
From Synthetic to Real: Image Dehazing Collaborating
with Unlabeled Real Data

Ye Liu∗
College of Intelligence and

Computing, Tianjin University
Tianjin, China

liuye321@tju.edu.cn

Lei Zhu∗
University of Cambridge

Cambridge, UK
lz437@cam.ac.uk

Shunda Pei
College of Intelligence and

Computing, Tianjin University
Tianjin, China

peishunda@tju.edu.cn

Huazhu Fu
Inception Institute of Artificial

Intelligence
Abu Dhabi, UAE
hzfu@ieee.org

Jing Qin
The Hong Kong Polytechnic

University
Hong Kong, China

harry.qin@polyu.edu.hk

Qing Zhang
Sun Yat-sen University
Guangzhou, China

zhangqing.whu.cs@gmail.com

Liang Wan†
Tianjin University
Tianjin, China

lwan@tju.edu.cn

Wei Feng
Tianjin University
Tianjin, China
wfeng@ieee.org

ABSTRACT
Single image dehazing is a challenging task, for which the domain
shift between synthetic training data and real-world testing im-
ages usually leads to degradation of existing methods. To address
this issue, we propose a novel image dehazing framework collab-
orating with unlabeled real data. First, we develop a disentangled
image dehazing network (DID-Net), which disentangles the fea-
ture representations into three component maps, i.e. the latent
haze-free image, the transmission map, and the global atmospheric
light estimate, respecting the physical model of a haze process. Our
DID-Net predicts the three component maps by progressively inte-
grating features across scales, and refines each map by passing an
independent refinement network. Then a disentangled-consistency
mean-teacher network (DMT-Net) is employed to collaborate unla-
beled real data for boosting single image dehazing. Specifically, we
encourage the coarse predictions and refinements of each disentan-
gled component to be consistent between the student and teacher
networks by using a consistency loss on unlabeled real data. We
make comparison with 13 state-of-the-art dehazing methods on
a new collected dataset (Haze4K) and two widely-used dehazing
datasets (i.e., SOTS and HazeRD), as well as on real-world hazy
images. Experimental results demonstrate that our method has ob-
vious quantitative and qualitative improvements over the existing
methods.
∗Joint first authors. † Corresponding author.
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1 INTRODUCTION
Hazy images usually suffer from content distorting and accuracy
degrading for subsequent visual analysis. To improve the overall
scene visibility, many image dehazing methods [6, 12, 23, 31, 42, 43]
have been proposed to recover the latent haze-free image from the
single hazy input. The image degradation caused by the haze could
be formulated by a physical model [27, 42, 43]:

𝐼 = 𝐽 ·𝑇 +𝐴 · (1 −𝑇 ), (1)

where 𝐼 is the observed hazy image, 𝐽 is the underlying haze-free
image to be recovered, 𝑇 is the transmission map, which repre-
sents the distance-dependent factor affecting the fraction of light
that reaches the camera sensor, and 𝐴 is the global atmospheric
light, indicating the ambient light intensity. Early dehazing meth-
ods [1, 3, 10, 37] employed hand-crafted priors [11, 14, 50] based
on the statistics of clean images to estimate the transmission map
𝑇 , and then use the physical model to recover the haze-free results.
Recently, a lot of methods based on convolutional neural networks
(CNNs) are proposed to learn the transmission map from labeled
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datasets [4, 18, 22, 30], or directly build the mapping from input
hazy images to haze-free counterparts [8, 21, 23, 25, 29, 31, 42, 43].

Although achieving superior image dehazing performances over
methods based on hand-crafted priors, existing CNN-based meth-
ods suffer from several limitations. First, these methods usually
utilize synthesized hazy images to train networks in a supervised
learning manner, and thus suffer from degraded performance in
real-world hazy photos due to the domain shift between synthetic
training images and real-world testing photos. Second, according
to the physical model of Eq. (1), an input hazy image is a combi-
nation of a transmission map, a global atmospheric map, and an
underlying haze-free image, showing that CNN features learned
from input hazy image include several factors of the physical model.
Unfortunately, many existing methods employed such CNN fea-
tures to predict only one factor (e.g., transmission map or haze-free
result), hindering image dehazing performance.

To address these problems, this work develops a disentangled im-
age dehazing framework to leverage disentangled feature learning
and unlabeled real data for boosting image dehazing performance.
Specifically, we first propose a disentangled image dehazing net-
work (DID-Net) to disentangle features at each scale into three
feature components, which are transmission-distilled features for a
transmission map estimation, latent-distilled features for a latent
haze-free image estimation, and light-distilled features for a global
atmospheric light estimation. After that, we progressively integrate
transmission features, latent image features, and light features at
adjacent scales to predict a transmission map, a haze-free image,
and a global atmospheric map. On the other hand, for integrating
synthesized and real-world hazy images, we first assign DID-Net
into a mean-teacher framework, and then compute a disentangled
supervised loss on labeled synthesized data and a consistency loss
on unlabeled real-world data to constrain the coarse predictions and
refinements of the network. By doing so, our approach achieves a
superior dehazing performance over state-of-the-art methods. The
contributions of this work are:

• We present an image dehazing framework to leverage dis-
entangled feature representations and unlabeled real-world
hazy images for boosting single image dehazing.

• We devise a disentangled image dehazing network (DID-Net)
to predict a transmission map, a latent haze-free image, and
an atmospheric light map via a coarse-to-fine strategy.

• A disentangled-consistency mean-teacher network (DMT-
Net) is employed to collaborate the labeled synthetic data
and unlabeled real data with disentangled consistency losses.

We compare our network against 13 state-of-the-art dehazing
methods on a new collected dataset, a widely-used dehazing bench-
mark datasets and various real-world hazy images. The experi-
mental results demonstrate that our network outperforms state-of-
the-art dehazing methods. Our code, trained models, and results at
https://github.com/ liuye123321/DMT-Net.

2 RELATEDWORK
2.1 Traditional Dehazing Methods
Traditional dehazing methods utilized image priors (e.g., dark chan-
nel prior [14], color-line priors [11], and haze-line priors [2]) from
hazy and latent clean images to compute a transmission map for

haze removal. Please refer to Zhang et al. [43] for a comprehensive
review. By assuming that a linear relationship exists in the mini-
mum channel between the hazy image and the haze-free image, a
single image dehazing method is proposed based on linear trans-
formation [39]. Note that these hand-crafted priors from human
observations do not always hold in diverse real-world hazy photos.
Hence, they tend to suffer from undesirable color distortions [31].

2.2 Deep Learning based Dehazing Methods
Early works formulated CNNs to estimate a transmission map for
recovering the clean image via the physical model in Eq. (1). Ren et
al. [30] employed a coarse-scale network to predict a holistic trans-
mission map and then used a fine-scale network for a transmission
map refinement. Cai et al. [4] computed a transmission map by
developing a DehazeNet equipped with BReLU based feature ex-
traction layers. However, inaccurate transmission map estimation
hinders haze removal quality of these methods.

Later, CNN-based methods directly learned the latent clean im-
age from a single hazy image in an end-to-end manner. Yang et
al. [42] predicted a clean image by integrating the physical model
and image prior into a CNN. Song et al. [36] presented a novel rank-
ing convolutional neural network for single image dehazing. Li et
al. [23] embedded VGG-features [35] and an 𝐿1-regularized gradient
prior into conditional generative adversarial network (cGAN) [15]
for a clean image estimation. Ren et al. [31] learned confidencemaps
via an encoder-decoder network from three derived inputs and
fused confidence maps for generating a final dehazed result. Zheng
et al. [46] devised a multi-guide bilateral learning for reaching a
real-time dehazing of 4K images. However, the disjoint optimization
on these deep models failed to capture the inherent relations among
the transmission map, the atmospheric light, and the dehazed result,
thereby degrading the overall dehazing performance.

To alleviate this issue, Zhang et al. [43] employed two networks
to estimate the transmission map and the atmospheric light sepa-
rately, and computed the haze-free image according to the physical
haze model (see Eq. (1)), which are all integrated into an end-to-
end dehazing network (DCPDN). Deng et al. [8] attentively fused
multiple mathematical haze separation models for image dehazing.
Qu et al. [29] presented a dehazing GAN with a multi-resolution
generator module, the enhancer module, and a multi-scale discrim-
inator module. Liu et al. [25] devised a CNN with a pre-processing
module, an attention-based multi-scale backbone module and a
post-processing module. Deng et al. [7] stacked haze-aware repre-
sentation distillation (HARD) modules with normalization layers
into a GAN to attentively fuse global atmospheric brightness and
local spatial structures. Dong et al. [9] explicitly utilized the physi-
cal model into a encoder-decoder network. Although improving the
overall scene visibility, these methods are trained on synthesized
images in a supervised learning manner, suffering from limited
capability to generalize well to real-world hazy images.

Shao et al. [33] formulated a domain adaptation network with
two image translation modules between synthesized and real hazy
images and two image dehazing modules to alleviate the domain
shift problem. However, the image dehazing modules of Shao et
al. [33] learned CNN features from input hazy image to predict
only one factor (i.e., the latent haze-free image), thereby hindering
the dehazing performance. Although Li et al. [17] also leveraged
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Figure 1: The schematic illustration of the developed DMT-Net. We first develop a disentangled image dehazing network (DID-
Net; see Figure 2) for detecting haze-free maps, transmission maps, and atmospheric maps via a coarse-to-fine strategy, and
build reconstructed haze maps. After that, we compute a supervised loss for labeled data and a consistency loss for unlabeled
data and add them together to train our image dehazing netowrk. EMA: exponential moving average.

the layer separation mechanism based on the physical model, this
work mainly addressed the image dehazing in an unsupervised and
zero-shot manner. To alleviate this issue, we develop a disentangled
image dehazing network to learn disentangled feature presentations
and leverage unlabeled data for improving dehazing performance.

3 OUR APPROACH
Figure 1 shows the architecture of our DMT-Net, which learns
disentangled representations and leverages unlabeled real-world
hazy images for image dehazing. Specifically, we first develop a
disentangled image dehazing network (DID-Net) to disentangle
features at each scale into three components for jointly computing
a dehazed map, a transmission map, and an atmospheric map via
a coarse-to-fine mechanism (see predictions at Stage I and Stage
II in Figure 1). Moreover, DID-Net reconstructs hazy images from
the estimated maps of the three components, and then computes
two reconstruction losses between the input hazy image and two
reconstructed ones to make them similar. Then, our DID-Net is
assigned to both the student network and the teacher network.
During the training, the labeled data is fed into the student network,
and a supervised loss is computed by adding prediction losses of
three component maps and the reconstruction losses. Then, for
unlabeled data, we produce one auxiliary image from the input
hazy image and feed it into the student network and the teacher
network, respectively. A disentangled consistency loss is computed
on the two groups of three component maps and a reconstructed
hazy map. In the testing procedure, we only utilize the student
network to generate the dehazing result of an input image.

3.1 Disentangled Image Dehazing Network
According to the physical model of a haze process (see Eq. (1)),
CNN features learned from an input hazy image encode informa-
tion of three haze components, i.e. the haze-free map, the trans-
mission map, and the atmospheric map. In this work, we propose

a disentangled image dehazing network (DID-Net) by harnessing
a disentangled feature learning strategy [26] to separate each fea-
ture into three components: a latent-distilled feature for predicting
the haze-free map 𝐽 , a transmission-distilled feature for predict-
ing the transmission 𝑇 , and a light-distilled feature for predicting
the atmospheric-light map 𝐴, respectively; see Figure 2. By doing
so, the proposed DID-Net is capable of simultaneously extracting
features for all the three components, and hence providing compre-
hensive information for dehazing. Note that, before our work, two
recently published papers [9, 43] also propose to jointly estimate
the three components, but they utilize different networks for com-
ponent estimation and totally rely on synthesized data, resulting in
performance degradation on real-world photos.

Figure 2 shows the schematic illustration of the proposed DID-
Net. Specifically, given an input hazy image 𝐼 , we first extract a set
of feature maps with different spatial resolutions, and these feature
maps are denoted as EF𝑖 (1 ≤ 𝑖 ≤ 5). We decompose each into
latent-distilled disentangled features DFJ𝑖 , transmission-distilled
disentangled featuresDFT𝑖 , and light-distilled disentangled features
DFA𝑖 . After that, we devise a coarse-to-fine mechanism to estimate
𝐽 , 𝑇 , and 𝐴 based on these disentangled features. To do so, we first
integrate disentangled features at different scales to generate coarse
predictions for the three components (denoted as 𝑃 𝐽 , 𝑃𝑇 and 𝑃𝐴).
Then, a hazy image 𝑃𝐼 can be figured out as follows:

𝑃𝐼 (𝑧) = 𝑃 𝐽 (𝑧) · 𝑃𝑇 (𝑧) + 𝑃𝐴 (𝑧) · (1 − 𝑃𝑇 (𝑧)) (2)

where 𝑧 is the 𝑧-th pixel.
We then feed the three coarse predictions, 𝑃 𝐽 , 𝑃𝑇 and 𝑃𝐴 , into

three independent U-Net based residual blocks to generate three
corresponding refined predictions. The three refined predictions
are denoted as 𝑃 𝐽 , 𝑃𝑇 , and 𝑃𝐴 , respectively, based on which another
hazy image 𝑃𝐼 is computed from 𝑃 𝐽 , 𝑃𝑇 , and 𝑃𝐴:

𝑃𝐼 (𝑧) = 𝑃 𝐽 (𝑧) · 𝑃𝑇 (𝑧) + 𝑃𝐴 (𝑧) · (1 − 𝑃𝑇 (𝑧)) . (3)
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Figure 2: The schematic illustration of our DID-Net. Given an input hazy image 𝐼 , we first extract a set of feature maps with
different spatial resolutions, and then disentangle these features into three components: dehazing-distilled features for esti-
mating a haze-free image (𝐽 ), transmission-distilled features for estimating a transmissionmap (𝑇 ), and light-distilled features
for estimating an atmospheric light map (𝐴). We then devise a coarse-to-fine strategy to predict 𝐽 ,𝑇 , and 𝐴. The coarse predic-
tions (𝑃 𝐽 , 𝑃𝑇 , and 𝑃𝐴) are obtained via iteratively merging disentangled features, while refinement predictions (𝑃 𝐽 , 𝑃𝑇 , and 𝑃𝐴)
are produced by feeding coarse results into U-Net structures. Moreover, we reconstruct two hazy images (𝑃𝐼 and 𝑃𝐼 ) from the
physical haze model with coarse/refined predictions, and compute reconstruction losses against the input hazy image 𝐼 .

Once reconstructing two hazy images 𝑃𝐼 and 𝑃𝐼 from the coarse
and refined predictions, our DID-Net computes a reconstruction
loss (L𝑟𝑒𝑐 ) between the input image 𝐼 and 𝑃𝐼 and 𝑃𝐼 . The L𝑟𝑒𝑐 is
defined as:

L𝑟𝑒𝑐 = |𝐼 − 𝑃𝐼 |𝐿1 + |𝐼 − 𝑃𝐼 |𝐿1 , (4)
where | · |𝐿1 is the 𝐿1 loss function.
How to generate coarse predictions. As shown in Figure 2,
our DID-Net devises three independent branches to progressively
aggregate disentangled features from deep layers to shallow layers
for generating coarse predictions 𝑃 𝐽 , 𝑃𝑇 , and 𝑃𝐴 . Here, we take the
branch for generating the haze-free image prediction as an example
to describe the workflow. This branch aggregates DFJ𝑖 (1 ≤ 𝑖 ≤ 5)
for predicting the haze-free prediction, where the key operation
is to merge features at adjacent layers. When fusing two adjacent
features (DFJ𝑖 and DFJ𝑖−1, 2 ≤ 𝑖 ≤ 5), we up-sample the low-
resolution feature DFJ𝑖 to the same spatial resolution with the high-
resolution feature DFJ𝑖−1, enhance upsampled features by feeding
them into a series of residual channel attention blocks (RCABs) [45],
and apply a 1×1 convolutional layer on the concatenation of the
RCAB-enhanced feature and the high-resolution feature DFJ𝑖−1 to
output a merged feature map, which is denoted as 𝐻𝑖−1. The 𝐻𝑖−1
can be computed by:

𝐻𝑖−1 = M(DFJ𝑖 ,DFJ𝑖−1)
= 𝑐𝑜𝑛𝑣 (𝑐𝑜𝑛𝑐𝑎𝑡𝑒 (ΦRCAB (DFJ𝑖 ),DFJ𝑖−1)) ,

(5)

where M(·) denotes the operation of merging two features; the
𝑐𝑜𝑛𝑣 is a 1×1 convolutional layer; the ΦRCAB is the refinement block
consisting of a number of RCABs. Then, similarly, we merge 𝐻𝑖−1
with features DFJ at the next CNN layer until reaching features
DFJ (with the largest spatial resolution) at the first CNN layer, and

finally pass the resultant features to a 1×1 convolutional layer for
predicting 𝑃 𝐽 :

𝑃 𝐽 = 𝑐𝑜𝑛𝑣 (M(DFJ1, 𝐻2)) ,
𝐻2 = M(DFJ2, 𝐻3) ,
𝐻3 = M(DFJ3, 𝐻4) ,
𝐻4 = M(DFJ4,DFJ5) ,

(6)

whereM is the feature operation of Eq. (5). We conduct the similar
operations to incrementaly aggregate transmission-distilled fea-
tures and light-distilled features. Note that the numbers of RCABs
in merging features are different. In our experiments, we empiri-
cally use 20 RCABs to merge adjacent features for computing 𝑃 𝐽
and 𝑃𝑇 , and 2 RCABs to merge features for computing 𝑃𝐴 , since 𝑃𝐴
is a global parameter and simpler than the other two components.
How to generate fine predictions. We further pass these coarse
predictions, 𝑃 𝐽 , 𝑃𝑇 , and 𝑃𝐴 , to a U-Net residual block to produce
their refined results. For example, given the coarse haze-free map
prediction 𝑃 𝐽 , we pass it to a U-Net [32] with 5 convolutional layers,
to produce an intermediate imageU(𝑃 𝐽 ), which is then added with
𝑃 𝐽 to obtain a refinement (denoted as 𝑃 𝐽 ) of 𝑃 𝐽 ,

𝑃 𝐽 = 𝑃 𝐽 + U(𝑃 𝐽 ) . (7)

Similarly, we compute a refinement 𝑃𝑇 of 𝑃𝑇 , and a refinement 𝑃𝐴
of 𝑃𝐴 as follows:

𝑃𝑇 = 𝑃𝑇 + U(𝑃𝑇 ) ,
𝑃𝐴 = 𝑃𝐴 + U(𝑃𝐴) ,

(8)

where U(𝑃𝑇 ) and U(𝑃𝑇 ) are the U-Net structure on 𝑃𝑇 and 𝑇𝐴 .
Note thatU(𝑃 𝐽 ),U(𝑃𝑇 ), andU(𝑃𝐴) have the same encoder-decoder
structures, but do not share network parameters.



3.2 Supervised Loss on Labeled data
Note that a synthesized hazy image (labeled image) is usually gen-
erated by passing a given clean image, a given transmission image,
and a given atmospheric image to the physically-based model intro-
duced by Eq. (1), which can be naturally taken as the ground truths.
Based on the ground truths, we first compute a disentangled multi-
task supervised loss (denoted as L𝑑𝑠𝑡 (𝑥)) for a labeled hazy image
(𝑥) by adding the supervised losses of the clean image prediction
(L𝑠

𝐽
), transmission image prediction (L𝑠

𝑇
), and atmospheric image

prediction (L𝑠
𝐴
), i.e.

L𝑑𝑠𝑡 (𝑥) = L𝑠
𝐽 + 𝛼1L𝑠

𝑇 + 𝛼2L𝑠
𝐴 , (9)

where
L𝑠
𝐽 = |𝐺 𝐽 − 𝑃 𝐽 |𝐿1 + |𝐺 𝐽 − 𝑃 𝐽 |𝐿1 ,

L𝑠
𝑇 = |𝐺𝑇 − 𝑃𝑇 |𝐿1 + |𝐺𝑇 − 𝑃𝑇 |𝐿1 ,

L𝑠
𝐴 = |𝐺𝐴 − 𝑃𝐴 |𝐿1 + |𝐺𝐴 − 𝑃𝐴 |𝐿1 .

(10)

Here,𝐺 𝐽 ,𝐺𝑇 and𝐺𝐴 represent the ground truths of the clean image,
the transmission image and the atmospheric image, respectively.
We empirically set the weights 𝛼1=0.3 and 𝛼2=0.1 in the network
training. By adding L𝑑𝑠𝑡 with the reconstruction loss of Eq. (4), we
compute the supervised loss of labeled data as follows:

L𝑠 (𝑥) = L𝑑𝑠𝑡 (𝑥) + 𝛼3L𝑟𝑒𝑐 , (11)

where 𝛼3=0.1 in our experiment.

3.3 Consistency Loss on Unlabeled Data
For the unlabeled real-world data, we pass it into the student net-
work to obtain eight results, which are two clean images (denoted
as 𝑆 𝐽 and 𝑆 𝐽 ), two transmission images (𝑆𝑇 and 𝑆

𝑇
), and two atmo-

spheric images (𝑆𝐴 and 𝑆
�̂�
), and two reconstructed hazy images

(𝑆𝐼 and 𝑆𝐼 ). Meanwhile, by first adding a Gaussian noise into the
real-world hazy image and feeding the noisy image into the teacher
network, we can generate another two clean images (𝑇𝐽 and 𝑇𝐽 ),
two transmission images (𝑇𝑇 and 𝑇

𝑇
), two atmospheric images (𝑇𝐴

and 𝑇
�̂�
), and two reconstructed hazy images (𝑇𝐼 and 𝑇𝐼 ). We then

enforce the predictions of eight prediction results from the student
network and the teacher network to be consistent, resulting in a
disentangled multi-task consistency loss (L𝑐 ). Mathematically, L𝑐

for an unlabeled image (denoted as 𝑦) is

L𝑐 (𝑦) = L𝑐
𝐽 + 𝛼4L𝑐

𝑇 + 𝛼5L𝑐
𝐴 + 𝛼6L𝑐

𝑟𝑒𝑐 , (12)

where
L𝑐
𝐽 = |𝑆 𝐽 −𝑇𝐽 |𝐿1 + |𝑆

𝐽
−𝑇

𝐽
|𝐿1 ,

L𝑐
𝑇 = |𝑆𝑇 −𝑇𝑇 |𝐿1 + |𝑆

𝑇
−𝑇

𝑇
|𝐿1 ,

L𝑐
𝐴 = |𝑆𝐴 −𝑇𝐴 |𝐿1 + |𝑆

�̂�
−𝑇

�̂�
|𝐿1 ,

L𝑐
𝑟𝑒𝑐 = |𝑆𝐼 −𝑇𝐼 |𝐿1 + |𝑆

𝐼
−𝑇

𝐼
|𝐿1 ,

(13)

L𝑐
𝐽
, L𝑐

𝑇
, L𝑐

𝐴
, and L𝑐

𝑟𝑒𝑐 denote the consistency loss of the clean
image estimation, the transmission image estimation, the atmo-
spheric image estimation, and the reconstructed hazy image, re-
spectively. For simplicity, we set 𝛼4 = 𝛼1 = 0.3, 𝛼5 = 𝛼2 = 0.1, and
𝛼6 = 𝛼3 =0.1.

3.4 Our Network
As a semi-supervised framework, our method fuses labeled syn-
thesized images and unlabeled real-world images for training. The
total loss of our network is

L𝑡𝑜𝑡𝑎𝑙 =
∑︁
𝑥 ∈L

L𝑠 (𝑥) + `
∑︁
𝑦∈U

L𝑐 (𝑦) , (14)

where L andU denote the labeled dataset and the unlabeled dataset.
L𝑠 (𝑥) represents the supervised loss (see Eq. (11)) for a labeled
hazy image x of L. L𝑐 (𝑦) is the consistency loss (see Eq. (12)) for a
unlabeled hazy image ofU. We follow [5] to apply a time dependent
Gaussian warming up function to compute the weight `: ` (𝑡) =

`𝑚𝑎𝑥𝑒
(−5(1−𝑡/𝑡𝑚𝑎𝑥 )2) , where 𝑡 denotes the current training iteration

and 𝑡𝑚𝑎𝑥 is the maximum training iteration. In our experiments, we
empirically set `𝑚𝑎𝑥=1. We minimize L𝑡𝑜𝑡𝑎𝑙 to train the student
network, and the parameters of the teacher network are updated
via the exponential moving average (EMA) strategy with a EMA
deay of 0.99; please refer to [5, 16, 38] for details.

3.5 Our unlabeled data
Note that [33] provides an unlabeled dataset with 1, 000 real-world
hazy images to train a domain adaption network for haze removal.
To conduct fair comparisons, we use the same real-world dataset
of [33] as the unlabeled data of our network.

3.6 Training and Testing Strategies
Training parameters. To accelerate the training procedure and
reduce the overfitting risk, we initialize the parameters of DID-Net
(student network) by ResNeXt [41], which has been well-trained
for the image classification task on the ImageNet. Other parameters
in the DID-Net are initialized as random values. We implement
our framework in PyTorch and utilize ADAM optimizer to train
the network. The learning rate is adjusted by a poly strategy [24]
with the initial learning rate of 0.0001 and the power of 0.9. We
randomly crop all the labeled and unlabeled images to 240×240 for
the training on two GTX 2080Ti GPU, and augment the training
set by random horizontal flipping. We use the mini-batch size of 16,
which means the usage of 8 labeled images and 8 unlabeled data
images in each training epoch.

Inference. In the testing stage, we feed the input image into
the student network and utilize the predicted dehazed map of the
student network as the final output of our network.

4 EXPERIMENTAL RESULTS
We compare our dehazing network against 13 state-of-the-art image
dehazing methods, including DCP [14], NLD [2], MSCNN [30], De-
hazeNet [4], AOD-Net [18], GFN [31], DCPDN [43], EPDN [29],
GDN [25], DM2F-Net [8], FFA [28], MSBDN [13] and DA [33].
Among the compared methods, DCP and NLD focused on hand-
crafted features for haze removal, while others are based on convo-
lutional neural networks (CNNs). We retrain the original (released)
implementations of these methods or directly report their results on
the public datasets. Furthermore, we employ two widely-used met-
rics for quantitative comparisons, and they are peak signal to noise
ratio (PSNR) [47, 48] and structural similarity index (SSIM) [40, 49].



PSNR / SSIM 21.80 / 0.70 24.63 / 0.94 21.99/0.92 22.70 / 0.86 22.17 / 0.87 27.87 / 0.95 28.63 / 0.97 ∞ / 1

PSNR / SSIM 17.76 / 0.83 22.92 / 0.96 20.29/ 0.86 22.34 / 0.94 18.92 / 0.84 24.99 / 0.93 27.69 / 0.96 ∞ / 1

PSNR / SSIM 10.64 / 0.72 18.99 / 0.91 18.63/ 0.94 21.67 / 0.95 17.72 / 0.83 17.03 / 0.86 27.14 / 0.96 ∞ / 1

(a) Input Image (b) DehazeNet (c) GDN (d) DM2F-Net (e) FFA-Net (f) MSBDN (g) DA (h) Our Method (i) Ground truth

Figure 3: Visual comparisons on dehazed results of various methods on synthetic hazy photos. Please zoom in for a better
illustration.

Table 1: Quantitative comparisons between our network and
compared methods on three synthetic dehazing datasets.

Haze4K SOTS [31] HazeRD [44]
method Year PSNR SSIM PSNR SSIM PSNR SSIM

Our DMT-Net - 28.53 0.96 29.42 0.97 18.55 0.85
Our DID-Net - 27.81 0.95 28.30 0.95 18.07 0.84

DA [33] 2020 24.03 0.90 27.76 0.93 18.07 0.63
FFA-Net [28] 2020 26.97 0.95 26.88 0.95 17.56 0.80
MSBDN [13] 2020 22.99 0.85 24.15 0.86 16.87 0.75
DM2F-Net [8] 2019 24.61 0.92 23.87 0.91 15.88 0.74
GDN [25] 2019 23.29 0.93 26.05 0.95 15.92 0.77
EPDN [29] 2019 21.08 0.86 23.82 0.89 17.37 0.56
DCPDN [43] 2018 23.86 0.91 19.39 0.65 16.12 0.34
GFN [31] 2018 - - 22.30 0.88 13.98 0.37

AOD-Net [18] 2017 17.15 0.83 19.06 0.85 15.63 0.45
DehazeNet [4] 2016 19.12 0.84 21.14 0.85 15.54 0.41
MSCNN [30] 2016 14.01 0.51 17.57 0.81 15.57 0.42
NLD [2] 2016 15.27 0.67 17.27 0.75 16.16 0.58
DCP [14] 2011 14.01 0.76 15.49 0.64 14.01 0.39

Datasets. We first test each image dehazing method on a public
benchmark dataset, i.e., SOTS [33], which consists of 1,000 testing
images. We follow existing works [33] to set the associate training
set with 6,000 synthesized images, which consists of 3,000 from the
indoor training set (ITS), and 3,000 from the outdoor training set
(OTS) of the RESIDE dataset [19]. Second, HazeRD [44] containing
15 outdoor images with more realistic haze is introduced for testing.

Apart from SOTS and HazeRD, we also create a synthesized
dataset (denoted as Haze4K) with 4,000 hazy images, in which
each hazy image has the associate ground truths of a latent clean
image, a transmission map, and an atmospheric light map. To be
specific, we collected 1,000 clean images by randomly selecting 500
indoor images from NYU-Depth [34] and 500 outdoor images from
OTS [19]. Among them, 250 images are randomly selected from both
indoor image set (125 images) and outdoor image set (125 images),
to form the test set, and the remaining 750 images are used for the
training set. After that, for each clean image, we followed [43] to

randomly sample four parameter settings, i.e. atmospheric light
conditions 𝐴 ∈ [0.5, 1] and scattering coefficients 𝛽 ∈ [0.5, 2], to
generate transmission maps and atmospheric light maps, which are
then employed to obtain the corresponding hazy images via the
physic model in Eq. (1). Hence, Haze4K has 4,000 hazy images with
3,000 training images and 1,000 testing images.

4.1 Results on Synthetic Images
We retrain released models of these compared methods on the
training set of our Haze4K dataset to obtain their results, while we
follow the training setting of DA [33] to produce our results on
SOTS and HazeRD for fair comparisons.

Table 1 reports PSNR and SSIM scores of different dehazing
methods. In general, CNN-based methods have larger PNSR and
SSIM values than hand-crafted-prior based methods (DCP & NLD).
Among all the compared methods, FFA-Net has the largest PSNR
and SSIM scores (i.e., 26.97 and 0.95) on Haze4K, and the largest
SSIM score (0.80) on HazeRD, while DA has the largest PSNR and
SSIM values (i.e., 27.76 and 0.93) on SOTS, and the largest SSIM
value (18.07) on HazeRD. Also note that our Haze4K dataset con-
tains more challenging dehazing photos than SOTA, and existing
dehazing methods suffer from a degraded PSNR and SSIM perfor-
mance. DID-Net, as our sub-network with only labeled data, already
outperforms most existing CNN-based methods in terms of PSNR
and SSIM metrics, which proves the effectiveness of our disentan-
gled feature learning for haze removal. Furthermore, our method
consistently has the largest PSNR and SSIM scores on Haze4K,
SOTS, and HazeRD, demonstrating that our semi-supervised de-
hazing network can better recover the underlying clean images for
these hazy images.

Figure 3 visually compares the dehazed results. In the first and
third images, DehazeNet produces an obvious color distortion in
the ground regions of the dehazed results. Although obtaining
a better dehazing performance than DehazeNet, the CNN-based
methods (e.g., GDN, DM2F-Net, FFA, and MSBDN) tend to darken
several areas in their results; see Figures 3 (c)-(f). DA may produce



(a) Input Image (b) AOD-Net (c) GDN (d) DM2F-Net (e) FFA-Net (f) MSBDN (g) DA (h) Our Method

Figure 4: Visual comparisons on dehazed results produced by our network (h) and SOTA methods (b)-(g) on real-world hazy
photos (a).

(a) Input Image (b) AOD-Net (c) GDN (d) DM2F-Net (e) FFA-Net (f) MSBDN (g) DA (h) Our Method

Figure 5: Visual comparisons on dehazed results produced by our network (h) and SOTA methods (b)-(g) on more real-world
hazy photos (a). Please see blown-up views for better visual comparisons.

color distortion especially in the sky regions for the three images.
In contrast, the dehazed results of our network in Figure 3 (h)
is closest to the latent ground truth images (see Figure 3 (i)). To
summarize, our dehazed results (DMT-Net) tend to produce higher
visual quality and less color distortions, which are also verified by
the largest PSNR and SSIM values shown in Figure 3.

4.2 Results on Real-world Images
Figure 4 and Figure 5 visually compare the dehazed maps on real-
world hazy photos from the RESIDE dataset [19]. DA suffers from
color distortions in almost all the five photos. This is particularly
evident in the first and third images of Figure 4. GDN tends to
darken several areas; see the first image (the lane area) of Figure 5.
AOD-Net, DM2F-Net, FFA, and MSBDN remove few fog, and there
is still a large amount of fog in the generated images; see blown-up
views of Figure 5. Our method can more effectively remove haze
while producing realistic colors than these compared state-of-the-
art methods.

Table 2: Average PSNR and SSIM values in ablation study.

Haze4K SOTS [31]
method PSNR SSIM PSNR SSIM
basic 25.39 0.93 27.09 0.94

basic+StageI 26.85 0.94 27.82 0.95
basic+two-stages 27.81 0.95 28.30 0.95
DMT-Net (ours) 28.53 0.96 29.42 0.97

4.3 Ablation Study
Baseline network setting. We perform ablation study experi-
ments to evaluate the effectiveness of major components of our
network. Here, we construct three baseline networks, and list their
PSRN and SSIM results on Haze4K and SOTS [20, 31]. The first
baseline (denoted as “basic”) is constructed by removing the two
branches of predicting transmission maps and atmospheric maps,
removing prediction refinement, and removing unlabeled data. It



PSNR / SSIM 21.65 / 0.81 26.72 / 0.83 27.43/0.92 29.64 / 0.94 ∞ / 1

(a) Input Image (b) basic (c) basic+StageI (d) baisc+two-stages (e) Our method (f) Ground truth
Figure 6: Visual comparisons of dehazed results produced by our method and three baselines (ablation study). Please zoom in
for a better illustration.
means that “basic” is equal to progressively merge 𝐸𝐹 5 to 𝐸𝐹 1 on
labeled data for predicting a haze-free map 𝑃 𝐽 . The second base-
line (denoted as “basic+StageI”) adds the feature disentangling op-
erations into “basic”, demonstrating that three branches to fuse
disentangled features are employed. Lastly, we construct the third
baseline (denoted as “basic+two-stages”) by adding U-Net refine-
ment blocks to coarse predictions, which equals to train DID-Net
(see Fig. 2) on labeled data for haze removal.
Quantitative comparison. Table 2 summarizes PSNR and SSIM
results of our method (DMT-Net) and the constructed three base-
lines. From the results, we find that “basic+StageI” has larger PSNR
and SSIM scores than “basic", which indicates disentangling CNN
features from the input hazy can produce a more accurate dehazed
result. Similarly, “basic+two-stages” has a superior PSNR and SSIM
performance than “basic+StageI”, showing that three refinement
blocks further improve the dehazing performance. Lastly, our DMT-
Net outperforms “basic+two-stages” in terms of PSNR and SSIM
metrics. It further demonstrates that the unlabeled data helps our
method to obtain better performance.
Visual comparison. As shown in Figure 6, “basic+StageI” tends
to produce a relatively clean texture than “basic”, but both of them
tend to modify colors of the building regions. This phenomenon
is improved by “basic+two-stages”, and our method can further
generates better textures and visual quality. In conclusion, our
network can effectively remove haze and simultaneously maintain
the latent color distributions inside building regions, which is also
proved by superior PSRN/SSIM scores.

4.4 More Discussions
Hyper-parameter study. As presented in Eq. 9 and Eq. 12, our
supervised loss on labeled data and unsupervised loss on unlabeled
data contain six hyper-parameters to weight different loss functions,
and we set them as: 𝛼4=𝛼1, 𝛼5=𝛼2, and 𝛼6=𝛼3. Table 3 shows the
quantitative results of our network and other its modifications. We
can see that different settings of these hyper-parameters have a
certain impact on the dehazed results, and overall they all achieve
good results.
Model complexity analysis. The model complexity and infer-
ence time of our method are 51.79M/0.127s, worse than the light-
weight model AOD-Net (1761/0.004s). We take the task of reducing
the model complexity and inference time as one of our future work.

Table 3: Average PSNR and SSIM values of our network on
Haze4K under different hyper-parameter settings in Eq. 9
and Eq. 12.

𝛼1 (𝛼4) 𝛼2 (𝛼5) 𝛼3 (𝛼6) PSNR SSIM
𝑀1 0.3 0.7 0.1 28.70 0.97
𝑀2 0.3 0.7 0.7 28.40 0.96
𝑀3 0.7 0.7 0.1 28.84 0.97
𝑀4 0.7 0.1 0.7 28.07 0.96
Ours 0.7 0.1 0.7 28.53 0.96

Results of the teacher model. The dehazed PSNR/SSIM of the
teacher network are 28.34/0.96, only slightly worse than the student
network. Following all research works based on the mean-teacher
framework, we also utilized the student network to do the inference.

5 CONCLUSION
This work presents a disentangled-consistency mean teacher net-
work (DMT-Net) for boosting single-image dehazing by leveraging
feature disentangled learning and unlabeled real-world images. Our
key idea is to first disentangle features from input hazy photos for
simultaneously predicting clean images, transmission maps, and
atmospheric images, for which we develop a disentangled image de-
hazing network (DID-Net) following a coarse-to-fine strategy. Then
we assign DID-Net as the student and teacher networks to impose
disentangled consistency loss for leveraging additional unlabeled
data. Experimental results on synthesized datasets and real-world
photos demonstrate the effectiveness of our network, which clearly
outperforms the state-of-the-art image dehazing methods.
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