is
adjusted to nearby 39 by strength factor for fair. Decoding BER is shown in the table.

Simulated JPEG Compression Q of training JPEG Q of testing JPEG
JPEG-Mask JPEG-SS Q=50 Q=10 w/o JPEG Q=90 Q=70 Q=50 Q=30 Q=10√ √

0.00% 0.00% 0.00% 0.027% 4.13% 26.32%√ √
0.00040% 0.0076% 0.085% 0.19% 1.21% 14.55%√ √
0.0% 0.00024% 0.0029% 0.012% 0.33% 15.79%√ √
0.0% 0.27% 0.42% 0.63% 1.11% 12.32%

Table 5: The Ablation experiment of selected noise layer.
For most cases, we use the Strength Factor to adjust to
𝑃𝑆𝑁𝑅 ≈ 37.8 for fair. BER is tested under 𝑄 = 50. Results
shows in both the combined noise layer JPEG-Mask+JPEG
(𝑄=50)+Identity has the best performance.

JPEG-Mask JPEG (𝑄=50) Identity BER√
35.65%√ √
36.18%√ √
0.0084%√ √
0.0991%√ √ √
0.0040%

indicate the necessity of each part, we conduct an ablation exper-
iment, in which we remove one of the noise at each training and
test for comparison with 𝑄 = 50. As showed in Table 5, absence
of any part in MBRS results in the decreasing of robustness, and
the existence of real JPEG compression improves the performance
greatly. Moreover, we can demonstrate the function of real JPEG
layer to prevent the "overfitting" of JPEG-Mask, as mentioned in
Section3.2. If we only use JPEG-Mask, the model will overfit the
simulation noise, which means it can reach high decoding accuracy
for JPEG-Mask, but cannot work well for real JPEG. And since the
decoding loss has been too low to be reduced, the model cannot en-
hance robustness against real JPEG during the later training. But if
we add real JPEG to the MBRS method, the decoding loss can be low
enough only when the decoder is robust enough against the real
JPEG, so the decoding accuracy will not be limited by "overfitting"
of simulated JPEG.

Table 6: Comparison among OEDS, TSR, TSR-S and our
MBRS method. PSNR is adjusted to about 40 by strength fa-
tor for fair. Result shows the advantage of ourMBRSmethod
to greatly enhance the robustness.

Q for testing 90 70 50 30 10
OEDS 36.08% 38.83% 38.11% 44.58% 49.01%
TSR 14.20% 27.21% 33.72% 39.88% 46.59%
TSR-S 5.51% 11.88% 15.94% 31.32% 42.28%
MBRS 0.00% 0.00063% 0.081% 5.37% 28.54%

4.3.4 Comparison with OEDS and TSR. To show the advantage
of the MBRS method, we train our model under OEDS and TSR
method for comparison. For OEDS method, we train the model
end-to-end with simulated JPEG-Mask distortion, and stop training
before the decoding loss against real JPEG compression increases
(to prevent it from overfitting JPEG-Mask). For TSR, we follow the
two-stage scheme to train the model end-to-end without noise layer
at stage one, and train the decoder under real JPEG compression at
stage two. As an intuitive combination of OEDS and TSRmentioned
in Section 1, we propose the TSR with Simulated JPEG (TSR-S), to
replace the noise-free layer with JPEG-Mask in TSR at stage one.
For all real JPEG compression, 𝑄 = 50 is applied in training, and
different𝑄 is applied in testing. As shown in Table 6, OEDS method
leads to weak robustness against real JPEG because of “ovrfitting” of
simulated distortion and TSRmethod shows little higher robustness.
The TSR-S scheme reduce the BER by about 17% at 𝑄 = 50, while
our MBRS method greatly enhance the robustness so that BER
drops to almost 0%. This shows the superior of our MBRS method
to greatly enhance the robustness against JPEG compression.

4.3.5 Diffusion Analysis. In Section 4.2.2, we find that our model is
vulnerable to crop and cropout attack, and this is due to the struc-
ture of our message processor and decoder. As is shown in Figure
5, the message processor reshape the message to a 2-dimensional
tensor and feed it into several convolution layers, so only a small
region of the encoded image obtain the information of each bit
because of the limitation of the field-of-view. In other word, each
bit in the message can only be embedded in pixels that are nearby
the position of this bit in the 2-dimension message tensor. Similarly,
in the last layer of the decoder we directly reshape the tensor to
the decoded message, for which the decoder can only decode each
message bit from a small region of image instead of from the whole
image. As a result, our model will lose all information of one bit,
if all pixels that contain information of this bit are removed or re-
placed, for example, under crop or cropout distortion. To solve this
problem, we add a diffusion and an inverse block in the model. In
the message processor, we can use a full connection layer to subject
the raw message to another tensor, and then reshape this tensor
and feed it into the convolutional layers. Accordingly, we can use a
full connection layer to subject the output tensor into the decoded
message. With the additive diffusion block, we believe the infor-
mation of each bit in the message an be diffused to the whole image.

The added diffusion blocks are jointly trained with the raw
encoder-decoder. To justify our design, we can make a compar-
ison between our model with the diffusion block and [17, 27] again.
MBRS method utilizes simulated JPEG-Mask, real JPEG (𝑄 = 50),
Crop (𝑝 = 0.0225) and Identity layer. Results are shown in Table
2. With the diffusion block, our model achieves a much lower BER
under crop, cropout and dropout distortions, which indicates the
diffusion function of the additive blocks. At the same time, our
model still maintains strong robustness against JPEG compression
and Gaussian filter, which means that our model over-performs the
baseline under all of the tested distortions. Besides, to show the ef-
fect of the diffusion blocks, we randomly select an image, and embed
an all-"0" message into it to obtain 𝐼𝐸𝑁0

, then change one bit to "1"
and embed again to obtain 𝐼𝐸𝑁1

. After that, we can show the embed-
ding position of this bit by show the residual 𝑑𝑖 𝑓 𝑓 = |𝐼𝐸𝑁0

− 𝐼𝐸𝑁1
|.

The results are shown in Figure 6. We find that with the diffusion
block, our model succeed in embedding each bit into the whole
image, leading to stronger robustness toward crop attack.

5 CONCLUSION
In this paper, we propose a novel Mini-Batch of Simulated and Real
JPEG compression (MBRS) method to enhance robustness against
JPEG compression, in which we randomly select one from simu-
lated JPEG, real JPEG and noise-free layer as the noise layer for
each mini-batch. To make the best use of our MBRS method, we
utilize the Squeeze-and-Excitation block and a message processor
for better performance, and an optional diffusion block for robust-
ness against crop attack. The extensive experiment shows that our
method performs better in not only JPEG robustness but also image
quality.

Figure 5: Each bit in the message is embedded and extracted
only in a small region of the image that is nearby the posi-
tion of this bit. We add an additive diffusion block into the
model, which utilize a full connection layer to diffuse each
bit into the whole image.

Figure 6: The left image is the cover image to be encoded.
We embed an all-"0" message into it, and then change one
bit to "1" then embed into it again. Subtract the two image
and normalize the diff to [0, 255]. In the middle is the result
of the original model. The right image shows the result of
the model with diffusion block.

ACKNOWLEDGMENTS
This work was supported in part by the Natural Science Founda-
tion of China under Grant 62072421, and 62002334, and by Anhui
Science Foundation of China under Grant 2008085QF296, and by
Exploration Fund Project of University of Science and Technology
of China under Grant YD3480002001.

REFERENCES
[1] M. Ahmadi, A. Norouzi, Smr Soroushmehr, N. Karimi, and A. Emami. 2018.

ReDMark: Framework for Residual Diffusion Watermarking on Deep Networks.
CoRR abs/1810.07248 (2018). arXiv:1810.07248

[2] Adel Almohammad and Gheorghita Ghinea. 2010. Stego image quality and the
reliability of PSNR. In 2nd International Conference on Image Processing Theory
Tools and Applications, IPTA.

[3] Martín Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein GAN.
CoRR abs/1701.07875 (2017). arXiv:1701.07875

[4] P. Bassia, I. Pitas, and N. Nikolaidis. 2001. Robust audio watermarking in the
time domain. Multimedia IEEE Transactions on 3, 2 (2001), 232–241.

[5] Chiou-Ting Hsu and Ja-Ling Wu. 1999. Hidden digital watermarks in images.
IEEE Transactions on Image Processing 8, 1 (1999), 58–68.

[6] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. 2011. Torch7: A
matlab-like environment for machine learning. In BigLearn, NIPS workshop.

[7] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon. 1997. Secure spread spectrum
watermarking for multimedia. IEEE Transactions on Image Processing 6, 12 (1997),
1673–1687.

[8] DumitrescuS, WuXiaolin, and WangZhe. 2003. Detection of LSB steganography
via sample pair analysis. Signal Processing IEEE Transactions on 51, 7 (2003),

https://arxiv.org/abs/1810.07248
https://arxiv.org/abs/1701.07875

1995–2007.
[9] J. Fridrich and M. Goljan. 2002. Practical steganalysis of digital images: state of

the art. Proceedings of Spie the International Society for Optical Engineering 4675
(2002).

[10] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In ADVANCES IN NEURAL INFORMATION PROCESSING SYS-
TEMS 27 (NIPS 2014).

[11] Huiping Guo and Nicolas D. Georganas. 2003. Digital image watermarking for
joint ownership verification without a trusted dealer. In Proceedings of the 2003
IEEE International Conference on Multimedia and Expo, ICME.

[12] M. Hamidi, M. E. Haziti, H. Cherifi, and M. E. Hassouni. 2018. Hybrid blind
robust image watermarking technique based on DFT-DCT and Arnold transform.
Multimedia Tools and Applications 77, 1 (2018), 1–34.

[13] J. R. Hernandez, M. Amado, and F. Perez-Gonzalez. 2000. DCT-domain water-
marking techniques for still images: detector performance analysis and a new
structure. IEEE Transactions on Image Processing 9, 1 (2000), 55–68.

[14] P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros. 2016. Image-to-Image Translation
with Conditional Adversarial Networks. In IEEE Conference on Computer Vision
and Pattern Recognition.

[15] H. Jie, S. Li, S. Gang, and S. Albanie. 2017. Squeeze-and-Excitation Networks.
IEEE Transactions on Pattern Analysis and Machine Intelligence PP, 99 (2017).

[16] G. C. Langelaar, I. Setyawan, and R. L. Lagendijk. 2000. Watermarking digital im-
age and video data. A state-of-the-art overview. IEEE Signal Processing Magazine
17, 5 (2000), 20–46.

[17] Y. Liu, M. Guo, J. Zhang, Y. Zhu, and X. Xie. 2019. A Novel Two-stage Separable
Deep Learning Framework for Practical Blind Watermarking. In the 27th ACM

International Conference.
[18] Mehdi Mirza and Simon Osindero. 2014. Conditional Generative Adversarial

Nets. CoRR abs/1411.1784 (2014). arXiv:1411.1784
[19] Alec Radford, Luke Metz, and Soumith Chintala. 2016. Unsupervised Representa-

tion Learning with Deep Convolutional Generative Adversarial Networks. In 4th
International Conference on Learning Representations, ICLR.

[20] DE Rumelhart, G. E. Hinton, and R. J. Williams. 1986. Learning Representations
by Back Propagating Errors. Nature 323, 6088 (1986), 533–536.

[21] Richard Shin and Dawn Song. 2017. Jpeg-resistant adversarial images. In NeurIPS
Workshop on Machine Learning and Computer Security.

[22] Matthew Tancik, Ben Mildenhall, and Ren Ng. 2020. StegaStamp: Invisible
Hyperlinks in Physical Photographs. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR.

[23] R. G. van Schyndel, A. Z. Tirkel, and C. F. Osborne. 1994. A digital watermark.
In Proceedings of 1st International Conference on Image Processing.

[24] G. K. Wallace. 1992. The JPEG still picture compression standard. IEEE Transac-
tions on Consumer Electronics 38, 1 (1992), xviii–xxxiv.

[25] W. Zhou, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image quality
assessment: from error visibility to structural similarity. IEEE Trans Image Process
13, 4 (2004).

[26] B. Zhu, A. H. Tewfik, MD Swanson, and L. Boney. 1998. Robust Audio Water-
marking Using Perceptual Masking. Signal Processing 66, 3 (1998), 337–355.

[27] Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei. 2018. HiDDeN: Hiding
Data with Deep Networks.

[28] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. 2017. Unpaired
Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In
IEEE International Conference on Computer Vision, ICCV.

https://arxiv.org/abs/1411.1784

	Abstract
	1 Introduction
	2 RELATED WORKS
	3 PROPOSED FRAMEWORK
	3.1 Model Architecture
	3.2 Noise Layer
	3.3 Strength Factor

	4 EXPERIMENTS
	4.1 Visual Quality
	4.2 Comparison with Previous Methods
	4.3 Ablation Study

	5 CONCLUSION
	Acknowledgments
	References

