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ABSTRACT
The target representation learned by convolutional neural networks
plays an important role in Thermal Infrared (TIR) tracking. Cur-
rently, most of the top-performing TIR trackers are still employing
representations learned by the model trained on the RGB data. How-
ever, this representation does not take into account the information
in the TIR modality itself, limiting the performance of TIR tracking.

To solve this problem, we propose to distill representations of the
TIR modality from the RGB modality with Cross-Modal Distillation
(CMD) on a large amount of unlabeled paired RGB-TIR data.We take
advantage of the two-branch architecture of the baseline tracker,
i.e. DiMP, for cross-modal distillation working on two components
of the tracker. Specifically, we use one branch as a teacher module
to distill the representation learned by the model into the other
branch. Benefiting from the powerful model in the RGB modality,
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the cross-modal distillation can learn the TIR-specific representa-
tion for promoting TIR tracking. The proposed approach can be in-
corporated into different baseline trackers conveniently as a generic
and independent component. Furthermore, the semantic coherence
of paired RGB and TIR images is utilized as a supervised signal in
the distillation loss for cross-modal knowledge transfer. In practice,
three different approaches are explored to generate paired RGB-TIR
patches with the same semantics for training in an unsupervised
way. It is easy to extend to an even larger scale of unlabeled training
data. Extensive experiments on the LSOTB-TIR dataset and PTB-
TIR dataset demonstrate that our proposed cross-modal distillation
method effectively learns TIR-specific target representations trans-
ferred from the RGBmodality. Our tracker outperforms the baseline
tracker by achieving absolute gains of 2.3% Success, 2.7% Precision,
and 2.5% Normalized Precision respectively. Code and models are
available at https://github.com/zhanglichao/cmdTIRtracking.

CCS CONCEPTS
•Computingmethodologies→Unsupervised learning;Track-
ing; Neural networks.

KEYWORDS
Unsupervised learning; Knowledge distillation; TIR tracking; Con-
volutional neural network

ACM Reference Format:
Jingxian Sun, Lichao Zhang, Yufei Zha, Abel Gonzalez-Garcia, Peng Zhang,
Wei Huang, and Yanning Zhang. 2021. Unsupervised Cross-Modal Dis-
tillation for Thermal Infrared Tracking. In Proceedings of the 29th ACM

ar
X

iv
:2

10
8.

00
18

7v
1 

 [
cs

.C
V

] 
 3

1 
Ju

l 2
02

1

https://doi.org/10.1145/3474085.3475387
https://github.com/zhanglichao/cmdTIRtracking


International Conference on Multimedia (MM ’21), October 20–24, 2021, Vir-
tual Event, China. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3474085.3475387

1 INTRODUCTION

Ground TruthCMD-DiMP Baseline-DiMP

Figure 1: Qualitative comparison between the proposed
method and baseline tracker DiMP [4] on LSOTB-TIR
dataset [33]. By training with cross-modal distillation, the
tracker can effectively track the targets on different chal-
lenging scenes.

Thermal Infrared (TIR) tracking [15, 17, 31, 34] aims to locate a
target by using videos of the thermal infrared modality, where the
initial location of the target is given in the first frame. Compared
with RGB trackers, TIR trackers can still distinguish the target
from the background under some challenging situations, e.g. low
illumination, shadow, and occlusion, even working well in total
darkness where visual cameras have no signal. These advantages
make TIR trackers running in a wide range of applications, such
as video surveillance, maritime rescue, various defense systems,
and driver assistance at night [26]. However, one key issue of TIR
trackers is how to learn powerful features for representing the
target efficiently in order to deal with various difficulties specific
to the TIR modality, such as thermal crossover, intensity variation,
and distractors.

In early work, the hand-crafted features [15, 44], e.g. Histogram
of Oriented Gradients (HOG) [7], Harr-like feature [29], are em-
ployed to represent targets in TIR trackers. These trackers exploit
classic learning paradigms, such as multiple instance learning [?
], discriminative correlation filter [1], and low-rank sparse learn-
ing [19] for TIR tracking. Recently, Convolutional Neural Networks
(CNN) have also been introduced to represent the target to improve
the performance of TIR trackers [31, 32]. The CNN features ex-
tracted by the pre-trained networks, e.g. VGGNet [38], ResNet [18],
are integrated into the trackers followed by the correlation filter
(CF) [20], structural support vector machine [16] or Siamese net-
works [3] for enhancing the target representation. The results show
that the representation with CNN features is discriminative to dis-
tinguish the target from distractors in the background, compared
with hand-crafted features.

However, both hand-crafted and off-the-shelf features are not
optimal for the TIR target, which limits the performance of TIR
tracking. In practice, TIR images lack color information and rich

texture features compared with RGB images. The hand-crafted
features are designed according to the characteristics of RGB images,
while the pre-trained models are derived from large-scale RGB
data. They have exclusively used the RGB modality, ignoring the
differences between RGB and TIR modalities. As a result, this gap
in the representation degrades the discriminability of the tracker
for identifying the target from the background in the TIR modality.
A TIR-specific representation needs to be specifically tailored for
the TIR modality in order to maximally leverage its characteristics.
Additionally, the lack of large-scale annotated TIR data makes it
impossible to train the networks from scratch. Labeling the TIR data
is a time-consuming and laborious work. And at present there is no
large-scale TIR data for tracking as normally RGB trackers do [3,
9, 14, 22]. Therefore, in our previous work [45], we collect a large
amount of TIR data from other vision tasks, but these TIR data is not
annotated for the tracking task. To solve this issue, we propose to
use image-to-image translationmodels to generate synthetic labeled
TIR datasets transferring from RGB tracking datasets. Exhaustedly,
a lot of extra efforts are still needed for training translation models
in this work.

In order to obtain powerful target representations for TIR track-
ing, we propose to distill the representation of the TIR modality
from the RGB modality with Cross-Modal Distillation (CMD) on
a large amount of unlabeled paired visible and infrared images.
Motivated by the idea of distilling the network knowledge from a
teacher model to a student model [21], our method does distill rep-
resentation knowledge from the RGB modality to the TIR modality.
We use DiMP [4] as our baseline tracker which is constructed with
the architecture of two branches. We explore distillation operations
on Target Center Location (TCL) and Bounding Box Estimation
(BBE) in DiMP [4]. As a result, we can obtain the TIR-specific rep-
resentation guided by the pre-trained model in the RGB modality.
Benefiting from the powerful model trained on large-scale labeled
RGB data, the learned TIR model can better represent the TIR target.
Here, the proposed method is generic and can be applied to different
baseline trackers conveniently. In this work, we use our cross-modal
distillation method to train the tracker ATOM [9] in section 4.4,
and it effectively improves the performance of ATOM [9]

Moreover, an unsupervised training method is proposed to take
advantage of the dual-modalities data without any annotations,
and this will relieve the dependency on the labeled TIR data. The
semantic coherence of the paired RGB and TIR image replaces the
manual labels as the ground-truth in the final loss function for
model training. This prior is helpful to transfer the model knowl-
edge between the different modalities. In practice, we explore three
different approaches (‘center area’, ‘random sampling’, and ‘detec-
tion’) to generate paired RGB-TIR patches from the RGB and TIR
images as training data. These paired dual-modalities image patches
with the same semantics are fed into the network to learn TIR rep-
resentation under the distillation loss. Here, we do not require any
kinds of annotations in the training data, so the whole training
procedure can be conducted in an unsupervised manner. Besides, it
is easy to extend to an even larger scale of unlabeled training data.

We validate the proposed method on two standard test datasets:
LSOTB-TIR dataset [33] and PTB-TIR dataset [30]. Some qualitative
results for comparisons between the proposed method and baseline
tracker are shown in Fig. 1. Compared with the baseline tracker, we
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achieve absolute gains of 2.3% Success, 2.7% Precision and 2.5% Nor-
malized Precision respectively on LSOTB-TIR dataset [33]. These
results demonstrate that our proposed Cross-Modal Distillation
(CMD) method effectively learns TIR-specific target representa-
tions transferred from the RGB modality. The contributions of our
work are as follows:

• A representation transferring approach called Cross-Modal
Distillation (CMD) is proposed to distill a TIR-specific repre-
sentation from the RGB modality on a large amount of unla-
beled paired RGB-TIR data. This benefits from the powerful
model trained on large-scale labeled RGB data. The proposed
approach can be incorporated into different baseline trackers
conveniently due to its generality and independence.

• An unsupervised manner is proposed without any annota-
tion of the target for training. During training, three different
approaches are explored to generate paired RGB-TIR patches
with the same semantics automatically. It is easy to extend
to an even larger scale of unlabeled training data.

• We conduct extensive experiments on two benchmarks to
verify the effectiveness of the proposed method. The re-
sults demonstrate that our algorithm achieves a significant
improvement against SOTA methods on the TIR tracking
challenge.

The remainder of the paper is structured as follows. In section 2,
we briefly discuss related works. In section 3, we describe the cross-
modal distillation modules to learn the TIR-specific representation
transferred from the pre-trainedmodel on the RGB data. In section 4,
extensive experiments are carried out on two standard thermal in-
frared tracking datasets. Finally, we conclude our work and propose
future research plans in section 5.

2 RELATEDWORK
In this section, we will introduce the works closely related to our
study in this paper. More references about multi-modal tracking
can be seen in the surveys [46, 47].
TIR Tracking. The hand-crafted features, such as edges, motion
features, and HOG, were integrated discriminative correlation filter
with scale estimation [17] or spatial regularization [15] for TIR
tracking. Their favorable performance was mainly due to the ro-
bust feature representation and online learning. The CNN features
extracted from the common networks were used to replace the hand-
crafted features for target representation in TIR tracking [34]. Re-
cently, MLSSNet [32] trained a multi-level similarity-based Siamese
network on an RGB and TIR dataset simultaneously. A multi-task
matching framework [31] was proposed to learn deep features in
the levels of inter-class and intra-class respectively. These kinds of
features complemented each other and recognized TIR objects in
the levels of inter-class and intra-class respectively. These feature
models were learned and jointly optimized on the TIR tracking task.
Besides, the Siamese networks were used to extract the features
from the network trained on a large amount of synthetic TIR images
for TIR tracking [45].

Unlike previous works, we expect to learn the TIR-specific dis-
criminative representation transferred from the RGB modality by
training the network on the paired RGB and TIR images.
Knowlege Distillation for Vision Tasks. The main idea of
knowledge distillation [21] was that the student model mimics the

teacher model in order to obtain a competitive or even a superior
performance, which benefits the deployment of deep neural net-
works in mobile devices and embedded systems. In fact, it was
important to transfer knowledge between different modalities, be-
cause the data or labels of some modalities might not be available
during training. The idea is to transfer the annotation or label data
through pair-wise samples and this has been widely used for cross-
modal applicaitons [40]. Tian et al. [40] proposed a contrastive loss
to transfer pair-wise relationship across different modalities, while
GANs were employed to perform cross-modal distillation among
the missing and available modalities [37]. In addition, in the field
of visual question answering, the knowledge from trilinear inter-
action teacher model with image-question-answer as inputs was
distilled into the learning of a bilinear interaction student model
with image-question as inputs [12]. Besides, lots of cross-modal
distillation methods [6, 24] also transferred the knowledge among
multiple domains.

Unlike the above applications, we focused on TIR tracking, which
lacked large-scale annotated TIR data for training. To overcome this
problem, cross-modal distillation (CMD) was introduced to transfer
representations from the RGB modality to the TIR modality in this
study. Specifically, the knowledge of the RGBmodel was transferred
to the TIR model through unsupervised learning, and it benefited
to improve the performance of the TIR tracking task.

3 PROPOSED METHOD
In this section, we propose to transfer the representation of the pre-
trained model from RGB modality to TIR modality by using a large
amount of paired RGB-TIR data in an unsupervised way. Unlike
the classic KD work in [21] which uses two independent models
for distillation happening on intermediate features or final outputs,
our proposed cross-modal distillation adopts representations of
the RGB modality as powerful supervision signals in one branch
to guide the representation learning in the TIR modality with the
other branch.

3.1 Overview
The training pipeline of the proposed unsupervised training of
cross-modal distillation for TIR tracking is shown in Figure 2. In
order to transfer the representation from the RGB modality to the
TIR modality, cross-modal distillation modules are discussed in
Fig. 2 (e) following after the backbone network shown in Fig. 2 (d).

Here, the proposed cross-modal distillation modules are con-
structed by the convolutional layer, pooling layer, fully connected
layer, distillation operation, and so on and contains two compo-
nents for distillation: the Target Center Location (TCL) distillation
for discriminating the target from the background and Bounding
Box Estimation (BBE) distillation for fine-tuning the bounding box
of the target. Both these two distillations are guided by representa-
tions of the RGB modality from one branch to learn the TIR-specific
representations with the other branch under the distillation loss.
Unlike the training procedure of RGB trackers, our approach is
trained to process the information from both RGB and TIR modal-
ities simultaneously, which are denoted as red and blue lines re-
spectively in Fig. 2. While the green line represents the procedure
of the cross-modal distillation in Fig. 2. The input of the proposed
model architecture are paired dual-modalities images. Before the
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Figure 2: Unsupervised training of Cross-Modal Distillation (CMD) for TIR tracking. Only the paired RGB images shown in
Fig. 2 (a) and TIR images shown in Fig. 2 (b) are employed as training data. Before network training, the paired dual-modalities
patches in Fig. 2 (c) are generated automatically as the input of the network for cross-modal distillation. The CNN features
are extracted by backbone network on both RGB and TIR modalities in Fig. 2 (d), and then they are fed into the cross-modal
distillation shown in Fig. 2 (e) with target center location (TCL) distillation and bounding box estimation (BBE) distillation.
Here, the red line and blue line denote the processing flow of RGB modality and TIR modality, respectively. The cross-modal
distillation flow is expressed as the green line. The line with the reverse arrow indicates the training process.
training of the network, three different approaches are explored to
generate paired patches shown in Fig. 2 (c) and they are from the
RGB images as in Fig. 2 (a) and TIR images as in Fig. 2 (b). After that,
patches’ coordinates in the image and pseudo Gaussian distribution
are utilized to construct the annotated label for calculating the loss
during the training of the cross-modal distillation.

Mathematically, we denote the RGB image as 𝐼 𝑣 and TIR image as
𝐼𝑡 , respectively. The bounding box is described as 𝑠 = (𝑐𝑥/𝑤, 𝑐𝑦/ℎ, log
𝑤, logℎ) ∈ R4, where (𝑐𝑥 , 𝑐𝑦) is image coordinates of the bounding
box center, the width and height of box are denoted as 𝑤 and ℎ.
The CNN features extracted by the backbone network are written
as 𝑥𝑣 ∈ 𝜒 for RGB modality and 𝑥𝑡 ∈ 𝜒 for TIR modality. The
training dataset can be denoted as 𝑆𝑡𝑟𝑎𝑖𝑛 = {𝑥𝑣

𝑖
, 𝑥𝑡

𝑖
}𝑁
𝑖=1, where 𝑁 is

the volume of the training dataset.
Our goal is to learn a cross-modal distillation D(𝜙, 𝜃 ) to achieve

TIR-specific representations by transferring the RGB model. Specif-
ically, the target center location (TCL) distillation 𝜙 is used to iden-
tify the target from the distractors in the background for locating
the position. Furthermore, to refine the bounding box of the results,
the bounding box estimation (BBE) distillation 𝜃 is used to learn
the regression coefficients to fit the target more accurately. Thus,
the final distillation loss contains two parts: target center location
loss and bounding box estimation loss, which can be written as:

L(𝜙, 𝜃 ) = L𝑇𝐶𝐿 (𝜙) + 𝜆L𝐵𝐵𝐸 (𝜃 ), (1)
where 𝜆 is a regularization coefficient to balance the two losses.

3.2 Cross-Modal Distillation
In this section, we introduce distillation modules between RGB and
TIR modalities based on a large amount of paired RGB-TIR data.
Paired Patches Generation: The large amounts of annotated
data are an essential factor for training network [11] that has been
demonstrated in other vision tasks. But for TIR tracking, lack-
ing of large-scale training data limits the training of the network
from scratch. Recent works [31, 32] directly employ the pre-trained
model in the RGB modality for the representations of TIR targets.
The results show that this off-the-shelf representation is not opti-
mal for the TIR target, as the appearance of the target in different
modalities varies largely. The reason owes to the different imaging
mechanisms.

Unlike the previous works [31, 32], in this work, we consider
using a large amount of unlabeled paired data from RGB and TIR
modalities in this study. This avoids a lot of time and efforts to label
them for the acquisition of large amounts of infrared data. To better
and more effectively utilize the paired RGB-TIR data for training,
three methods: ‘center area’, ‘random sampling’, and ‘detection’,
are explored to generate the paired patches with same semantics as
the input of the network. Specifically, the ‘center area’ is to assign
a square region in the center of the image as a fake target, thus
obtaining the bounding box in this image. The ‘random sampling’
is to randomly sample several patches from the image and then
they can be fed into the network for training.

Additionally, we also employ the object detectors, such as YOLO [5],
Faster R-CNN [36], to detect the locations of the targets in the im-
age. After we obtain bounding boxes of ‘objects’ by the above three
methods, we can feed them for two applications in the training pro-
cedure. On one hand, the paired patches from dual-modalities are
used as input of the network to execute forward inference. On the
other hand, the corresponding coordinates of the patches are used
to construct the distillation losses for back-propagation training.
Target Center Location Distillation: The target center location
(TCL) distillation is utilized to locate the target coarsely by pre-
dicting the score of heatmap in the image. This distillation pays
more attention to robustness than accuracy during tracking. In this
distillation, we expect to learn a TIR filter 𝜙 derived from the TIR
images while fitting with the RGB representation with a Gaussian
pseudo distribution 𝑔. The cross-modal distillation (CMD) loss of
target center location can be written as follows:

L𝑇𝐶𝐿 (𝜙) =
𝑁∑︁
𝑖=1

| |𝜙 (𝑥𝑡𝑖 ) ⊗ 𝑥𝑣𝑖 − 𝑔| |2 + 𝜇 | |𝜙 | |2, (2)

where the filter is denoted as 𝜙 , ⊗ is the convolution operation and
𝜇 is a regularization parameter.

This loss can be minimized to optimize the weights of a linear
convolutional layer. It is helpful to identify the target from distrac-
tors in the background. During training, this branch is trained by a
meta-learning way with the pre-trained RGBmodel using the above
loss in Eq. 2. During the tracking inference, the center position of



the target is optimized by searching the maximum confidence score
within a wide search region in the next frame.
Bounding Box Estimation Distillation: The BBE enables the
tracker to be wrapped by the box for accuracy improvement of the
tracking performance. Here, we denote the state of the bounding
box as 𝑠 = (𝑐𝑥/𝑤, 𝑐𝑦/ℎ, log𝑤, logℎ) ∈ R4. The distillation loss of
bounding box estimation can be denoted as:

L𝐵𝐵𝐸 (𝜃 ) =
𝑁∑︁
𝑖=1

| |𝜓 (𝜃 (𝑥𝑡𝑖 ) ⊙ 𝜑 (𝑥𝑣𝑖 )) − 𝑠 | |2 + 𝜈 | |𝜃 | |2, (3)

where 𝜓 (·) is the fully connection operation, ⊙ is the pixel-wise
multiplication, and 𝜑 is pre-trained model in RGB modality.

We obtain the RGB representation by using the 𝜑 to extract on
the RGB features 𝑥𝑣 , and regard it as the teacher vector to guide
the student model 𝜃 for learning TIR-specific representations under
the pseudo label 𝑠 . During tracking, the BBE distillation is used to
find the bounding box fitting the target ultimately by maximizing
the intersection over union (IoU) scores.
Unsupervised Training: In this work, we propose a represen-
tation transferring mechanism for two-branch trackers by cross-
modal distillation learning. Different from previous training ap-
proaches, the proposed training mechanism can work on a large
amount of unlabeled RGB-TIR data with an unsupervised train-
ing manner. Then RGB and TIR CNN features extracted by the
backbone network are utilized as the input of the Cross-Modal
Distillation (CMD) for representation distillation. Specifically, RGB
and TIR features extracted by the backbone are utilized as the input
of the cross-modal Distillation (CMD) module. For the distillation
mechanism, the RGB representation obtained by the pre-trained
model plays the role of the teacher model, while the model for
learning the TIR representation is the student model.

As for the consistency of the semantics information between
the paired RGB and TIR patches, the distillation training enables
the TIR representation of the student model approachable to the
RGB representation of the teacher model. Obviously, the training
procedure mainly relies on the consistent information of the paired
patches, thus the network can be trained in an unsupervised way.
That is to say, our proposed method only needs the clean unlabeled
paired dual-modalities images, avoiding the time-consuming, labor-
intensive, and cumbersome manually labeled data. Furthermore, it
is easy to extend to an even larger scale of unlabeled training data.

4 EXPERIMENTS
In this section, we provide the experimental results of the proposed
CMD method on LSOTB-TIR dataset [33] and PTB-TIR dataset [30]
to verify its effectiveness. Besides, we compare the trackers equipped
with our CMD with several state-of-the-art trackers.

4.1 Evaluation Datasets and Protocols
LSOTB-TIR dataset [33] is a large-scale high-diversity TIR track-
ing benchmark with a total of 1, 400 TIR sequences and more than
600K frames. It is annotated with more than 730K bounding boxes
in total. The training dataset contains 1, 280 sequences with 47
objects classes and over 650k bounding boxes. And it selects 120
sequences, with 22 object classes and more than 82K frames, as the
evaluation dataset. At present, it is larger and more diverse than

other existing TIR datasets. We use the Precision, the Normalized
Precision and the Success as the metrics for this evaluation dataset.
PTB-TIR dataset [30] is a TIR pedestrian tracking dataset for the
TIR pedestrian tracker evaluation, which includes 60 thermal se-
quences with manual annotations. Each sequence has nine attribute
labels for the attribute based evaluation to ensure the diversity of
the dataset, and all of them come from different devices, scenes,
and shooting times. The center location error (CLE) and overlap
ratio (OR) are exploited as metrics. That is to say, the Precision Plot
and Success Plot are used to rank trackers.
Evaluation protocols. We use one-pass evaluation method [43]
(OPE) that each tracker is only initialized in the first frame, and
is not affected by the true position of the target during the entire
tracking process. The performance of the algorithm is evaluated
by precision, normalized precision and success rates. The center
location error (CLE) refers to the Euclidean distance between the
center of the predicted position and the center of the artificial mark.
The Precision is the ratio of the number of video frames whose CLE
is less than a given threshold to the total number of video frames.
A threshold of 20 pixels is usually set as the sorting criterion. As
the Precision is affected by the image’s resolution and the size
of the bounding box, we normalize the Precision over the size of
the bounding box. Then, the area under the curve (AUC) of the
Normalized Precision between 0 and 0.5 is used to evaluate the
performance of the trackers. The overlap rate (OR) is the ratio of
the union and intersection of the predicted target area and the
ground truth area. The Success is the ratio of the number of frames
with an overlap rate greater than a set threshold ([0, 1]) to the total
number of frames. We usually use the area under the curve (AUC)
as an indicator to measure the overall effectiveness of the tracking
algorithm.

4.2 Implementation Details
For the baseline tracker DiMP [4], we use the default settings, re-
ferring to details in the paper [4]. Here, we update Target Center
Location (TCL) and Bounding Box Estimation (BBE) modules to
carry out the cross-modal distillation during training. TIR images
lack details and texture information compared with RGB images,
while the TIR target’s appearance changes stably during tracking.
Thus, we need to update the tracking model slightly and carefully
to adapt to the TIR characteristics. In practice, we reduce the learn-
ing rates used to update BBE and TCL, both to 1e-6 as the rows
B & C in Table 1. Considering the difference of convergence rates
between BBE and TCL, we set the learning rates of BBE and TCL
as 1𝑒 − 7 and 2𝑒 − 8 respectively, during the joint distillation as
the row D in Table 1. For fair comparison, the model is trained
for 50 epochs with mini-batch size of 5, and the learning rate is
decreased to multiples of 0.5 at every 15 epochs in all experiments.
The number of samples in every epoch is 26, 000.

From the training datasets, we sample the paired RGB and TIR
patches with the same semantics. RGB patches are fed into one
branch of the network and the corresponding TIR patches are input
for the other branch. Specifically, we input 5 RGB images and 5
TIR images for each branch. In addition, in order to enhance the
mutual information between the modalities during the cross-modal
distillation, we connect the paired RGB and TIR patches along the
horizontal direction in spatial domain as the input of the network.



Table 1: Analysis of our cross-modal distillation on LSOTB-TIR [33] dataset. We evaluate several variants of our proposed method based on
DiMP [4]. The best results are highlighted in bold font.

Modules to
be Updated Training Settings Reference Branch Test Branch Success(↑) Precision(↑) Normalized Precision(↑)

None(Baseline) A1. Same as DiMP [4] RGB RGB 66.2 (0.0) 78.7 (0.0) 70.7 (0.0)

BBE
B1. Learning on reference branch TIR(ft) RGB 67.4 (1.2) 80.4 (1.7) 72.1 (1.4)
B2. Learning on test branch RGB TIR(ft) 67.2 (1.0) 80.1 (1.4) 71.9 (1.2)
B3. Combination of B1 and B2 TIR TIR 67.8 (1.6) 80.8 (2.1) 72.5 (1.8)

TCL C1. Learning on reference branch TIR(ft) RGB 67.7 (1.5) 80.7 (2.0) 72.5 (1.8)

BBE and TCL

D1. Joint learning on test branch RGB TIR(ft) 67.1 (0.9) 79.7 (1.0) 71.8 (1.1)
D2. Joint learning on reference branch TIR(ft) RGB 67.6 (1.4) 80.6 (1.9) 72.3 (1.6)
D3. Joint learning RGB-TIR(ft) TIR-RGB(ft) 68.0 (1.8) 80.8 (2.1) 72.7 (2.0)
D4. Joint learning with random sampling RGB-TIR(ft) TIR-RGB(ft) 67.3 (1.1) 80.2 (1.5) 72.1 (1.4)
D5. Joint learning with a detector RGB-TIR(ft) TIR-RGB(ft) 67.5 (1.3) 80.4 (1.7) 72.3 (1.6)

The connected patch ‘RGB-TIR’ means that the RGB patch is in the
left side of the TIR patch, while vice versa is called ‘TIR-RGB’. Then,
they are fed to the two branches for distilling the representation.
In the next part, we describe our three approaches to generate the
paired patches which are aligned strictly with the same semantic
information from above paired RGB and TIR images.
Paired Patches Generation. We use the training data from the
work [45] which takes advantage of large-scale paired RGB-TIR
data by collecting from several datasets, e.g. KAIST dataset [23].
The whole training data consists of 126, 666 paired RGB and TIR
images which are unlabeled for tracking.

We propose three approaches to implement the generation of
paired patches from the above training data. The first is to as-
sign central regions of the paired images, which is regarded as a
fake object, to be the input paired patches. We call this method
as ‘center area’. The second is to randomly crop some regions of
approximately 1/6 size of the image, and then resize these regions
to 100 × 100 pixels as the patches. We call this method as ‘random
sampling’. In order to obtain more accurate location of objects on
RGB-TIR datasets, we use an object detector as the third method
called ‘detection’. In this way, the size of the paired patches is de-
pendent on the detection results. Specifically, as the detector is
trained in RGB modality, it is suitable for the RGB detection. So,
we use it to detect objects of RGB images.

4.3 Analysis of Distillation Mechanisms
For the training settings in DiMP [4], the inputs of reference and
test branches are temporal patches from the same sequence. That
is to say, they aim to make full use of the target’s change in the
single modality based on the continuity of time. Different from
that, our goal is to learn cross-modal knowledge by transferring
the high-level semantics of the same object in the RGB modality
to the TIR modality. After the distillation, the input of the tracking
process is only from the TIR modality.

Table 1 shows our analysis of the effectiveness of cross-modal
distillation to Target Center Location (TCL) and Bounding Box
Estimation (BBE) over the baseline tracker DiMP [4]. The tracking
results of the baseline tracker are presented as A1.

All the experiments mainly focus on updating the parameters in
the branch which is input with TIR patches. We train two modules
for the DiMP [4], including the BBE and the TCL. The results are
reported in terms of Success, Precision, and Normalized Precision.
We explicitly show the patches with the corresponding modality
attribute for the reference branch and the test branch of the tracker.
Here, ‘RGB’ and ‘TIR’ mean that the patch is from a single modality.

Then, they are mixed to do cross-correlation in the Siamese
architecture. For example, for training the reference branch, we
keep the upper half and the lower half of a mini-batch as patches
from RGB modality and TIR modality respectively, namely ‘RGB-
TIR’ in the table. Thus the corresponding places in mini-batch for
test branch are input with patches from TIR modality and RGB
modality respectively, namely ‘TIR-RGB’ in the table. ‘ft’ means
parameters of the branch are to be fine-tuned in the network.
Bounding Box Estimation (BBE). For the BBE, we consider three
cases, namely ‘B1. Learning on reference branch’, ‘B2. Learning on
test branch’ and ‘B3. Combination of B1 and B2’.

• B1We input cross-modal patches to the Siamese branches of
BBE. Specifically, we input the TIR patches to the reference
branch and input the RGB patches to the test branch in the
BBE, separately. We only update the parameters in the model
of the TIR branch, namely the reference branch. Thus, we use
the well-trained model in the tracking process. Compared
with the original model, only the reference branch is updated.
We input the TIR patches from the testing dataset [33] to the
well-trained model. This method improves 1.2% in Success,
1.7% in Precision, and 1.4% in Normalized Precision. These
results indicate that the reference branch needs to be trained
to fit the TIR modality to obtain a better representation.

• B2 We flip the input of patches from the two modalities.
Specifically, the TIR patches are input to the test branch and
the RGB patches are input to the reference branch. Therefore,
the parameters of the test branch in the model are updated by
the distillation Similarly, as the B1 method, we only update
the parameters of the TIR branch. Both of the two methods
improve the performance of the baseline tracker. Transfer
between RGB and TIR modalities for BBE is useful and any
branch of BBE has its own function. Besides, the reference
branch trained in B1 plays a litter better than the test branch
trained in B2 with 0.2% in terms of Success, 0.3% in terms
of Precision, and 0.2% in terms of Normalized Precision.

• B3 We combine the information from the two modalities. In
practice, we borrow the parameters of the reference branch
trained in B1 and also the parameters of the test branch
trained in the B2. Then we recombine them together as the
complete BBE. We achieve the best result and our tracker
outperforms baseline tracker 1.6%, 2.1% and 1.8% in terms
of Success, Precision, and Normalized Precision respectively.

The results in case (B1) achieves better results than that in case
(B2). We think the reason is that the reference branch contains
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Figure 3: State-of-the-art comparison on LSOTB-TIR dataset [33]. We compare our method with top-10 trackers in terms of
Precision, Normalized Precision, and Success. Our proposed approach achieves the best performances on three metrics.

more operations and can transfer more representation knowledge
from the RGB model than the test branch. When the reference and
test branches (B3) are combined, we can achieve the best perfor-
mance due to the iterative cross-modal distillation operation that
can optimize the learned representation of TIR modality.
Target Center Location (TCL).We analyze the cross-modal dis-
tillation on TCL as ‘C1. Learning on reference branch’ in Tab. 1. As
the model parameters of TCL mostly gather in the reference branch,
we only update the parameters in the reference branch. Therefore,
the input of the reference branch is the data from the TIR modality
and that of the test branch is the data from the RGB modality. From
Tab. 1, we can see that the tracker equipped with our cross-modal
distillation mechanism performs better than the baseline tracker.
With the setting C1, we improve the results of the tracker by 1.5%
in Success, 2.0% in Precision, and 1.8% in Normalized Precision,
showing that we successfully transfer the RGB representation in
the test branch to the reference branch in TCL.

By using cross-modal distillation on TCL, we obtain the tracking
results which exceed the performances of the tracker equipped with
the B1 and B2. We attribute it to the reason that TCL is critical
for the location of the target, while BBE is to further refine the
target scale based on the location of TCL. All these analyses fur-
thermore demonstrate that our cross-modal distillation can learn
more effective TIR representations for TIR images.
Joint Learning of BBE and TCL. Inspired by the combination
of the learned reference branch and test branch in BBE as B3, we
attempt to jointly train BBE and TCL. We consider five cases, i.e.
‘D1. Joint learning on test branch’, ‘D2. Joint learning on reference
branch’, ‘D3. Joint learning’, ‘D4. Joint learning with random sam-
pling’ and ‘D5. Joint learning with a detector’, aiming to obtain
optimized parameters for each of branches on both TCL and BBE.

We use parameters of the combination models on B3 and C1 for
the initialization of our model for jointly training. At the beginning,
we try to train one branch with TIR input by transferring from the
other branch with RGB input for both TCL and BBE simultaneously,
i.e. case (D1) and case (D2). We improve the performances of the
baseline tracker in both two cases.

In order to better train the model jointly and avoid the simple
combination of two branches in TCL and BBE, we mix patches
from both RGB and TIR modalities and then input them to the
reference branch and also the test branch as in D3. The results of
this method achieve 68.0% in Success, 80.8% in Precision, and 72.7%

in Normalized Precision, which are the best results at present. All
above cases, i.e. B1, B2, B3, C1, D1, D2 and D3, use the central
regions in the RGB and TIR images for generating the patches.

Besides, we propose randomly assigning different regions in an
image to be the input patches as D4. Then we can obtain the paired
patches under the alignment restriction of the paired images. For
this case, we improve the performance by 1.1% on Success, 1.5%
on Precision, and 1.4% on Normalized Precision.

Additionally, we explore to use a detector to generate the input
patches for distillation training as D5. But the classes of generated
patches are restricted to the pre-trained detector model, which nor-
mally detects objects with specific classes such as ‘person’, ‘car’ etc.
Therefore, the results obtained by setting with a detector, namely
case (D5), are not good enough, compared with results of case (D3).
As CMD with a detector is a bit better than that with randomly
sampling as in Tab. 1, we attribute it to that ‘random sampling’
could not contain any complete object contents of the image.

For now, we can summarize that input patches generated by a
detector and random sampling are both restricted to the varieties of
the object classes of training data during cross-modal distillation.
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Figure 4: Precision plot and success plot by comparing our
tracker with the top-10 trackers on PTB-TIR dataset [30].

4.4 LSOTB-TIR Dataset
In this part, we compare our tracker (CMD-DiMP) against high-
quality trackers on the LSOTB-TIR [33] dataset in terms of Suc-
cess, Precision and Normalized Precision in Fig. 3, including TIR
tracker, e.g. ECO-stir [45], and RGB trackers: e.g.MDNet [35], VI-
TAL [39], SiamRPN++ [25], SiamMask [42], SiamFC-TIR [13], ECO-
HC [8] and so on. By using our cross-modal training, we improve
baseline tracker [4] with absolute gains of 1.8%, 2.1% and 2.0% in
terms of Success, Precision and Normalized Precision respectively.
These obvious improvements prove that our cross-modal training



Table 2: Attributes analysis of cross-modal distillation on LSOTB-TIR dataset [33]. We evaluate our trackers with several RGB and TIR
trackers on Precision, Normalized Precision, and Success (P/NP/S%). The best results are highlighted in bold font.

Attributes Type Attributes Name SiamFC-TIR [13] SiamRPN++ [25] VITAL [39] ECO-stir [45] DiMP [4] CMD-DiMP

Challenge

Deformation 71.1/61.9/56.3 66.8/60.2/56.6 74.8/64.7/56.9 76.3/65.9/60.1 76.3/67.0/63.3 80.5/70.7/66.8
Occlusion 65.1/59.2/53.9 63.9/58.6/54.6 72.7/65.9/59.4 71.1/64.9/59.4 73.7/65.7/62.2 76.2/67.8/64.0
Distractor 63.6/56.8/51.0 64.8/58.1/54.6 71.4/64.9/57.7 74.7/67.2/61.6 75.0/66.4/63.0 76.1/67.3/63.7
Background clutter 69.2/62.3/54.6 70.4/65.1/60.6 73.0/67.2/58.4 73.9/67.2/61.3 78.9/70.9/66.4 79.8/71.6/67.0
Out of view 73.0/65.9/58.6 75.0/70.7/63.9 70.6/68.5/59.7 76.7/72.1/66.8 77.4/74.0/67.4 79.7/76.1/69.6
Scale variation 74.7/68.0/58.4 81.3/74.2/68.2 79.7/74.5/62.1 80.5/74.2/68.0 89.2/81.3/75.1 91.0/83.0/76.7
Fast motion 72.4/68.8/59.7 74.8/70.3/64.4 72.2/67.8/58.2 73.8/68.0/63.6 82.7/77.1/71.1 86.1/80.1/74.1
Motion blur 74.0/64.7/57.6 70.7/64.8/58.8 76.8/69.4/59.3 76.7/66.8/61.3 80.3/73.0/67.1 85.6/77.7/71.5
Thremal crossover 68.0/55.7/51.7 60.0/50.2/48.4 78.0/64.3/58.1 73.1/58.6/54.5 61.9/50.6/50.2 64.7/54.2/52.9
Intensity variation 85.0/77.7/71.6 83.6/76.7/74.4 74.1/72.5/61.8 76.9/76.1/70.9 91.4/87.6/82.7 91.5/87.7/82.8
Low resolution 91.4/74.2/65.2 81.2/66.3/62.0 91.1/73.6/60.9 94.1/69.7/64.0 78.1/64.6/60.3 83.1/68.4/64.0
Aspect ratio variation 69.5/59.8/48.9 70.6/65.0/59.4 72.9/63.7/54.2 72.4/58.1/54.9 78.9/72.7/67.2 80.4/70.3/65.0

Scenario

Vehicle-mounted 74.5/70.1/59.4 86.0/79.2/72.6 83.7/81.5/72.1 84.4/81.1/76.0 91.9/84.2/78.8 96.6/88.3/82.4
Drone-mounted 68.2/60.2/53.7 64.9/58.4/55.0 69.5/64.1/53.8 69.5/61.5/55.7 75.5/69.7/64.1 73.0/67.4/62.0
Surveillance 63.9/58.0/53.5 67.0/61.7/57.7 70.0/63.5/57.5 69.4/64.1/59.1 74.5/65.4/62.9 74.8/65.3/62.8
Hand-held 74.8/64.6/56.3 70.7/64.7/59.8 78.8/68.3/58.8 79.4/66.4/60.3 78.0/69.9/64.4 84.1/75.8/69.9

All All 69.8/62.4/55.3 70.9/64.8/60.3 74.8/68.1/59.6 74.9/67.1/61.6 78.7/70.7/66.2 80.8/72.7/68.0

can extract more useful and consistent information between RGB
and TIR modalities.

Besides, we extend our cross-modal distillation training mech-
anism to the variant tracker ATOM [9] to prove our method’s
generality. For the original ATOM [9] tracker, only the IoUNet com-
ponent is updated during offline training. Therefore, here we only
employ the cross-modal distillation on the Bounding Box Estimation
(BBE). We evaluate our tracker (CMD-ATOM) on the LSOTB-TIR
dataset [33]. And we improve the baseline tracker ATOM [9] with
absolute gains of 2.3%, 2.7%, and 2.5% in Success, Precision, and
Normalized Precision respectively, shown in Fig. 3.

4.5 PTB-TIR Dataset
We evaluate our tracker (CMD-DiMP) on the PTB-TIR dataset [30]
using the two evaluation metrics, i.e. Precision and Success. We
compare our tracker with some trackers on PTB-TIR dataset [30],
including TIR tracker ECO-stir [45], and RGB trackers, such as
ECO [8], DeepSTRCF [27], MDNet [35], SRDCF [10], VITAL [39],
Staple [2], TADT [28], MCCT [41], ECO-HC [8] and so on.

As shown in Fig. 4, our tracker gets 0.773 in terms of Precision
and 0.635 in terms of Success, which improves 2.4% and 1.7% for
the baseline tracker separately. We win first place in the Success
plot and get a lower score in the Precision plot. We observe that
the predicted bounding boxes will be expanded to a larger area for
containingmore similar areas, such as the distractors or background
clutter, which reduces the Precision drastically. More importantly,
as the BBE pays more attention to the object’s scale changes, there
is an obvious improvement when the overlap threshold is bigger
than 0.6 in the Success plot of OPE.

4.6 Attribute Analysis on LSOTB-TIR Dataset
The LSOTB-TIR [33] dataset provides 16 attributes to be evaluated,
including 12 challenges and 4 scenarios. We compare our tracker
(CMD-DiMP) with TIR trackers, ECO-stir [45] and SiamFC-TIR [13],
and RGB trackers, VITAL [39], SiamRPN++ [25] and DiMP [4] in
terms of Precision, Normalized Precision and Success (P/NP/S %).
Table 2 shows that our tracker outperforms the above five trackers
for most of the challenges except thermal crossover, low resolution
and drone-mounted.

We improve the performance by about 1%-6% in most of at-
tributes compared with DiMP [4]. Compared with other four track-
ers, we obtain significant progress in most challenges. For attributes
like deformation, background clutter, and aspect ratio variation, we
get over 6% absolute gains in terms of Success score. Even more, we
make progress of 8% in terms of Success score for attributes of scale
variation and intensity variation. And for challenges such as fast
motion and motion blur, our tracker achieves 10% improvement
on Success score. Besides, for vehicle-mounted and drone-mounted,
the improvement on Success score made by our tracker is up to 6%
and that for hand-held is near to 10%.

5 CONCLUSIONS
In this paper, we propose to learn TIR-specific representations by
distilling the pre-trained model of RGBmodality to TIR modality on
unlabeled RGB-TIR datasets, called cross-modal distillation (CMD).
During distillation, representations from the RGB modality model
are used as supervised signals to guide the learning of TIR-specific
representations for the TIR modality. We take advantage of two
branches of the network to deal with data from different modalities
for transferring cross-modal knowledge. Moreover, we explore the
prior semantic consistency implied in the training data structure
itself to automatically generate paired RGB-TIR patches for train-
ing. Unlike the normal RGB tracking datasets, the training data
for our method can be without any annotation about the targets.
Our cross-modal distillation mechanism reduces the dependency
of training networks on labeled data and increases the extendibil-
ity with a larger amount of unlabeled data in the future. Through
this mechanism, we leverage the pre-trained RGB models which
are derived from large-scale annotated RGB data, to train models
specific for representing targets in TIR modality in an unsuper-
vised way. Extensive experimental results on two standard TIR
datasets demonstrate that our proposed CMD effectively improves
the performance of the baseline tracker for TIR tracking.
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