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ABSTRACT

In this paper, we address video instance segmentation using a new
generative model that learns effective representations of the target
and background appearance. We propose to exploit hierarchical
structural embedding over spatio-temporal space, which is compact,
powerful, and flexible in contrast to current tracking-by-detection
methods. Specifically, our model segments and tracks instances
across space and time in a single forward pass, which is formulated
as hierarchical embedding learning. The model is trained to locate
the pixels belonging to specific instances over a video clip. We firstly
take advantage of a novel mixing function to better fuse spatio-
temporal embeddings. Moreover, we introduce normalizing flows
to further improve the robustness of the learned appearance em-
bedding, which theoretically extends conventional generative flows
to a factorized conditional scheme. Comprehensive experiments
on the video instance segmentation benchmark, i.e., YouTube-VIS,
demonstrate the effectiveness of the proposed approach. Further-
more, we evaluate our method on an unsupervised video object
segmentation dataset to demonstrate its generalizability.
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1 INTRODUCTION
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Figure 1: Illustration of our hierarchical generative pipeline.
(a) Input video clip. (b) The hierarchical embedding learn-
ing for instance inference, where / represents mixing func-
tion, — and — represent position information transfer and
refinement, respectively. (c) The results.

Video instance segmentation (VIS) involves tracking, segmen-
tation, and classifying all instances in a video sequence [44, 47].
Compared with classical video object segmentation [23-26, 40-42],
VIS faces greater challenges as follows: 1) There is no annotation at
the beginning of the video, so the VIS algorithm must identify and
associate all instances automatically. 2) The low quality of videos
caused by low resolution and motion blur.

To tackle these challenges, most mainstream VIS methods follow
a discriminative, tracking-by-detection paradigm. Typically, such
methods employ an object detection network (e.g., Mask-RCNN) to
generate a proposal for each frame and associate them over con-
secutive frames with motion cues (e.g., optical flow) or appearance
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cues (pixel matching). Furthermore, some efforts have focused on
designing an extra re-identification module to handle occlusion
and out-view cases. Although these methods have yielded distinct
performance gains, such multiple-stage strategies have several dis-
advantages: 1) They require designing and finetuning a separate
model in each independent step, and are not end-to-end trainable.
These results in a costly and cumbersome solution. 2) The natural
distractors in videos, such as low resolution and motion blur, often
cause the detectors to fail to locate new instances.

To address the shortcomings of these prior methods, we propose
a new paradigm for bottom-up, generative, and end-to-end video
instance segmentation. In contrast to previous methods, our net-
work learns a generative probabilistic model of the instance feature
distributions hierarchically. Moreover, we integrate a factorized
conditional flow to refine the feature distribution to obtain a more
robust representation of each instance.

In our generative appearance module, both the model inference
and prediction stages are fully differentiable. This ensures that the
entire segmentation pipeline can be trained end-to-end, which is not
the case with previous discriminative methods [3, 6, 28, 47] invoking
step-by-step operations. Three crucial techniques are exploited to
deliver our compact and powerful VIS solution:

o Generative Instance Representation: We leverage the represen-
tational power of spatio-temporal embeddings to distinguish
each object instance in a video in a bottom-up fashion. We
learn the embeddings in a category-agnostic setting, such
that pixels belonging to the same object instance across the
spatio-temporal volume are mapped to a single distribution
in the embedding space. Hence, we can infer object instances
by simply assigning pixels to their respective distribution.
Coarse-to-Fine Inference: We implement the whole instance
inference in a coarse-to-fine manner. We locate the coarse
position of each instance by learning spatio-temporal em-
beddings with the mixing function. Then, we refine the infer-
ence status using appearance embedding-based normalizing
flows.

An End-to-End Trainable Framework: Current top-down VIS
methods independently implement instance inference. This
breaks the end-to-end pipeline and leads to suboptimal re-
sults. We implemented the entire VIS inference with a differ-
entiable neural network. The solution is neat and compacts
with high-speed inference speed.

To summarize, our contributions are as follows: (i) We exploit a
hierarchical generative pipeline for VIS. The entire framework is
elegant and effective. (ii) Compared to discriminative VIS networks
that require multiple networks with careful parameter tuning, our
network is trained stably with a single network for spatio-temporal
embeddings as well as parameter learning simultaneously. (iii) For
the first time in this field, conditional flow is used to estimate the
instance appearance distribution.

We perform extensive experiments on a representative VIS dataset:
YouTube-VISi9 [19]. The experimental results show that our ap-
proach outperforms state-of-the-art approaches. We also perform
experiments on the famous unsupervised video object segmentation
dataset and again confirmed the superiority of our model.

1885

MM 21, October 20-24, 2021, Virtual Event, China

2 RELATED WORKS

2.1 Video Instance Segmentation

VIS not only requires instance segmentation of individual frames,
but also the tracking of instances across frames. Current top-leading
deep learning-based VIS models are mainly built on two paradigms:
multiple-stage and single-stage.

Multiple-stage approaches [3, 6, 10, 12, 16, 19, 21, 28, 29, 47]
typically segment the instances of each frame and then correlate
them. MaskTrack R-CNN [47] was the first attempt that extended
the original Mask R-CNN [14] with a tracking branch to imple-
ment single-frame instance segmentation and inter-frame tracking.
This tracking-by-segmentation pipeline has been widely used in
previous studies [3, 6, 28]. For instance, Luiten et.al. [28] further
introduced a classification branch into MaskTrack and designed an
ensemble approach to solving these separate subproblems. Mean-
while, MaskProp [3] adapted an extra mask propagation branch that
generates clip-level instance tracks densely for each frame and ag-
gregated them to produce video-level results. Recently, SipMask [6]
improved Mask R-CNN [47] by generating spatial coefficients for
each instance with a novel lightweight spatial preservation on its
detector. Similarly, Lin et.al. [19] added a modified variational au-
toencoder to facilitate the training of the Mask R-CNN. All of these
approaches follow the discriminant paradigm and require the de-
sign and tuning of a separate model to improve overall performance.
Therefore, they rely heavily on image-level instance segmentation
models and complex human-designed rules to associate instances.

For single-stage VIS, STEm-Seg [2] exploited a video clip as a
single 3D spatio-temporal volume, enhanced the feature represen-
tation of spatio-temporal embeddings, and then separated object
instances by clustering learned embeddings. It may be noted that
the above approaches either rely on complex training rules to asso-
ciate instances or require multiple steps to generate and optimize
the masks iteratively. In contrast, we aim to build a simple and
end-to-end trainable VIS framework.

2.2 Normalizing Flows

Unlike generative adversarial networks (GANs) [13] and variational
auto-encoders (VAEs) [18], flow-based generative models [8, 9, 17]
build a series of invertible transformations and directly optimize
the negative log-likelihood of data distribution using standard sto-
chastic gradient descent (SGD) optimization.

As a representative flow method, normalizing flows have been
explored for several vision tasks. Ardizzone et.al. [1] and Winkler
et.al. [45] addressed the task of natural image generation guided by a
conditioning input by concatenating the encoded conditioning vari-
able in the affine coupling layers to guide the generation of diverse
images with high realism. SRFlow [27] investigated a way to utilize
normalizing flows to learn strong image posterior to generate super-
resolution images. Moreover, for image denoising and restoration,
Zanfir et.al. [50] designed different normalizing flows-based prior
representations, which were used for the first time in modeling a
3D human pose. Recently, C-flow [34] and Pointflow [46] integrated
normalizing flows into 3D point clouds with considerable possibili-
ties for multimodal data modeling. Although we also employ the
normalizing flows paradigm owing to its theoretically appealing
properties, our method differs from these previous approaches. Our
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Figure 2: Overall architecture of our HEVis for video instance segmentation in the training phase. HEVis takes a video clip
with T frames and its instance-level mask as input and outputs clip-level instance segmentation results. Based on features
from the image encoder, three decoders produce the mean ; and covariance matrix ¥ of a multi-variate Gaussian N (y, ),
the offset vectors O and appearance embedding A. i and ¥ are associated with position information YV (i.e, [x,y,t]) and are
used to define the multi-variate Gaussian N (i, X)coqrse for each instance. The position decoder works as an intermediate that
connects the other two decoders densely. O and the hierarchical embedding [A, x, y, t] are fed to a novel mixing function (i.e.,
¢) and are processed through Eq. 7, Eq. 8 to obtain the instance output tubes. Following the appearance decoder, AC-flows
refines N (p, Z)coarse into N'(, ) fine (i€, —) by optimizing A. During training, instance masks are encoded and injected into
AC-flows (i.e., —) as a condition.

work is the first to exploit a flow architecture for VIS that provides
superior results compared to state-of-the-art methods. Second, to
effectively capture underlying appearance variance, we develop a
factorized conditional flow-based embedding learning protocol.

px(x) =pz(fo(x))

9fp(x)
det (aex—T)', (1)

7]
og(px(2)) = ogpz oo + 1o et (2] o
3 METHOD o (x)
where ot 1S the Jacobian of fp at x. f is usually composed of a

In this section, we propose a hierarchical variable Bayesian scheme
for video instance segmentation: HEVis. Theoretically, we tackle
VIS as a hierarchical coarse-to-fine iterative inference problem. As
shown in Fig. 2, a coarse segmentation mask is obtained according
to the position and shape of the instance, and then the details are
inferred based on normalizing flows.

In §3.1, we first introduce a few preliminaries. In §3.2, we intro-
duce the method to learn hierarchical feature distributions. §3.3
describes our network structure while §3.4 introduces the imple-
mentation details.

sequence of transformations: fy = fj o fo o - -- o fi complies with
the name of flows. Typically, p z has a tractable density, such as a
spherical multivariate Gaussian distribution: p > = N(z;0,1).
Deep Framework with Coupling Layers: NICE [8] and real-
NVP [9] proposed a deep learning framework for flow-based gen-
erative models using the coupling layer. Given a D-dimensional
input x and d < D, to split the input tensor into two halves along
the channel dimension [x1.4; X4.1.p] and follow an affine coupling
operation, the output y of the coupling layer is:

Y1.d = X1:d
3.1 Preliminaries

Ygs1:p = Xge1:p (O exp(s(xy.q)) + t(x1.q)

Normalizing Flows: Normalizing flows [35] describe the trans- -

. . . . j X1:d =Y1d
formation of a probability density through a sequence of invertible . = ( “ (1) O exp(=s(y10))
mappings. Given an observed datum variable x € X C R? with d+1:D Yd+1:D Y1d P Yrd)):
an unknown real distribution x ~ p x (x) and a simple distribution where s and ¢ represent scale and translation, (+) is the Hadamard
pz on a latent variable z € Z C RY, the invertible mapping de- product or element-wise product. In this way, the determinant of a
fines an invertible function fy : X — Z and applies it to the prior triangular matrix can be efficiently computed as the product of its
distribution: diagonal terms.
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3.2 Hierarchical Embedding Learning for
Video Instance Learning

Before clarifying our model, we firstly introduce some basic nota-
tions and operations used in this paper. The main symbols used in
this paper are summarized in Table 1.

Table 1: Symbol description.

Symbols Descriptions
X;C input video clip and the conditional input
Yerip 3 G the predicted instance segmentation mask
tube and ground truth
N 2) a multivariate Gaussian with mean p and
covariance matrix X
Deé the probability that the spatio-temporal é
belongs to the n'" instance
E A H the spatio-temporal embedding; the
underlying appearance embedding; and the
hierarchical embedding
S the spike probability map (i.e., y)
0:0 the offset
dC) s Y() the mixing function and the update function

In the context of VIS, the proposed HEVis aims to infer the

instance mask in a coarse-to-fine manner. We first generate a coarse
mask by modeling the motion and shape of all the instances as a
3D spatio-temporal volume. Then, we utilize density estimation
through factorized-based conditional generative flows to learn fine-
grained appearance embedding. Thus, our model can capture fine-
grained appearance masks for each instance.
Coarse Embedding Learning: We handle VIS at a video clip level
rather than at the frame level to preserve more spatio-temporal
information. Specifically, given an input video clip X € RT3*HXW
with T frames, width W, height H, VIS aims to annotate each pixel
in the video clip as from the background or one of N instances.
This procedure returns the posterior class probabilities for each
pixel location. Formally, let the set of the spatio-temporal feature
embedding extracted from the video clip be {x;};. The feature
embedding x; at each position i is a D-dimensional vector, and we
model these feature embeddings with the distributions:

ple =" plzi=n)p(xilzi = n). @

Each class-conditional density is a multi-variate Gaussian with
mean y and covariance matrix X:

p(xilzi = n) = N (x|, ). (5

The discrete random variable z; in Eq. 4 assigns the observation x;
to a specific component z; = n. We use a uniform prior p(z; = n) =
1/N for this variable, where N is the number of instances.

For the distribution of the embedding x;, we can compute the
mean and covariance as:

=g 2

i | ©)
3 = —diag § (¢ - w?.
b5
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For the spatio-temporal embedding é € e,, Vn C {1,..,N}, é C
R3, we can use the probability density function of N (i, %) to
calculate the probability that it belongs to the nth instance:

pe=—s——ep (2@ 5 )], @)
(27) 2 |Zn|2
A high probability implies that the position embedding e; tends to be
the instance n, while a low probability implies that the embedding is
more likely to be the background (or another instance). According
to Eq. 7, we can obtain the predicted instance segmentation mask
tube Y, by setting the probability threshold w.

max pg, ifAps > w
Yclip =

. ®)
background, ifV ps > w,
where ps C RN,
For more complete representation of spatio-temporal informa-
tion and to ensure good performance, the spatio-temporal embed-
ding can be augmented as:

(&) =0+, ©)

where ¢(-) denotes the mixing function, V is the position coordi-
nate (i.e, [x, 1, t] € RDHXWyand 0 ¢ RT¥3¥HXW g offsets to
the V value of their respective locations. We use an extra network
to learn the offset vectors. It is postulated that the reason for the
good results obtained from this formulation is that the position
vectors V already serves as a good initial embedding for instance
separation; the network can then enhance this representation by
producing offsets which embedding improves the segmentation
behavior. Hence, the mixing function contains coarse contour in-
formation about each instance.

Refine Learning: In this method, based on position information,
we learn the hierarchical embedding H to refine the prediction. As
the segmentation targets undergo appearance variation (i.e., fast
motion, occlusion) in the video, it is meaningful to estimate the
underlying appearance embedding A to handle these challenges.
To this end, we define a novel mixing function for refining the
inference status as follows:

$(H) = O + [V, y(A)], (10)

where O C RTX(3+DA)XHXW, A C RTXDAXHXW, [, ] denotes the
channel-wise concatenation and ¢/(-) is a update function.

By addressing appearance changes as a density estimation issue,
we introduce appearance-based conditional flows (AC-flows) to
implement /(). To recap, we utilize A to represent the appearance
distribution among the temporal dimension, and ¥(-) learns to
update appearance embedding A.

The probability density of the appearance can be computed as:

det (3f0(a; C))
daT
Given a simple known distribution p 7, AC-flows projects the ap-
pearance embedding a € A, a C RIXDXEXW 4 o distribution,
dependent on both the network parameters 6 of ¢ and the condi-
tioning input ¢ € C, through the change-of-variables formula. We
use the instance mask to instantiate ¢ for the sake of enforcing the

appearance embedding containing more information about instance
details. Moreover, we employ a mask encoder h to transform the

pa(ac,0) =pz(foa;c)) ; (11)
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conditional input ¢ into intermediate representation ¢ = h(c) € C,
and replace ¢ in Eq. 11 with ¢.

Additionally, to inject more direct spatio-temporal information
transfers from the ¢ into the AC-flows, we perform the following
two operations (see Fig. 2) in the flow-step of the conditional affine
coupling layer [27]:

First, we use a simple normalization function g () to predict
an element-wise scaling and bias factor of ¢ before the coupling

transformation (Eq. 3):
a=exp(g1s(8) - a+g15(0)
a=exp(—g1,5(¢)) - (4 - g1,5(¢)).

Then we apply another normalization function g2 (-) during the
coupling transformation:

{gl:d =dyyq

(12)

Jas1:pA = exp(92,s(dgi1.p4)) - Ggr1.pa + 92,6 (dgs1pA),

(13)
where d = [dy.4; dg4,1.pa] is a partition in the channel dimension.
We implement normalization functions g1 (-) and g2(+) with 1 x 1
convolutional layer with shared parameters. These two operations
mentioned above are integrated into all K flow-steps with L levels.

Hence, AC-flows learn a more elaborated embedding to sup-
plement the coarse multi-variate Gaussian modeling in the coarse
embedding learning module. Overall, our network preserves spatial
details and simultaneously models the appearance information.
Loss Function: To guide the network to capture hierarchical em-
bedding, we design the following loss function. Given the video in-
stance segmentation results Y;;, C RP” where DY = Tx1xHXW
(Eq. 8), spike probability map S (i.e., y), and corresponding Gauss-
ian covariance matrix ¥, the multi-variate Gaussian modeling can
be posed as the minimization of the following loss:

1
Lpike =7y D, lyhs+(1 -y -5)]
Yci 5
l y€Yerip, SES (14)
2
taoy Z l|o — mean(2)| |2,
oEeY

where the coefficient « is empirically set as 10. In Eq. 14, the first
term is a binary cross-entropy (BCE) loss that is used to compute
the spike distance (i.e., the mean p) of the Gaussian model. The
second term is the Ly regression loss to constrain the covariance.
In this manner, the background pixels are regressed to zero while
the foreground pixels are regressed to the Gaussian distributions
for the object instances.

Furthermore, to learn hierarchical embedding H, we apply a
Lovése hings loss [49] over the prediction Y.j;, and ground truth
G for maximizing the intersection-over-union (IOU):

Yn ﬂgn

yn U gn (13)

N
Lhierq = arg max Z

n=1

, wherey, € Yjip, gn € G.

Finally, to guide the proposed AC-flows to learn to estimate
the appearance variance, we tailor Eq. 2 and design the following
conditional log-likelihood maximization loss function:

) o

et (afem; ¢) )
daT

Lappea = log(PZ (fo(A; é))) +log (
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where A is the appearance embedding and C is the condition
variance. In this way, the coarse embedding learning module can
be trained jointly with the AC-flows by propagating gradients from
the maximum likelihood loss through appearance embedding A.
Considering Eqs. 14,15 and 16, the overall loss is defined as:

17)

For comprehensive consideration of different quantification fac-
tors, we follow the parameter setting in previous work [2], and
empirically choose 1 = 2 = f3 = 1 for a fair comparison.

Liotal = ﬂlLspike + BoLpiera + ﬁSLappea,

3.3 HEVis Architecture

The overall HEVis architecture, depicted in Fig. 2, consists of two
encoders (image encoder and condition encoder), three decoders,
and the proposed AC-flows.

Encoder-Decoders: Both the image encoder and condition en-
coder have the same network architecture, except for inputs. These
encoders adopt a 3D feature pyramid network (FPN) structure and
output multi-scale feature maps. For decoders, the first one is the
center decoder which regresses the instance spike. It augments
the vanilla decoder with a sigmoid activation function, which is
used to output a spike probability map S (i.e., y) containing the
position and value of the expected value y of the Gaussian distribu-
tion. Then, the position decoder outputs both the offset O and the
covariance matrix X by two simple parallel 3D convolution layers
after the vanilla decoder, respectively. Finally, the appearance de-
coder outputs appearance embedding (A after the vanilla decoder
and is followed by the appearance conditional flows (AC-flows)
to learn the appearance distribution. Specifically, we discard the
AC-flows module in the inference phase, i.e., our HEVis eliminates
the AC-flow module and only takes the RGB-frames as the inputs
during the network inference.

AC-flows: As the core component for appearance variance estima-
tion, AC-flows is implemented by a multiple-scale architecture [17]
with L-level, and each level contains K number of flow-steps (see
Fig. 2).

Each flow-step (Egs. 12 and 13) in AC-flows consists of five dif-
ferent layers, firstly the squeeze layer performs a squeeze operation
that effectively halves the spatial resolution. Then, the actnorm
layer provides a channel-wise normalization, followed by an in-
vertible 1 X 1 convolution layer. Next, we use a conditional affine
coupling layer to enhance spatio-temporal information transmis-
sion. Finally, half of the channels are transferred to the next level
in the split layer. Except conditional affine coupling layer, we keep
the rest layers in its standard un-conditional form as [17].

3.4 Implementation Details

Training: For network training, we set the input size of the video
clipas T = 8, H = 352, W = 640 to maintain high computational
efficiency. ResNet-50 and ResNet-101 [15] serve as the backbone
architecture, which are pre-trained using the weights trained on
the image instance segmentation dataset: the microsoft common
objects in context (COCO) [20]. Following the standard training
protocol in [2], we use on-the-fly random affine transformations
and motion blur to augment video data on Pascal VOC [11] and
COCO. For COCO, we use object classes that overlap with the
YouTube-VIS;9. The probability threshold w in Eq. 8 is set to 0.5.
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Table 2: State-of-the-art comparison on the YouTube-VIS;g.

Method Backbone FPS AP APs AP7s5 ARy AR1o

OSMN MaskProp [48] ResNet-50 - 23.4 36.5 25.7 28.9 31.1
FEELVOS [37] ResNet-50 - 26.9 42.0 29.7 29.9 33.4

& | IoUTracker+[47] ResNet-50 - 23.6 39.2 25.5 26.2 30.9
‘Ig OSMN [48] ResNet-50 - 27.5 45.1 29.1 28.6 33.1
% DeepSORT[30] ResNet-50 - 26.1 42.9 26.1 27.8 31.3
% MaskTrack R-CNN [47] ResNet-50 32.0 30.3 51.1 32.6 31.0 35.5
= | MaskTrack R-CNN [47] ResNet-101 20.0 31.8 53.0 33.6 33.2 37.6
SeqTracker[47] ResNet-50 - 27.5 45.7 28.7 29.7 32,5

& | STEm-Seg[2] ResNet-50 10.5 30.6 50.7 33.5 31.6 37.0
J‘,;" STEm-Seg|[2] ResNet-101 10.0 34.6 55.8 37.9 344 41.6
Tq:;n HEVis ResNet-50 13.0 32.7 53.5 33.6 32.9 38.2
& | HEVis ResNet-101 12.0 353 53.5 34.6 34.9 40.2

For AC-flows, the spatial dimensions of the input are 1/4 of the
input video clip. We set K = 32, L = 4 in the flow-step. The whole
training procedure of our HEVis consists of two steps. We first train
AC-flows for 2k iterations by freezing the rest model parameters.
Then, we train the entire model end-to-end in 24k iterations.

We implemented the proposed approach using PyTorch [31].
The model is trained on a single RTX 3090 GPU of 24 GB RAM.
The batch size is set to 32. We optimize the loss function using the
standard SGD solver, with a momentum of 0.9 and a weight decay
0f 0.0001. To schedule the learning rate, we employ the exponential
decay scheduler, where the base learning rate is 5 X 10™* with the
decay factor as 0.01.

Considering that VIS needs to predict category labels for each

instance, we add an extra semantic decoder based on the vanilla
decoder after the image encoder. It performs category prediction
for all pixels in the input clip and is trained using a standard cross-
entropy loss.
Inference: After training, we apply our learned model to the un-
seen videos directly. We process each testing video in a sequential
manner and perform temporal sampling [38] to build a video clip.
Each clip is modeled as a 3D spatio-temporal volume and processed
in a temporally sequential manner. Starting from the first T frames,
our network first generates a set of instance variables: the spike
probability map S, the covariance matrix ¥ and the hierarchical
embedding . The entire inference procedure is as follows:

(1) Find the spike s, = argmax S, Vn € {1,..,N};

(2) Build the Gaussian distribution N (sy, 2p);

(3) Compute the probability of the corresponding hierarchical
embedding h € H of each pixel’s belonging to the instance
nby Eq. 7;

(4) Generate the predicted instance segmentation mask y, €
Yerip by Eq. 8;

(5) Delete elements in S, 3, H that have already been allocated;

(6) Repeat steps (1)-(5) until all elements in S have been allo-
cated, or the next spike in S falls below 0.5.

4 EXPERIMENTS

We first report the performance on the main task: video instance
segmentation (§4.1). Then, in §4.2, to further demonstrate the ad-
vantages of our model, we test it on an additional task: unsupervised
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video object segmentation (UVOS). Finally, we conduct an ablation
study in §4.3.

4.1 Main Task: Video Instance Segmentation

4.1.1  Experimental Setup. To demonstrate the effectiveness of our
method, we apply it to the famous VIS dataset: YouTube-VIS;o [19].
YouTube-VIS;9 dataset contains 2,883 high-quality YouTube videos
with 131k object instances spanning 40 known categories. The
performance is measured in terms of the average precision (AP)
and average recall (AR) metrics.

4.1.2  Quantitative Performance . We compare HEVis against some
state-of-the-art VIS methods in Table 2. Overall, our model outper-
forms all the contemporary methods and sets a new state-of-the-art
in terms of AP (32.7%) on YouTube-VIS19 val set. Notably, our single-
stage, proposal-free method obtains a significantly higher score
compared to representative multiple-stage methods (i.e., OSMN [48],
FEELVOS [37], SeqTracker [47], DeepSORT [30] and MaskTrack R-
CNN [47]. Specifically, the efficiency of HEVis is greater than that
of the state-of-the-art MaskTrack R-CNN [47] by 2.4% and 3.3% in
AP using ResNet-50 and ResNet-101 backbone, respectively. Mean-
while, in terms of AP, our method outperforms the one-stage com-
petitor, STEm-Seg [2] by a large margin ( 1.9% and 0.7% ), respec-
tively. Considering that both methods have the advantage of the
same training protocol, the performance gain mainly comes from
the proposed hierarchical embedding learning scheme. Further-
more, we report the segmentation speed by averaging the inferred
time for all instances. It can be observed that our model maintains
favorable inference speed while maintaining optimal performance.

4.1.3 Qualitative Results. We further present the qualitative com-
parison results of YouTubeVIS in Fig. 3. For further results we refer
to the supplementary material. By benefitting from the learning
distribution of the appearance, our method can handle various chal-
lenging scenarios well compared to STEm-Seg [2], even in cases of
the severe occlusion. On these challenging videos, coarse learning
can serve as a good initial location for instance separation. Then,
refine learning can enhance the distinguishing representation of
the instance by the appearance distribution. Overall, both quantita-
tive and qualitative results verify the effectiveness of the proposed
hierarchical embedding-based VIS approach.
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Table 3: Results on the DAVIS 9 val and test sets for the UVOS.

Dataset DAVISy9 val
Method RVOS [36] VSD [47] AGS [43] KIS [7] AGNN [39]  STEm-Seg [2] HEVis
Mean T 36.8 51.7 55.5 - 58.9 61.5 64.8
J Recall T 40.2 - 61.6 - 65.7 70.4 74.3
Decayl 0.5 - 7.0 - 11.7 -4 -5
Mean T 45.7 61.4 59.5 - 63.2 67.8 68.2
F Recall T 46.4 - 62.8 - 67.1 75.5 77.5
Decayl 1.7 - 9.0 - 11.7 1.2 1.0
J&F Mean T 43.7 56.6 57.5 59.9 61.1 64.7 66.5
Dataset DAVISy9 test
Method RVOS [36] VSD [47] AGS [43] KIS [7] AGNN [39]  STEm-Seg [2] HEVis
Mean T 17.7 51.7 42.1 50.0 43.1 194 50.3
g Recall T 16.2 59.9 48.5 58.9 49.0 15.1 59.2
Decay | 1.6 21.7 2.6 8.4 -1.4 -2.3 -3.1
Mean T 27.3 61.4 49.0 58.3 51.5 22.4 58.1
F Recall T 24.8 65.7 51.5 62.1 54.5 13.9 66.1
Decayl 1.8 15.7 2.6 114 2.2 -2.4 -34
J&F Mean T 22.5 56.5 45.6 54.2 47.3 20.9 54.2

Figure 3: Qualitative results and comparison with STEm-Seg[2] on the YouTube-VIS 9 validation dataset [19] ( row 1 and 2)

and the DAVIS o dataset [5] (row 3 and 4).

4.2 Additional Task: Unsupervised Video
Object Segmentation

4.2.1 Experimental Setup. We perform experiments on the recent
challenging UVOS dataset: DAVIS 9 [4][5][32][33]. DAVIS;9 con-
sists of 90 videos (60 for training and 30 for validation) that contain
multiple moving instances. The evaluation metric is J &7, the
mean value of J-score and ¥ -score. J -score is the average of
the IoU between the predicted and ground truth mask tubes, and
¥ -score is the accuracy of the predicted mask boundaries against
the ground truth. Our HEVis model can be viewed as a framework
for refining position information using appearance information.

4.2.2  Quantitative Performance. We report the results of UVOS
on the DAVIS19 val and test sets. A performance comparison is
presented in Table 3. Among the existing methods such as: AGS [43],
RVOS [36], VSD [47], KIS [7], AGNN [39] and STEm-Seg [2], our
simple setup outperforms all the methods compared in terms of
mean J &F (66.5%), mean J (64.8%) and mean F (68.2%) on val
set. Notably, our method obtains a significantly higher score for
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both regional similarity and contour accuracy compared to several
representative methods using heuristic post-processing that handle
each instance independently, such as KIS [7]. Meanwhile, compared
to AGS [43], RVOS [36], VSD [47], AGNN [39] and STEm-Seg [2],
our method outperforms these methods by a large margin. For
the speed measured by FPS (frames per second), HEVis shows a
significant advantage among STEm-Seg [2], achieving 12.0 FPS with
the ResNet-101 backbone. The major reason is that our method
handles the video on the clip level instead of the frame level in
MaskTrack R-CNN [47]. This makes the data loading process time-
consuming in the algorithm implementation. However, our model
can be accelerated by parallel processing.

For completeness, we also evaluate our approach using the
DAVISy9 test set. This subset is considerably more challenging
than the val set because the heavy and long-term occlusions among
instances belonging to the same category are more frequent. The
performance of all the compared methods degrades on this dataset.
However, our method obtains the second-best score. We attribute
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the performance advances to the proposed coarse-to-fine mech-
anism, which helps to obtain more accurate segmentation. our
method achieves an overall performance of 54.20% while the second-
best method KIS [7] is 54.15% (the average of 50.0% in I score, 58.3%
in ¥ score) accurately. Therefore, our method is slightly higher
than KIS [7] actually.

4.2.3 Qualitative Results. The qualitative comparison result of
DAVIS is given in Fig. 3 (see supplementary for more results). Specif-
ically, all object instances undergo severe deformation and suffer
from the occlusion. However, through hierarchical embedding learn-
ing, our network handles these challenges well.

4.3 Ablation Study

In this section, we analyze the effect of the individual components of
our method on the final performance of YouTube-VIS;9 [19], using
the ResNet-50 backbone. Table 4 shows the results of diagnostic
experiments. For each version, we retrain the entire network from

scratch using the same procedure.
Table 4: Ablation Study on YouTubeVIS.

Component Module | AP AAP
Baseline - 19.6 -

DA=1 [212 +16

DA=2 | 223 +2.7

Appearance Embedding DA=3 | 245 +49

(a € RIXDAXHXW) DA=4 | 238 +42

DA=5 | 206 +1.0

AC-flows W, 314 +11.8

[V, xX] | 31.6 +12.0

Sampling strategy [x,v,X] | 32.2 +12.6

[dense, sparse, multi-scale] | [V/,X,v] | 324 +12.8

[x,v,v] | 327 +13.1

Baseline: Our baseline constitutes a version where the model is
trained directly by coarse learning, which is not subsequently re-
fined by appearance embedding. In other words, the baseline variant
is defined as the model without the appearance decoder, AC-flows,
and condition encoder. Then, we retrain the entire network from
scratch using the same procedure. In this case, our HEVis degen-
erates into a multivariate Gaussian model for coarse location. Fur-
thermore, we do not adopt any sampling strategy during inference.
Appearance Embedding: We first study the impact on appear-
ance embedding learning. As observed in Table 4, removing ap-
pearance embedding leads to huge performance degradation (AAP:
4.9%). The results clearly demonstrate that the introduced appear-
ance embedding learning is an essential component in our VIS
approach. Furthermore, we study the dimensions a of the appear-
ance embedding. Compared to the identity baseline that only uses
position embedding, imparting a novel mixing function with the
appearance embedding of D4 = 1 improves the AP from 19.6%
to 21.2%. Therefore, we can observe that when D4 changes from
1 to 3, the quantitative results show increased performance with
an enhanced appearance embedding dimension. When we further
increase DA, the final performance becomes worse when using the
straightforward way to superimpose the dimensions of appearance
embedding. The main reason lies in the balance of the dimensions
between appearance embedding and position embedding.
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Table 5: The quantitative evaluation of condition embedding

injection.
A (b) (©) (d) (e)
£=1 v v v v
=2 v v v
£=3 v v
‘=4 v
AP 28.5 29.2 29.7 31.1 314

AC-flows: Next, we assess the importance of the proposed AC-
flows according to the segmentation results based on D4 = 3. From
the eighth row of Table 4, it is observed that AC-flows also help
to improve the segmentation performance which is 31.4% AP. This
suggests that a conditional probability density estimate enhances
the appearance distribution boundary to facilitate instance-level
discrimination.

We further investigate the influence of the conditional coupling

layer. The results are shown in Table 5, where £* h represents that tai-
loring the vanilla coupling layer into factorized conditional coupling
layer. We can observe that greater performance gain is achieved by
inserting more conditional coupling layers.
Sampling strategy: Finally, we investigate the influence of the
sampling strategy on the inference process. We integrate two sam-
pling strategies into the model inference procedure: dense sam-
pling among successive frames and sparse sampling across multiple
frames randomly. We can see that sparse sampling brings more
performance improvement (32.2% versus 31.6%) as this rule makes
the input video clips have larger receptive field. So the proposed
method can capture more temporal information. Moreover, we
further boost our performance to 32.7% by applying a multi-scale
strategy during inference (32.7% versus 32.4%).

5 CONCLUSION

In this paper, we have proposed an instance video segmentation
method, HEVis, from a hierarchical embedding learning view. We
started with the observation that most current VIS methods fall
into the segmentation-by-detection paradigm with several inde-
pendent modules. Based on this insight, we proposed to learn a
holistic generative model for capturing the spatio-temporal feature
embedding and appearance feature embedding in an end-to-end
way. Correspondingly, we leveraged a concise mixture model to
represent spatio-temporal embeddings. Moreover, we exploited nor-
malizing flows to estimate the underlying appearance embedding
variance. These two embedding learning procedures are integrated
into a hierarchical Bayesian learning framework. In this way, our
model infers all the video instances in a single forward pass. The
experiment shows that each component of our method is highly
effective and achieves new state-of-the-art results on both the video
instance segmentation and unsuperivsed video object segmenta-
tion datasets.In the future, we plan to tailor the flow model into
an invertible version and extend our work to other video analysis
tasks, such as video object detection [22].
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