
Metric Learning for Anti-Compression Facial Forgery Detection

Shenhao Cao, Qin Zou*, Xiuqing Mao, Zhongyuan Wang
School of Computer Science, Wuhan University

* qzou@whu.edu.cn

Abstract

Detecting facial forgery images and videos is an increas-
ingly important topic in multimedia forensics. As forgery
images and videos are usually compressed into different
formats such as JPEG and H264 when circulating on the
Internet, existing forgery-detection methods trained on un-
compressed data often suffer from significant performance
degradation in identifying them. To solve this problem, we
propose a novel anti-compression facial forgery detection
framework, which learns a compression-insensitive embed-
ding feature space utilizing both original and compressed
forgeries. Specifically, our approach consists of three ideas:
(i) extracting compression-insensitive features from both
uncompressed and compressed forgeries using an adver-
sarial learning strategy; (ii) learning a robust partition by
constructing a metric loss that can reduce the distance of
the paired original and compressed images in the embed-
ding space; (iii) improving the accuracy of tampered local-
ization with an attention-transfer module. Experimental re-
sults demonstrate that, the proposed method is highly effec-
tive in handling both compressed and uncompressed facial
forgery images.

1. Introduction
The rapid development of deep learning, especially gen-

erative adversarial networks [10] and variational autoen-
coders [15], enables an attacker to create face forgeries that
are indistinguishable by human eyes. Many deep learning-
based [37, 45, 50, 5] and computer graphics-based [2, 38,
39] face forgery technologies are proposed. Anyone with-
out professional image editing skills can use customized ap-
plications, such as DeepFaceLab [30], FaceApp and Zao, to
create realistic face forgeries. However, those face forgery
technologies may be abused without permission, which has
great damage to the citizens’ portrait and reputation rights
and even endangers the national political. Therefore, the
face forgery detection technology is particularly important.

Face forgeries, no matter generated by identity swap [36,
16, 27, 26, 18], expression swap [38, 39, 14, 46, 51] or

Real Fake
Figure 1. Examples of original and compressed facial images. Top
row: original high-quality images; Bottom row: the corresponding
compressed low-quality images. The left are real facial images,
and the right are forgery ones. Compressed forgery images are
more difficult to be identified.

GAN [11, 12], contain forgery artifacts in both color and
frequency domains [43]. Various forgery detection ap-
proaches were proposed in the past decade, including the
Capsule [29], FWA [20], HeadPose [48], MesoNet [1],
Multi-task [28], Two-stream [52], and Face X-ray [19],
etc. In actual scenarios, media platforms often compress
pictures and videos in order to save transmission band-
width. However, forgery artifacts will fade after compres-
sion, which increases the difficulty of face forgery detec-
tion. As shown in Fig. 1, it is difficult to distinguish the
authenticity of heavily compressed facial images at the bot-
tom row compared to original images at the top row. Xcep-
tionNet [33] achieved 99.26% accuracy in raw data, but
the accuracy decreased to 81.00% in low quality data. At
present, there are still few detection methods specifically for
heavily compressed face forgeries. To solve this problem,
we propose a two-branch network extracting compression-
insensitive features to improve the accuracy of compressed
forgery detection.

It is worth noting that, in the quantization process of the
compression algorithm, e.g. JPEG, the high frequency and
partial mid frequency DCT coefficients are quantized to 0,
in order to reduce the code volume. That is to say, high
frequency features and partial mid frequency features of the
forgery artifacts are lost after compression. However, the
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original image contains the complete forgery information in
all three frequency bands of low frequency, mid frequency
and high frequency. Besides, the compression algorithm
does not modify the manipulation region so that paired dif-
ferent compression level images share a common manipu-
lated region. Therefore, we make the assumption that the
forgery information of the compressed image are a subset
of the forgery information of the original image. Exist-
ing data-driven methods training a two-classification net-
work [29, 1, 52, 19], or using multi-task joint training [28]
cannot completely extract the effective forgery information
of compressed images. Our idea is to use the containment
relationship between the forgery information in the com-
pressed image and the original image, so that the network
extracts the intersection of the two kinds of forgery informa-
tion, which is fully forgery information in the compressed
image.

We propose a two-branch network taking the paired im-
ages from different compression levels as the input, and
combine the adversarial learning and metric learning [44,
23] to train the network. The network learns the common
feature of the two images in a compression-insensitive em-
bedding feature space. Although there is a strong correla-
tion between the paired compressed image and the origi-
nal image, the use of different network branches will map
the images of two compression levels to different feature
spaces. Inspired by the idea of cross-modal retrieval [41],
we use a discriminator to discriminate whether the fea-
ture comes from the compressed image or the original im-
age. When it is well trained, the final discriminator can-
not distinguish the source of the feature. That is to say,
the compressed image and the original image are mapped
to a common feature space with the anti-compression char-
acteristics. Besides, distance between the paired compres-
sion and the original images in the feature space should be
reduced. To achieve it, we introduce the metric-learning
strategy to reduce the feature distance of compressed and
uncompressed forgeries. In addition, we introduce an atten-
tion module on both branches to push the network concen-
trating on the tampered region, and transfer attention infor-
mation to the low-quality branch to improve the tampered-
or manipulated-region prediction.

Overall, in this paper we make the following contribu-
tions:

• A two-branch network is proposed which maps forgery
artifacts from paired original and compressed forgeries
to a compression-insensitive embedding feature space by
using an adversarial-learning strategy;

• A metric loss function is introduced that reduces the dis-
tance of the paired images of two different compres-
sion levels in the embedding feature space, which fur-
ther encourages the network to extract the compression-

insensitive features;

• An attention transfer module is proposed, which
transfers information from the high-quality branch to
the low-quality branch, and improves the accuracy
of manipulated-region prediction on the low-quality
branch.

2. Related Work

In this section, we briefly overview the work on facial
forgery and forgery detection.

2.1. Facial Forgery Technologies

Face forgery technologies can be mainly divided into
three categories: GAN-based face synthesis, face swap and
face reenactment. Recent improvements in Generative Ad-
versarial Networks [11, 12, 13] enable the generation of an
entire high-resolution face image with few visible artifacts.
ProGAN [11] generates images layer by layer from coarse
to fine, and can generate extremely realistic high-definition
face images. StyleGAN [12] decouples the input vector,
Enable the generator to generate face images with speci-
fied characteristics, such as hair color, skin tone, etc. Style-
GAN2 [13] reduces visual artifacts and further improves the
image quality.

Face swap,well known as Deepfakes, replaces a face in
images or videos with another and face reenactment trans-
fers expressions from one person to another. Graphics-
based approaches, especially 3D model technology, are
widely used for face swap [36] and face reenactment [38,
14]. Suwajanakorn et al. [36] uses the 3D model method
for face swap, and achieved excellent results using hun-
dreds of original face and target face images. Face2face [38]
proposes a real-time face reenactment framework for RGB
videos. The extended work [14] proposed a method that can
transfer expression, 3D head pose, and eye blinking among
videos.

Deep learning methods [27, 26, 46, 51, 18] are more ef-
fective in synthesizing or manipulating faces. RSGAN [27]
and FSGAN [26] combine Variational Autoencoder and
GAN, encoding face area and non-face area separately and
reconstruct an entire face swapped image. FaceShifter [18]
uses only a few images to generate high fidelity face
swapped images with facial occlusions. As for face reen-
actment, ReenactGAN [46] extracts face contour of source
image, transfers contour to the target and reconstruct the im-
age only using a feedforward network structure. Zhang et
al. [51] decomposed the face image into appearance space
and shape space, using only one source and one target im-
age to achieve many-to-many expression transfer, and can
generate more realistic beards and hairs.
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Figure 2. The architecture of our two-branch network. Each branch consists of a head encoder, an attention layer, and a weight-shared tail
encoder. In the training phase, paired high-quality and low-quality images are separately fed into the bottom and top branches. The top
branch for low-quality is used in the test phase.

2.2. Forgery Detection Technologies

Current detection methods generally regard the detection
problem as a binary classification problem. Statistics-based
features and neural networks are popular for GAN gener-
ated images detection. Difference in color distribution [25]
and texture distribution [22] between GAN generated im-
ages and real images are utilized for classification. Gaussian
noise preprocessing [47] is proved to improve the represen-
tation and generalization capabilities of neural networks.
FakeSpotter [42]monitors the activation value of neurons
for filtering effective features to train a binary classifier.

Various methods are proposed for detecting forgeries
generated by face swap and face reenactment technologies.
Visual aircrafts in the eyes and teeth area [24] and 3D head
pose [48] are also used. Deep learning based methods are
used to automatically extract discriminative features. Li et
al. [20] uses CNN to capture the aircrafts introduced by
splicing process to distinguish Deepfake videos. In [33]
XceptionNet [6] is directly trained as a binary classifier on
FaceForensics++ [33]. Besides classification, many meth-
ods focus on localizing the tampered regions. Muti-task
learning strategy [28, 34, 35] by joint training a classifica-
tion and segmentation network can simultaneously detect
the tampered images and locate the tampered region. Ste-
houwer et al. [8] present a localization architecture through
an attention mechanism where attention map denotes the in-
terested manipulation region.

State-of-art methods trained on high quality dataset are
not suitable for detecting compressed manipulations, while
discriminative features fade after compression. Previous
studies [33, 21] verify that accuracy drops significantly
tested on compressed manipulations. However, there are
still few detection methods [31, 17] specifically for com-
pressed face forgeries. F3-Net [31] introduces frequency
into the face forgery detection, taking advantages of two

different but complementary frequency-aware clues and im-
proving performance on low quality media. Kumar et
al. [17] applies a triplet loss to achieve higher accuracy on
compressed videos.

3. Methods

3.1. Motivation

We make an assumption that the discriminative features
of low-quality forged images are a subset of high-quality
forged images, mainly based on the following two points:
(i) Quantification. In the image compression algorithm, an
image is converted to the DCT domain in units of blocks. In
the next quantization operation, part of the DCT coefficients
representing high frequency information are set to 0 accord-
ing to the quantization table of different compression lev-
els, while the low-frequency and mid-frequency coefficients
mostly remain unchanged. Therefore, only high-frequency
discriminative features are lost. (ii) Manipulated Region.
The compression algorithm does not modify the manipu-
lated region so that features of paired different compression
level images representing localization should be similar.

Based on this containment relationship, an embedding
function can be learned to extract intersection of paired fea-
tures, which is retained after compression and can be also
called as compression-robust features. The most intuitive
idea is to reduce the feature distance between the paired
high-quality and low-quality images. A pairwise cosine loss
or L2 loss can be used to learn this embedding. However,
these approaches suffer from several serious challenges:(i)
Compared with original images, compressed images have
poorer quality and lower resolution. That’s to say, the distri-
butions are different and images with different compression
levels will be mapped to different feature spaces. Our ap-
proach try to align these feature spaces. (ii) The shared ma-



nipulation regions are not concentrated by embedding func-
tions, as a result, information representing localization can
be lost. (iii) Directly reducing the encoding distance of the
feature is not enough to make the feature more discrimina-
tive.

To solve these problems, we propose a novel end-to-
end framework consisting of two branches for learning
compression-robust embeddings. During the training phase,
the two branches take paired high-quality and low-quality
images as input respectively while only low-quality branch
is used in testing process. To address distribution align-
ment, adversarial training strategy is used to ensure features
across different compression levels following the same dis-
tribution. To address the second localization problem, we
use attention mechanism to highlight the manipulated im-
age regions and transfer attention map from the high-quality
branch to low-quality, which enforces two branches con-
centrate on the same region. Finally, we use a metric loss
that compresses the realistic faces and pushes away the fake
faces in the feature space and further add a L2-loss to reduce
distances across compression levels.

3.2. Architecture

More formally, given a set of different compression level
pairs (ht, lt) for t = 1, . . . , T , where a high-quality image
ht ∈ H and a low-quality lt ∈ L (H and L correspond
to the high-quality and low quality images respectively),
our goal is to learn embedding functions EH : H → Rd

and EL : L → Rd which encode two paired images into
d−dimensional vectors, respectively. In the process of the
feed-forward pipeline, the high-quality images h and low-
quality images l are fed into two CNNs, where the tail sub-
networks are weight shared. The high-quality branch EH

can be divided into three part: head sub-network EHead
H , at-

tention layer ATH and tail sub-network ETail. Identically,
EL consists of EHead

L , ATL and ETail. The two branches
share the common tail sub-network ETail. The head net-
works EHead

H and EHead
L give us mid-level features VH and

VL. Aimed at aligning feature spaces across compression
levels, VH and VL are fed into a discriminator D.

These mid-level features are also fed into attention layer
generating corresponding attention map MH and ML. At-
tention map is used to highlight the manipulated regions so
that MH should be close to ML. Considering the high-
quality branch has more information than the low-quality
branch, we transfer attention information from MH to ML.
In the next step, VH and VL are modified based on activation
value of attention maps, as the input of the tail sub-network.
Finally, the high-quality branch gives us high-level features
Ch ∈ Rd, and the low-quality branch gives us high-level
features Cl ∈ Rd. The embedding functions should ensure
that Ch is close to Ch in the feature space.

This framework is trained under three objectives: to ob-

tain a feature space that aligns distributions across com-
pression levels; to transfer attention information from high-
quality branch to low-quality branch making two branches
share manipulated regions; and to reduce feature distances
in the embedding space where the realistic faces are close
to a fixed point and fake faces are far away from that point.
The total objective of our framework is given as:

L = LDis + λ1LGan + λ2LAT , (1)

where λ1 and λ2 are two weight parameters. The distribu-
tion alignment component LGan(VH , VL) using an adver-
sarial loss to align the two distributions, operating on mid-
level features VH and VL. The attention transfer component
LAT calculates transfer loss between attention map MH

and ML, and also losses between ground truth and atten-
tion maps. The reducing coding distance component LDis

computes metric losses of Ch and Cl, and also L2-loss be-
tween Ch and Cl.

3.3. Adversarial Learning for Distributions Align-
ment

Distributions of the encoded features from high-quality
and low-quality images can be very different, resulting in
slower convergence. Aligning distributions of features is
effective for optimization. Inspired by modality alignment
process in cross-modal retrieval task[41], we use an adver-
sarial loss to align the distributions of the mid-level features
VH and VL. Different from [41] using a discriminator to
directly identify which modality the feature belongs to, we
can’t distinguish whether the feature VH and VL come from
high-quality images or low-quality images. It is worth not-
ing that an image after heavy compression may have higher
quality than another image with light compression because
samples in public datasets may have the same quality label
even they have different qualities. Therefore, lt1 may have
higher quality than ht2 where t1 6= t2, and lt1 definitely has
a lower quality than ht2 where t1 = t2.

We have paired feature maps VH = EHead
H (h) ∈

RH×W×C and VL = EHead
L (l) ∈ RH×W×C , where H ,

W , C are height, width, and the number of channels, re-
spectively. We concatenate VH and VL along channel
and take the concatenated feature maps concat(VH , VL) ∈
RH×W×2C and concat(VL, VH) ∈ RH×W×2C as in-
puts of a discriminator D. D trys to distinguish weather
the concatenated feature comes from concat(VH , VL) or
concat(VL, VH). We achieve a common feature representa-
tion so that D cannot identify the combination order of the
concatenated feature. WGAN-GP is adopted in our experi-
ment empirically. The objective is given as:

LGan =E(VH ,VL)[logD(EHead
H (concat(VH , VL))]+

E(VL,VH)[log(1−D(EHead
L (concat(VL, VH)))],

(2)



and is solved by a min-max optimization:

min
EHead

H ,EHead
L

max
D
LGan.

3.4. Attention Transfer for Manipulated- Region
Prediction

As shown in Fig. 2, the inputs of attention layer are fea-
ture maps VH ∈ RH×W×C and VL ∈ RH×W×C . Then, we
can generate attention maps MH = ATH(VH) ∈ RH×W

and ML = ATL(VL) ∈ RH×W . We use a direct regres-
sion method [8] as the attention layer, which is a convolu-
tion layer follow by a Sigmoid function. The pixel value
of the attention map is close to 0 for the real regions and 1
for the fake regions. The output of the attention is refined
by attention map to help the following network concentrate
on fake regions. The output feature maps VH ′ and VL′ are
calculated as:

VH
′ = VH �MH , (3)

VL
′ = VL �ML, (4)

where � denotes element-wise multiplication.
The pixel-level intensity indicates the probability

whether the corresponding region comes from a fake image.
We treat each pixel of an attention map as a binary classifi-
cation problem and cross-entropy loss is used for each pixel
as attention loss. Considering that the pixel-level intensity
of two attention maps should be closer, we transfer atten-
tion information from MH to ML using L2-loss, inspired
by[49]. The total attention transfer loss is calculated as

LAT =
1

N

∑
||Mgtlog(MH) + (1−Mgt)log(1− log(MH))||1+

1

N

∑
||Mgtlog(ML) + (1−Mgt)log(1− log(ML))||1+

|| MH

||MH ||2
− ML

||ML||2
||2,

(5)
where Mgt is the ground truth manipulation mask, andN is
the number of pixels of an attention map. We use all zeros
as the Mgt for real faces.

3.5. Metric Loss to Reduce the Feature Distance

After high-quality and low-quality images are passed
through the encoder networks, high-level features Ch ∈ Rd

and Cl ∈ Rd are obtained. Our goal is to minimize the dis-
tance between Ch and Cl in the feature space. In [52], it
proposes a metric loss to compresses the realistic faces and
pushes away the fake faces in the feature space. We find
that this loss is fast to converge cooperated with attention
layer. More specifically, taking a realistic image as input,
pixel intensity in attention map is close to 0 so that the acti-
vation is weakened by attention layer. On the contrary, high
activation is obtained for a fake image. We directly pull

realistic faces close to the origin and push fake faces away
from the origin in the embedding space. The objective LDis

is formulated as:

LDis =
∑

ht∈Real

max(0, ||Ch||2 − r−) +∑
ht∈Fake

max(0, r+ − ||Ch||2) +∑
lt∈Real

max(0, ||Cl||2 − r−) +∑
lt∈Fake

max(0, r+ − ||Cl||2) +

λ3
∑

(lt,ht)

||Ch − Cl||2.

(6)

where λ3 is a trade-off parameter.

4. Experiments
4.1. Dataset and Evaluation Metrics

We conduct ablation studies and comparisons on the
challenging FaceForensics++[33] dataset. FaceForensics++
dataset contains 1000 real videos, and each real video cor-
responds to four manipulated types of fake videos. There-
fore there are 5000 videos in total. Each video has three
compression levels, i.e., RAW, High Quality (HQ) and Low
Quality (LQ), which is well tailored for our task. Besides,
each fake video corresponds to a mask video which high-
lights the manipulated region. Following setting in [33],
we use 720 real videos and corresponding fake videos for
training, 140 videos for validation and 140 videos for test-
ing. We sample 270 frames each video and use the method
proposed in [38] to obtain the face region of the frame and
crop the face region enlarged by a factor of 1.3. The en-
larged face region of a fake frame is also used to crop the
corresponding mask frame to make ground truth for atten-
tion map. As shown in Fig. 3, the first four rows display the
examples of three different compression-level images and
the manipulated masks of the FaceForensics++ dataset.

Following [33, 31], the accuracy score (ACC) is em-
ployed as an evaluation metric in our experiments. Fol-
lowing [31, 19, 8, 4], we also employ the Area Under the
Receiver Operating Characteristic Curve (AUC) as an eval-
uation metric for classification. Besides, considering that
the True Accept Rate (TAR) at a low False Accept Rate
(FAR) is widely used for a classification system[31, 8], we
also report TAR at FAR of 0.01% (denoted as TAR0.01%)
and TAR at FAR of 0.1% (denoted as TAR0.1%) as the clas-
sification evaluation metrics. Following [8], to evaluate the
localization accuracy of attention maps, the Pixel-wish Bi-
nary Classification Accuracy (PBCA) is used, which mea-
sures the classification accuracy by treating each pixel as an
independent sample. The attention map is transformed to a



Real Deepfakes FaceSwap Face2Face NeuralTextures

High-Quality

(c23)

Low-Quality

(c40)

Mask Label

Attention 

Map(c23)

Attention 

Map(c40)

Raw

(c0)

Figure 3. Attention maps predicted on a sample facial image of Forenisics++ dataset.

binary map at a threshold of 0.5, and PBCA is calculated
based on the binary map and the ground-truth mask.

4.2. Implementation Details

To obtain the ground truth manipulation mask of a
fake image, the cropped mask frame is transformed into
grayscale, divided by 255 and converted to a binary map
at threshold of 0.1. In our experiments, Trade-off param-
eter λ1 is set to 0.001, λ2 is set to 1 and λ3 is set to 0.1.
We use Adam optimizer at a learning rate of 0.0001 and a
batchsize of 32. The training phase is stopped when the loss
doesn’t reduce on validation dataset. We augment the size
of real images to balance the number of fake images and
real images. We use XceptionNet [6] pre-trained on Ima-
geNet as backbone networks for both two branches. The
newly introduced attention layer and discriminator are ran-
domly initialized. The attention layer is inserted between
Block 7 and Block 8 of the middle flow and feature maps of

Block 7 are fed to the discriminator for both two branches.
To fuse the concatenated features, we use 1×1 convolution
kernel for the first convolutional layer of the discriminator.
Given that d = 2048, r− is set to 0.1 and r+ is set to 18.0
for metric learning. In the test phase, an image is classi-
fied as fake if the L2 distance between the origin and the
embedding feature is larger than r−+r+

2 .

4.3. Comparisons with Other Methods

We compare our method with other previous face forgery
detection methods on the FaceForensics++(LQ) dataset. Ta-
ble 1 shows the AUC and ACC obtained by various meth-
ods trained and tested on the whole FaceForenisics++(LQ)
dataset. We re-run the XceptionNet [6] on our dataset parti-
tion and other results are from [31]. The comparison is not
too strict due to the difference of dataset partition. Table 2
shows the accuracies of the manipulation-specific forgery
detectors.



Table 1. Performance of different methods on Face-
Forenisics++(LQ). Some of results are from [31].

Methods ACC AUC

Steganalysis [9] 55.98 −
CustomPooling CNN [32] 61.18 −
MesoNet [1] 70.47 −
Face X-ray [19] − 61.60

XceptionNet [6] 86.52 90.32

Ours 87.69 91.54

Table 2. Accuracy of manipulation-specific forgery detectors on
the FaceForenisics++(LQ) datasets. The names of the datasets are
abbreviated as DF: DeepFakes, F2F: Face2Face, FS: FaceSwap,
and NT: NeuralTextures. Some of results are from [6].

Methods DF F2F FS NT

Steganalysis [9] 65.58 57.55 60.58 60.69
Cozzolino et al.[7] 68.26 59.38 62.08 62.42
Bayar and Stamm[3] 80.95 77.30 76.83 72.38
CustomPooling CNN[32] 73.25 62.33 67.08 62.59
MesoNet [1] 89.52 84.44 83.56 75.74
XceptionNet [6] 94.36 90.27 93.25 79.53
Ours 95.38 91.46 94.18 81.07

The results in Table 1 and Table 2 show that, our method
outperforms the Xception baseline and other previous meth-
ods. Compared with XceptionNet, our method achieves an
improvement of about 1.17% in ACC and 1.22% in AUC on
the whole FaceForensics++(LQ) dataset. When evaluated
on the manipulation-specific dataset, our method obtains a
promotion on accuracy of about 1.0% , 1.2%, 1.1%, 1.5%
for Deepfakes, Face2Face, FaceSwap and NeuralTextures,
respectively. One possible reason for this result is that,
the proposed method benefits from the proposed metric-
learning strategy, attention transfer, and the adversarial
learning, which helps in learning a compression-insensitive
feature embedding space using paired high-quality and low-
quality images. The proposed method can detect forgeries
from very challenging images. Figure 4 displays some ex-
amples that are falsely classified by XceptionNet but cor-
rectly by our method.

4.4. Ablation Study

We do ablation experiments on both single XceptionNet
and our proposed two-branch XceptionNet to explore ben-
efits of metric loss, attention transfer and GAN. The tuple
(c23, c40) represents that the high-quality branch takes in
c23 compression-level images and the low-quality branch
takes in c40 compression-level images.

Benefit from GAN: As shown in Table 3, the-two branch
network trained with GAN obtains much higher ACC and
AUC than the network without GAN, holding an improve-

Real

Fake

Figure 4. Sample facial images that are correctly classified by our
method while falsely classified by XceptionNet.

ment of 0.14% on ACC and 0.58% on AUC. What’s more,
GAN also brings an improvement of 0.13% on PBCA ,
as shown in the comparison of row 8 and row 9 in Ta-
ble 3. Since GAN aligns the distribution of features from
two branches, it will be more easier for the following net-
work to learn a common representation.

Benefit from Attention Transfer: We firstly explore
the effect of attention layer in the single XceptionNet. Re-
sults in Table 3 shows that the attention layer can improve
all evaluation metrics to some extent, for it enforces the
network concentrating on the tampered region. Attention
layer will improve the ACC of 0.13% and AUC of 0.16%
in the single XceptionNet, as shown in row 2 and row 3 in
Table 3. Two-branch network with attention transfer gets
better classification accuracy than the two-branch network
without attention layer, since the low-quality branch gets
more accurate location. There is 0.45%, 0.27%, 0.59%,
0.11% performance improvement on ACC, AUC, TAR0.1%

and TAR0.01%, as can be seen in row 5 and row 8 in Table 3.
We further verify that the attention transfer is more effective
than only using attention layer without transfer, comparing
row 7 and row 8 in Table 3. As shown in Fig. 3, we plot at-
tention maps of the high-quality and low-quality branch on
the four manipulation-specific dataset of FaceForensics++.

Benefit from Metric Loss: To reveal the effects of
metric loss, we train the single XceptionNet supervised
by cross-entropy loss and metric loss respectively. As
shown in Table 3, the single model trained with metric
loss has similar AUC and accuracy compared with the sin-
gle model trained with cross entropy, but achieves much
higher TAR0.1% of 1.13% and TAR0.01% of 5.4% than
cross-entropy loss, comparing row 1 and row 2 in Table 3.
It proves that metric loss performs better at lower FAR.

It is worth noting that the metric loss of the two-branch
network has one more component that reduces embedding
distance of paired images than the single network. The two-
branch network supervised by metric loss achieves higher
performance on all evaluation metrics than single model.
The two-branch network achieve an improvement of about
0.4% on ACC, 0.2% on AUC, 0.9% on TAR0.1% and 2%
on TAR0.01%, as shown row 2 and row 5 in Table 3. It is



Table 3. Ablation Study on the Forensics++-Deepfakes dataset. (c0: RAW, c23: HQ, c40: LQ)

No. Network Losses or Modules Training data Test data ACC AUC TAR0.1% TAR0.01% PBCA

1 Single XceptionNet Cross Entropy c40 c40 94.36 97.90 94.74 79.32 −

2 Single XceptionNet Metric Loss c40 c40 94.33 97.70 95.87 84.71 −

3 Single XceptionNet Metric Loss+Attention c40 c40 94.46 97.86 96.18 85.67 93.33

4 Single XceptionNet Metric Loss+Attention c23 c23 98.93 99.85 99.82 98.89 96.34

5 2-Branch XceptionNet Metric Loss (c23,c40) c40 94.71 97.91 96.69 86.67 −

6 2-Branch XceptionNet Metric Loss+GAN (c23,c40) c40 94.85 98.47 96.71 84.27 −

7 2-Branch XceptionNet Metric Loss+Attention (c23,c40) c40 95.04 98.05 97.16 86.53 93.51

8 2-Branch XceptionNet Metric Loss+Att.Tran. (c23,c40) c40 95.16 98.18 97.28 86.78 93.64

9 2-Branch XceptionNet Metric Loss+Att.Tran.+GAN (c23,c40) c40 95.30 98.76 97.64 84.25 93.77

10 2-Branch XceptionNet Metric Loss+Att.Tran.+GAN (c0,c40) c40 95.21 98.25 96.93 81.96 93.65

11 2-Branch XceptionNet Metric Loss+Att.Tran.+GAN (c0,c40)(c23,c40) c40 95.38 98.68 97.59 83.85 93.86
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Figure 5. Feature distribution of images from FaceForensics++(LQ)

because that, the metric loss requires the low-quality branch
learning a similar feature representation with high-quality
branch, enforcing the low-quality branch extracting the rare
meaningful feature as much as possible. As shown in Fig. 5,
we plot histogram of the distance from the origin and use t-
sne [40] to visualize distribution of feature. We feed paired
HQ(c23) and LQ(c40) test data to the high-quality and low-
quality branch respectively to obtain the distances. In Fig. 5,
we can see that real and fake data are separated with a large
margin.

We can also find that, the model trained on (c23, c40)
pairs performs better than (c0, c40) pairs, when compar-
ing row 9 and row 10 in Table 3. The two-branch network
trained with attention transfer, metric loss and GAN on
(c23, c40) pairs achieves the best result in ACC of 95.30%,
AUC of 98.76%, and TAR0.1% of 97.64%, and the second
best in PBCA of 93.77%, as shown in row 9 of Table 3.
The reason may be that the distribution difference of c23-
data and c40-data is smaller, which makes the network learn
a common feature space more easily. But there is still a
large gap on all evaluation metrics compared with the single
XceptionNet directly trained and test on c23-data, by com-

paring row 4 and row 9 in Table 3, for lots of determinative
features are lost after compression.

5. Conclusion

In this paper, we studied the detection of the compressed
facial forgery images. The proposed two-branch network
performed an accurate and stable facial forgery detection
with the help of an adversarial learning strategy, a metric
loss, and an attention transfer. The adversarial learning with
the input of compressed and uncompressed pairs drove the
network to extract compression-insensitive features. The
metric loss maximized the distance of genuine and forgery
data. The attention transfer improved the prediction of re-
gion of forgery manipulation. To the best of our knowledge,
this was the first work that uses paired images across differ-
ent compression levels to improve the capacity of handling
compressed facial forgeries. Experiments showed that, the
proposed method achieved the state-of-art performance on
the benchmark datasets.
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Sugasa Marangonda, Chris Umé, Jian Jiang, Luis RP, Sheng
Zhang, Pingyu Wu, et al. Deepfacelab: A simple, flexi-
ble and extensible face swapping framework. arXiv preprint
arXiv:2005.05535, 2020. 1

[31] Yuyang Qian, Guojun Yin, Lu Sheng, Zixuan Chen, and Jing
Shao. Thinking in frequency: Face forgery detection by min-
ing frequency-aware clues. In Proceedings of the European
conference on computer vision (ECCV), pages 86–103, 2020.
3, 5, 6, 7

[32] Nicolas Rahmouni, Vincent Nozick, Junichi Yamagishi, and
Isao Echizen. Distinguishing computer graphics from natu-
ral images using convolution neural networks. In 2017 IEEE
Workshop on Information Forensics and Security (WIFS),
pages 1–6, 2017. 7

[33] Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Chris-
tian Riess, Justus Thies, and Matthias Nießner. Faceforen-
sics++: Learning to detect manipulated facial images. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 1–11, 2019. 1, 3, 5

[34] Ronald Salloum, Yuzhuo Ren, and C-C Jay Kuo. Image
splicing localization using a multi-task fully convolutional
network (mfcn). Journal of Visual Communication and Im-
age Representation, 51:201–209, 2018. 3

[35] Kritaphat Songsri-in and Stefanos Zafeiriou. Complement
face forensic detection and localization with facialland-
marks. arXiv preprint arXiv:1910.05455, 2019. 3

[36] Supasorn Suwajanakorn, Steven M. Seitz, and Ira
Kemelmacher-Shlizerman. What makes tom hanks
look like tom hanks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages
3952–3960, 2015. 1, 2

[37] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-
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