2109.04153v1 [cs.CV] 9 Sep 2021

arXiv

Single Image 3D Object Estimation
with Primitive Graph Networks

Qian Hel23, Desen Zhou?*, Bo Wan®, Xuming Hel0*

!School of Information Science and Technology, ShanghaiTech University
2Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
University of Chinese Academy of Sciences
“Department of Computer Vision Technology (VIS), Baidu Inc.

SDepartment of Electrical Engineering (ESAT), KU Leuven
®Shanghai Engineering Research Center of Intelligent Vision and Imaging
{heqian,wanbo,hexm}@shanghaitech.edu.cn,zhoudesen@baidu.com

ABSTRACT

Reconstructing 3D object from a single image (RGB or depth) is
a fundamental problem in visual scene understanding and yet re-
mains challenging due to its ill-posed nature and complexity in
real-world scenes. To address those challenges, we adopt a primitive-
based representation for 3D object, and propose a two-stage graph
network for primitive-based 3D object estimation, which consists
of a sequential proposal module and a graph reasoning module.
Given a 2D image, our proposal module first generates a sequence
of 3D primitives from input image with local feature attention. Then
the graph reasoning module performs joint reasoning on a primi-
tive graph to capture the global shape context for each primitive.
Such a framework is capable of taking into account rich geometry
and semantic constraints during 3D structure recovery, producing
3D objects with more coherent structure even under challenging
viewing conditions. We train the entire graph neural network in
a stage-wise strategy and evaluate it on three benchmarks: Pix3D,
ModelNet and NYU Depth V2. Extensive experiments show that
our approach outperforms the previous state of the arts with a
considerable margin.

CCS CONCEPTS

« Computing methodologies — Scene understanding; Recon-
struction.

KEYWORDS

3D object estimation; part-based object representation; graph neural
networks

ACM Reference Format:
Qian Hel?3, Desen Zhou?, Bo Wan®, Xuming He'¢. 2021. Single Image
3D Object Estimation with Primitive Graph Networks. In Proceedings of

*Corresponding author: Xuming He. This work was supported by Shanghai Science
and Technology Program 21010502700.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MM °21, October 20-24, 2021, Virtual Event, China

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8651-7/21/10...$15.00
https://doi.org/10.1145/3474085.3475398

Proposal » Graph =) Primitive
_ Generation ‘ Construction .\/ e Reasoning
~e Sy

o=

3D Primitives & 2D Boxes

Input Image Primitive Graph 3D Object

Figure 1: Given an input image, our network first generates
primitive proposals attending to local features, then builds
a graph on the proposals for primitive reasoning, and finally

outputs a 3D object shape in primitive representation.

the 29th ACM International Conference on Multimedia (MM ’21), October
20-24, 2021, Virtual Event, China. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3474085.3475398

1 INTRODUCTION

As a fundamental problem in visual scene understanding, 3D ob-
ject recovery from a monocular image (RGB or depth) plays an
indispensable role in many vision tasks when multi-view sensors
are difficult to deploy. It has also gained increasing attention in
multimedia community [15, 26, 27, 41, 50, 52, 53, 55] due to its great
potential in VR/AR content generation and robot-scene interac-
tion. However, unlike 3D reconstruction in multi-view settings,
single-image 3D object estimation remains highly challenging due
to the real-world imaging process. A variety of factors, such as
(self-)occlusion, varying viewing angles and large variation in ob-
ject appearance/shapes, lead to a complex mapping from input
observation to 3D structure.

Extensive effort has been made recently to address this problem
via learning a deep neural network to map the input image to an
output 3D shape. One dominating strategy represents the 3D object
shapes in voxel [4, 47], point cloud [7] or mesh [19, 42]. However,
such holistic geometric representations are sensitive to noisy inputs
and lack the capacity of encoding higher-level regularity in object
shapes, such as part symmetry or functionality.

The primitive-based methods, which exploits the composition-
ality in object shapes [1], provide an alternative solution that has
potential to overcome the above limitations. They typically em-
ploy deep networks with an encoder-decoder architecture, which
first extract a holistic feature representation of the input and then

https://doi.org/10.1145/3474085.3475398
https://doi.org/10.1145/3474085.3475398

decode it into a collection of shape primitives. For instance, 3D-
PRNN [56] and PQ-Net [49] predicts a sequence of 3D rectangles,
while Im2Struct [31] generates a tree-structured representation
of object parts with a recursive neural network. Most existing
primitive-based approaches, however, suffer from several limita-
tions in practice: First, their inference process typically generates
primitives in a progressive manner, and hence are prone to error
propagation in part estimation. Additionally, their decoders rely on
a holistic image representation, which is sensitive to occlusion. Fur-
thermore, part semantics are largely ignored in geometric modeling,
often leading to unreasonable 3D object configurations.

In this paper, we propose a novel primitive-based 3D object re-
covery framework to address the afore-mentioned limitations. Our
main idea is to use a two-stage strategy, in which we first generate
a pool of primitive proposals from the input image and then build a
fully-connected primitive graph to perform joint reasoning on ob-
ject configurations (see Fig. 1). Our graph-based primitive inference
allows us to better capture the global shape context, mitigate the
errors in proposal generation and predict the primitives coherently.
Besides, each primitive proposal can attend to its local features and
overall the object recovery is less susceptible to occlusion. Finally,
with additional semantic part annotations, our method can easily
incorporate semantic part relations into the primitive reasoning,
which enforces stronger structure constraints for 3D estimation.

To achieve this, we develop a deep graph neural network that
takes a monocular RGB or depth image of an object as input and
generate its 3D primitive representation. Our model consists of
two main modules, a primitive proposal network and a primitive
reasoning network. The proposal module first computes a feature
map by a deep Convnet and then adopts a recurrent network to lift
the 2D feature into a sequence of 3D rectangular primitive propos-
als. The reasoning module builds a fully-connected graph network
on the proposals, where each node embeds the geometry and se-
mantic features of a primitive and each edge captures the relative
geometric and semantic relations. The graph network then refines
the primitive features by performing message-passing to capture
the global context of object shape. Based on those refined repre-
sentations, we finally predict the confidence scores (foreground
vs. background or part label) and the geometric parameters of all
the primitives. By exploiting its modular architecture, we train the
entire primitive model with a stage-wise strategy, which simplifies
the learning procedure and yet works effectively in practice.

We evaluate our method on three benchmarks: a subset of Pix3D [37],

ModelNet [56] and NYU Depth V2 [36]. The empirical results and
ablation study show that our method consistently outperforms the
prior state of the art [49, 56] with a considerable margin. The main
contributions of our work are three-folds:

e We propose a new primitive-based method for 3D object
recovery from a single image, achieving state-of-the-art per-
formance on three benchmarks.

e We introduce a modular graph neural network that effec-
tively captures 3D shape constraints and performs joint rea-
soning on the primitives for coherent 3D estimation.

e We enrich the primitive representation by its conv features
for robustness in occlusion and optionally by its semantic
part cues to enforce stronger constraints on object structure.

2 RELATED WORK
2.1 Single-view 3D Object Estimation

Recovering 3D objects from single images is an ill-posed problem.
Previous works leverage rich CAD models and tackle this problem
by joint analysis of images and 3D shapes [16, 24], exploring local
correspondence between images and 3D shape [21], or applying
deformation from a mean shape [17, 18]. More recently, extensive
approaches for single image 3D object estimation explore various
shape representation, such as key-point [14, 22, 38, 46], voxel [4, 47],
point cloud [7], mesh [19, 42] and implicit functions [3, 28, 32].
Those holistic representations, however, cannot capture part-level
object structure, which lack fine-grained shape constrains and are
sensitive to occlusion.

Primitive-based methods address those challenges by adopting
a part-based representation. [56] generates a primitive sequence
directly from encoded image feature. [31] explicitly encodes shape
structure like adjacency and symmetry based on a binary tree of
3D boxes. [33] also learns to recover a binary tree of part-based
shape decomposition. Nevertheless, these methods generate ob-
ject parts in a progressive manner and hence are prone to error
propagation. More recently, [5] represents shapes via a learnable
convex decomposition and [2] proposes to generate shapes via bi-
nary shape partitioning, both utilizing a fully-connected network
to predict all object parts at once. By contrast, we explicitly model
part relations with a non-local graph neural network [43], which
enables us to incorporate a fine-grained shape regularity constraint,
and to explore the guidance of part semantic relations in shape
recovery with additional supervision.

Most existing methods adopt an encoder-decoder network archi-
tecture, which either directly encode the entire image into a feature
representation [10], or resort to 2.5D intermediate representations
such as silhouette, depth and normal map [45, 48] for better input
features, and then map it to 3D shape output. However, such holis-
tic features are susceptible to occlusion. In contrast, we propose
to use attention mechanism to extract local features based on 2D
bounding box predictions for object parts.

2.2 Part-based 3D Shape Representation

Representing objects with parts and discovering object structure
is a long-standing research problem [12, 29, 44, 54]. Recent ap-
proaches learn a part-based object representation by mapping a
shape volume to a set of primitive boxes [40], or superquadrics [34],
or 3D Gaussians [8, 9], but largely ignore object part relations and
high-level shape regularity. [23] designs a recursive autoencoder in
a binary tree to generate object parts, which explicitly captures part
symmetry and adjacency. StructureNet [30] enriches this tree struc-
ture into an n-ary graph and introduces part semantics in shape
generation. [39] represents 3D volumes with programs [35] and
further combines semantic structure to capture shape regularity
and stability of real-world objects. [49] proposes a sequence-to-
sequence network for part-based object generation. However, those
approaches typically generate part-based shapes in a progressive
manner and hence lack global refinement on the 3D object shapes.
Moreover, they often use a simple encoder-decoder strategy with-
out grounding part-based object structure into input image, and
have difficulty in parsing complex realistic scenes.

Primitive Proposal Network

Primitive Reasoning Network

ResNet18

@
\
|

O hidden state

FCs ©)
n
P LSTM 7 ‘ Z— message passing

L

Figure 2: Model framework. Our model consists of two main modules: Primitive Proposal Network generates a sequence of
proposals from the input image with LSTMs, and Primitive Reasoning Network is a fully-connected graph network built on

the proposals to jointly reason the 3D shape configuration!.

3 METHOD

3.1 Problem Setting

Given an input RGB or depth image I of an object O, our goal is
to estimate its full 3D shape in a form of a set of 3D geometric
primitives = {p1, ..., pN,, }, Where Np is the number of its primi-
tives. In this work, we adopt a box representation for each primitive
pi = [k, ly, Iy, ty, ty tz, O, Gy, 0,] € R?, where [L, ly, l,] measures
the length of three orthogonal edges of the box, [y, tys t;] repre-
sents the translation of the box center and [0y, 8y, 0] denotes the
rotated Euler angles along each axis.

In order to incorporate object part semantics, we also consider
the problem setting of 3D recovery with additional semantic part
annotations for each object category c, in which a semantic part
label s; € {1, ..., Mc} is assigned to each primitive p;. In the rest of
the paper, we refer to this part-augmented scenario as the semantic-
aware setting while denoting the more general scenario without
such annotations (i.e., M, = 1) as the semantic-agnostic setting.

3.2 Model Overview

To tackle the problem of 3D primitive estimation from a monocular
image, we adopt a hypothesize-and-refine strategy, in which we
first generate a set of 3D primitive proposals from the image and
then jointly infer their 3D parameters and semantic part labels.
We instantiate this two-stage strategy by developing a modular
graph neural network consisting of two main modules: a primitive
proposal network and a primitive reasoning network. The front-
end proposal network extracts the set of initial primitive proposals
from the input image, while the next reasoning network captures
global context of the entire object and performs the refinement
of primitive features, which are used for final prediction on their
geometry and semantic labels. Fig. 2 shows an overview of our
model architecture.

In the remaining of this section, we will introduce our network
design in details. We start from the semantic-aware setting and first

!We only show one LSTM sequence in our proposal generation for clarity. Note that we
also use global image feature x9 as input to LSTM at each step of proposal generation.

introduce the primitive generation network in Sec. 3.3, followed
by the primitive reasoning network in Sec 3.4. We then discuss our
stage-wise model learning in Sec. 3.5. Finally, we generalize our
method to the semantic-agnostic setting in Sec. 3.6.

3.3 Primitive Proposal Network

Our first step is to generate a set of 3D box primitives from the input
image. Generating each primitive independently from a 2D input
is a challenging task and hence we consider a structural approach
to exploit the 3D shape prior of objects. To this end, we introduce
a CNN-RNN model that predicts a sequence of primitive propos-
als each time. Such a sequence proposal generation mechanism
captures the dependency between neighboring primitives, and is
capable of producing more stable 3D candidate boxes.

Specifically, we propose a Primitive Proposal Network which
consists of two submodules: a Backbone ConvNet and a Recurrent
Generator. The Backbone ConvNet computes image features and
estimates the number of primitives. Then a Recurrent Generator
utilizes recurrent units to predicts primitive proposals, including
their semantic labels and geometric parameters. Below we describe
the details of those two submodules.

3.3.1 Backbone ConvNet. We use a ResNet18+FPN [25] as the back-
bone network to compute a 2D feature map T for later local conv
feature extraction. Then we attach two sets of fully-connected
layers (FCs) to the ResNet18, separately, to obtain a global image
representation x9 € R?° and to directly regress the number of
object primitives Np for this instance. The output of the regressor
is denoted as n, after rounding.

3.3.2 Recurrent Generator. We adopt a light-weight two-layer LSTM
network to generate primitive proposals in a sequential manner.
At each step i, the LSTM updates its hidden state h; € RP# and
output three properties of the current primitive, including its 3D
parameters p;, semantic label distribution s; € RMe, and its 2D
bounding box location b; € R* in image.

The initial hidden state is computed from the global image fea-
ture x9 with an MLP as h; = f;(x9), and the LSTM unit, denoted

as F sTmM, updates the hidden state as follows,

hit1 = Fistm(hi, x4, 85,pi), 1<i<np (1)

where x; is a set of input features including the global image fea-
ture x9, the bounding box location b; and a local conv feature v;
extracted with ROI-Align [13] on the conv feature map T

Given the hidden state h;, the LSTM unit outputs three predic-
tions on the current primitive with MLPs as follows,

si = fs(hi), b;i = fy(hi), pi=fp(hi$), i =argmax(s;) (2)

where f;(-) is a single FC followed by a Softmax function and f;(+),
fp(+) are multiple FCs with ReLU as activation function. We use a
different MLP for each semantic class s; to predict primitives.

As generating 3D primitives from 2D images is particularly chal-
lenging, we build two separate LSTM networks to improve the recall
rate of our proposal set. Specifically, the networks generate two
primitive sequences in opposite directions for each input image (see
Sec. 4.2). We discard the ordering information in two sequences, and
take their union as the output of the Primitive Proposal Network.

We denote the final proposal set as Q = {(pi, si, hi)}?:f.

3.4 Primitive Reasoning Network

Given the generated proposal set Q, our second module aims to
refine the proposals jointly by taking into account the global context
of the entire object shape and to generate the final prediction of
3D primitives. To this end, we propose a fully-connected graph
neural network [43] to update the primitive representations, based
on which we then predict the parameters of 3D primitives.

Specifically, we first build a primitive graph G whose nodes
are primitive proposals and edges are fully connected. We then
associate the i-th primitive to its corresponding node and denote
its feature embedding as z; € RP=. The initial feature embedding is
computed from the proposal features:

zi = [gn(hi);gs(si); gp(pi)], 1 <i<2nmp 3)

where gp,(+),gs(-),and g, (-) are a FC layer followed by a ReLU func-
tion, respectively. [;] denotes concatenation.

Our primitive reasoning network uses a one-step message pass-
ing to update the primitive feature embedding for capturing the
global context of each object instance. Concretely, given a graph
node z;, we aggregate information from all the remaining primi-
tives with an attention mechanism and update the node feature
with a residual block:

aij = (Uz))T (Vzj), yi=z+

where U, V,W € RP=XDz are embedding matrices and «;j; is the
importance weight of each input message, and y; is the updated
primitive representation?.

3.4.1 Model Prediction. Given the updated primitive representa-
tions, we now refine the semantic label prediction and geometric
parameters of all the proposals. To remove the false positive primi-
tives, we augment the semantic label space with a background class
0 so that the semantic class of the i-th primitive s; € {0, 1,..., M¢}.

2We note that while it is straightforward to extend the message passing to multiple
iterations, we found empirically that single iteration achieves the best performance.

The final prediction of the semantic label and the primitive param-
eters are estimated based on two FC networks as follows:

$i=f(yi), i =1y (yi$i)
where f(:) is a single FC layer followed by a softmax function
and f; () is a set of MLPs with ReLU as activation function, one
for each part semantic class.

During testing, we apply non-maximum suppression on the final
primitive predictions. Specifically, we first match all primitives
into pairs according to their L1 distance. Each time we match a
pair with minimum distance in the remaining unpaired primitives.
After the matching process, we take the primitive with higher class
confidence score in each pair to be our final outputs. We use pairing
for NMS as we have two LSTM models to generate proposals in
two directions. Each LSTM typically generates non-overlapping
primitives due to sequential dependency, and we only need to
remove potential redundant proposals from two LSTMs.

$; =argmax$§; AS; >0 (5)

3.5 Model Learning

Based on our modular architecture, we adopt a stage-wise strategy
in our model learning. Below we will introduce the training process
of the Primitive Proposal Network and the Primitive Reasoning
Network in turn. For notation clarity, we define our training loss
on an input image of object O.

3.5.1 Training Primitive Proposal Network. For our backbone net-
work, we fix the ResNet18 with pre-trained parameters and finetune
the parameters of the FPN module with the rest of the proposal
network. The training of the regressor and the recurrent generator
are decoupled due to the fixed base network.

We first train the regressor with an I; loss on the predicted
number of primitives, which is then applied to the next stage for
training primitive reasoning module. For the recurrent generator,
we assume the primitives are generated with a predefined ordering
and length N as specified in the ground-truth (see Sec. 4.2). The
overall loss for the proposal network consists of three terms: a
semantic label classification loss, a primitive regression loss and a
box regression loss, which are defined as follows:

2No 2No 2No
Lp= D" Lee(sis) + Arp D L, (PP} + A Y, Lom(bi,b})
i=1 i=1 i=1

(6)

where s, p and b are the ground-truth semantic label, primitive
and box location, Lce,L;, and Lsp, are Cross Entropy loss, L1 distance
and Smooth-L1loss, and A, and 4,}, are the corresponding weights
to primitive regression loss and box regression loss, respectively.

3.5.2 Training Primitive Reasoning Network. We train the primitive
reasoning network with a multi-task loss similar to the object de-
tection systems. Specifically, given 2n,, final predictions, we match
them to 2N ground-truth primitives (doubled) in a greedy manner:
Each time we first compute the /; distance between all remained
prediction and ground-truth primitive pairs and choose the pair
with minimum distance. Then we remove the matched pair from
remained primitives and repeat matching, until no predictions or no
ground-truth primitives are left. Finally, if any predictions remain
unmatched, we assign them to background class. Empirically, we

do not include rotation in this /; distance computation, as rotation
predictions are relatively less reliable than primitive translation
and edge length.

The total loss for the Primitive Reasoning Network has two terms,
including a semantic classification loss and a primitive regression
loss, which can be written as:

2np 2np

L= Zl Lee (51, §:<) + Arp Zl L[l (f)i, f);k)[[§;‘ > 0]] 7)
1= i=

Where $} and p} are the ground-truth semantic label and primitive
respectively, [[-] is the indicator function, and the weight A, of
primitive regression loss is the same as in Eq. 6.

3.6 Semantic-agnostic Model

For the semantic-agnostic setting, it is straightforward to extend our
model formulation by setting M. = 1, which indicates the semantic
part annotations are unavailable.

In addition, we simplify our model slightly to speed up model
inference and learning. Specifically, in the Primitive Proposal Net-
work, as M, = 1, we set the output function for the semantic
label f; as a constant, i.e., fs(-) = 1 and remove the semantic label
classification loss in Eq. 6 in the training stage. Similarly, in the
Primitive Reasoning Network, we set the embedding function for
the semantic label g as a constant, i.e., gs(-) = 1. We note that the
rest of our model pipeline and training process are the same as the
semantic-aware setting.

4 EXPERIMENT

We train and evaluate our model on Pix3D dataset [37] with real-
world RGB images and ModelNet dataset [51] with synthetic depth
images in both semantic-aware and semantic-agnostic setting. In
addition, we directly apply the models trained on ModelNet to NYU
Depth V2 [36] dataset to demonstrate the robustness of our method.
On each dataset, we compare with the state-of-the-art methods
3D-PRNN [56], Tulsiani et al. [40], and PQ-Net [49].

Below we first introduce the datasets and evaluation protocol
in Sec. 4.1 and implementation details in Sec. 4.2. Then we present
results comparing to other methods on three benchmarks in Sec. 4.3.
To illustrate the effectiveness of different components of our model
design, we conduct comprehensive ablation study on Pix3D chair
class in Sec. 4.4. Finally, we demonstrate further analysis of our
method in supplementary, regarding our proposal quality, robust-
ness of our method, and our failure cases.

4.1 Datasets and Metrics

Pix3D Pix3D [37] is a challenging benchmark consisting of pixel-
level aligned 3d shapes and real-world images with various occlu-
sion and background clutter. We conduct our experiments on its
three major categories: chair, table and sofa, which contain 3839,
1870 and 1947 images, as well as 221, 63 and 20 unique 3D mod-
els, respectively. We take all models in voxel of 32 X 32 X 32 and
manually label them into well-aligned primitives with correspond-
ing semantic class. We assign class label to each part based on its
functionality, such as cushion to sit on and legs to support. Given
camera pose and primitive annotations, we obtain 2D part bound-
ing boxes from reprojected 3D primitives. We divide all parts of

chair into six semantic classes, table into four, and sofa into four.
The maximum number of primitives in an object for chair, table,
and sofa are 15, 8, and 8. We randomly sample and fix 20% of images
to be our test set and use the rest as our training set. Note that our
test and train splits have no shared 3D model annotations.

Our semi-automatic manual labeling of primitives consists of
two steps: First, we utilize the same preprocessing toolbox as in the
3D-PRNN to generate a coarse primitive (oriented bounding box)
configuration for each object volume in 32 X 32 X 32 from original
ground truth volume annotations. The toolbox is based on an energy
minimization procedure that resembles Iterative Closest Point (ICP).
In the second step, we then slightly adjust the parameters of those
primitives manually by visually inspecting their alignment with
the ground truth volume through a graphical user interface.
ModelNet We follow 3D-PRNN and apply our method on three
categories of ModelNet [51]: chair, table and night stand. For each
category, we utilize 889, 392 and 200 models for training and 100,
100 and 82 models for testing, respectively. We adopt the same data
synthesis strategy as in 3D-PRNN to get input depth maps of size
64 X 64. For each object, we sample five views on a unit sphere by
rejection-sampling, bounded within 20 degrees of the equator, and
compute depth by projection of meshes. The primitive annotations
are from 3D-PRNN and we augment each primitive with a semantic
class label. We divide all parts of chair into six classes, table into
four, and night stand into four. The maximum number of primitives
in an object for chair, table, and night stand are 16, 11, and 10.
NYU Depth V2 NYU Depth V2 [36] is a very challenging indoor
scene dataset consisting of real-world RGBD images. We use anno-
tations from [11], with 30 CAD models of six furniture categories:
chair, table, desk, bed, bookshelf and sofa, and extruded polygons
for other objects. As primitive annotations are not available, we
directly apply the models trained on ModelNet to the test split of
NYU Depth V2 and compare the results in voxel.

Evaluation Protocol For our semantic-aware setting, we train
a class-specific model with semantic supervision for each object
category. While for our semantic-agnostic setting, we only train
one class-agnostic model with no semantics on all object categories.

We compare with the state-of-the-art methods in two different
settings. Firstly, we compare our method with 3D-PRNN [56] and
Tulsiani et al. [40], for estimating Oriented Bounding Box (OBB)
primitives from single images. Note that Tulsiani et al. [40] uses
mesh as supervision. Secondly, we compare our method with PQ-
Net [49] in recovering Axis-Aligned Bounding Box (AABB) primi-
tives, which outperforms other methods, such as StructureNet [30].

Specifically, we first compare our method in the semantic-agnostic
setting (Ours Agn) with 3D-PRNN and Tulsiani, in recovering
OBB. To show the benefits of semantic relations in both primi-
tive reasoning and class-specific model setting, we also compare
our semantic-aware model (Ours Sem) to the semantic-agnostic
version. Moreover, we compare our semantic-aware model (Ours
Sem™) with PQ-Net, which is also trained in class-specific setting,
in recovering AABB.

We evaluate our method using three metrics: Hausdorff error
(HErr), thresholded accuracy (TAcc® [%)) and intersection over union
(IoU [%]). To evaluate the quality of our estimated primitives, we
adopt HErr and TAcc? (8 is the threshold) from Im2Struct [31],

Table 1: Performance on Pix3D [37] dataset. Results for Tul-
siani, 3D-PRNN, Ours Agn, and Ours Sem are for OBB es-
timation, while results for PQ-Net and Ours Sem™ are for
AABB. IoU,, indicates our comparison to the voxelized prim-
itive ground truth, focusing on primitive quality instead of
surface details.

Methods HErr TAcc®! TAcc®2 TAcc?3 IoUp

Chair

Tulsiani - - - - 19.2
3D-PRNN 0.242 5.8 26.1 50.6 25.9
Ours Agn 0.207 6.7 31.2 55.6 30.0
Ours Sem 0.187 10.5 42.5 64.6 38.1
PQ-Net 0.215 6.8 27.3 48.2 36.6
Ours Sem* 0.186 10.9 43.8 66.9 40.3
Table

Tulsiani - - - - 8.4
3D-PRNN 0.295 3.8 29.1 56.0 12.0
Ours Agn 0.245 8.2 419 64.5 19.6
Ours Sem 0.233 12.8 43.0 70.5 20.5
PQ-Net 0.247 8.3 38.1 62.2 19.0
Ours Sem* 0.230 12.8 43.8 72.7 20.6
Sofa

Tulsiani - - - - 55.4
3D-PRNN 0.073 73.5 91.1 94.4 74.1
Ours Agn 0.061 76.7 95.9 97.3 76.6
Ours Sem 0.055 78.7 98.8 99.3 79.6
PQ-Net 0.065 67.7 96.6 98.2 73.2
Ours Sem* 0.054 78.7 98.8 99.5 79.6

which are based on Hausdorff distance of primitive pairs. Since
the primitives are well-aligned in voxel space, we also voxelize
our primitive predictions and compare them with the ground truth
voxels using IoU, to evaluate the quality of each object as a whole.

Given the test set of T samples, we compute Hausdorff error
HErr = % ZiT(D(S,-,Sl.*) + D(S;,S;)), where S; is a predicted
shape consisting of a set of primitives and S; is its corresponding
ground truth. For each primitive, we represent it as a set V, consist-
ing of its eight corners. D(S1,S2) = % >, min H((VJ,“VZk)

Vlj €S (VszSZ

is the averaged minimum Hausdorff distance from primitives in
S to those in Sy, where n is the number of primitives in Sj.

H(V1,V,2) = max min ||q; — q2|| is the Hausdorff distance be-
eV eV,

tween two vertex set V; and V5.

Thresholded accuracy TAcc? is the percentage of predicted prim-
itives that H(V;, Vi) /L(V]") < 8, where V; is a primitive in re-
covered shape, V/" is its nearest primitive in ground truth shape in
HausdorfF distance, L(V}") is the length of the diagonal of primitive
(Vl.*, and § is the threshold.

4.2 Implementation Details

We normalize all primitive parameters to have zero mean and stan-
dard deviation. Following 3D-PRNN, we assume all objects have
bilateral symmetrical primitive pairs. For such symmetrical pairs,
we only model the left half in our network and generate the right
half by mirroring w.r.t. to the symmetry plane, to improve learning
efficiency. For each object, we pre-sort all primitives based on the
height of their centers, and use the proposal network to generate
the primitive sequence in both bottom-up and top-down orderings
separately. The dimension of LSTM hidden state D, and graph
node D, is 800 and 1024, respectively. The weights to primitive
regression loss and box regression loss A, and 4, are both 10.

We re-implement 3D-PRNN and apply it to Pix3D and Model-
Net datasets following their released codebase. For experiments of
3D-PRNN on Pix3D [37], we replace their original depth encoder
with the same ResNet18 backbone as in our method, to encode RGB
image features. To obtain AABB ground truth and predictions for
Ours Sem”, we directly transform OBB ground truth and predic-
tions from Ours Sem, by simply taking the tightest axis-aligned
bounding box of each OBB. We train PQ-Net on AABB supervisions
with their released code.

Please find more implementation details in supplementary.>

4.3 Results

We present comparison results with previous methods in two dif-
ferent settings: recovering Oriented Bounding Box (OBB) and Axis-
Aligned Bounding Box (AABB). Below we introduce the detailed
results on three benchmarks.

4.3.1 Pix3D. As shown in Table 1, for OBB estimation, Ours Agn
outperforms 3D-PRNN in all metrics on all object categories. Our
method achieves larger improvement on chair and table, whose
shapes have more flexibility and are harder to recover compared
to sofa. This demonstrates that our model can capture stronger
shape regularity and improve recovered shape quality by utilizing
local features and joint primitive reasoning. Additionally, Ours
Sem achieves better performance on all categories than Ours Agn,
especially in challenging category chair with a large margin (8.1%
higher in IoU, and 0.020 lower in HErr). This is because chair
in Pix3D has much more geometric and semantic part variations
than other categories, which shows that our model can utilize rich
semantic relations to help handle large geometric variations. For
AABB estimation, Ours Sem™* also achieves better results than
PQ-Net on all three categories.

4.3.2 ModelNet. As shown in Table 2, for OBB estimation, Ours
Agn achieves better performance than 3D-PRNN on all categories
in ModelNet. The performance gap is especially large on night stand,
which has the least data for training. This shows that our model en-
codes stronger shape regularity prior with limited training data and
thus can handle the problem of data imbalance more robustly. For
table class, our IoUy, is close to 3D-PRNN, but we achieves higher
IoUp by 4.4% and lower HErr by 0.025, which is more related to the
quality of our primitive prediction instead of detailed geometric
surface. Moreover, Ours Sem also outperforms Ours Agn on all

30ur code is available at https://github.com/hailieqh/3D-Object-Primitive-Graph.

https://github.com/hailieqh/3D-Object-Primitive-Graph

categories, but the gaps are not as large as those on Pix3D. This is be-
cause the primitives in ModelNet have larger distribution variation
than Pix3D, hence they cannot be easily captured in our designed
semantic space with a few labels. For AABB estimation, Ours Sem*
significantly outperforms PQ-Net in Hausdorff metrics HErr and
TAcc?. The performance gaps are smaller in IoU,,,, for night stand,
which is mainly because erroneous primitives have less impact
on voxel, especially for object categories with large volume and
regular shapes. The results on ModelNet verifies the capability of
our method in modeling complex primitive dependency, as objects
in ModelNet have much larger variations of primitive combinations
than objects in Pix3D. (See also Fig. 3 for visual examples.)

4.3.3 NYU Depth V2. We train our model on ModelNet synthetic
data and directly applied to NYU Depth V2 real-world depth im-
ages. Despite the large domain gap between training and testing,
we outperform 3D-PRNN on all categories for OBB estimation, as
shown in Table 3. We notice that the performance gaps on chair
and table are relatively small. This is mainly because the sequential
model cannot provide high quality proposals when heavy occlu-
sion occurs, which further leads to suboptimal performance of our
subsequent primitive reasoning module. Note that our method still
achieves better performance on night stand with a considerable
margin, which shows the robustness of our model in handling
categories with limited training data. Furthermore, Ours Sem out-
performs Ours Agn with a considerable margin, demonstrating
the benefits of semantic-aware models for extremely challenging
cases in real-world scenarios. For AABB estimation, Ours Sem*
also outperforms PQ-Net on chair and table.

4.3.4 Qualitative Results. We also visually compare the results of
Tulsiani, PQ-Net, 3D-PRNN, Ours Agn and Ours Sem, as shown in
Fig. 3. For Pix3D real-world images, our models can more robustly
handle occlusion, truncation, unusual viewpoints and challenging
novel instances, compared to Tulsiani, PQ-Net and 3D-PRNN. For
ModelNet synthetic data, our recovered shapes are also better in
terms of both detailed shape consistency with images and global
shape regularity. Note that on categories with limited training data
such as night stand, our models are able to correctly recognize
object categories and to recover shapes matched to input images,
while 3D-PRNN tends to generate an instance from the dominant
category (chair). This shows that our primitive reasoning can learn
to capture stronger shape structure prior during training and thus
can handle the problem of training data imbalance more robustly.
For more visualization, please see supplementary.

4.4 Ablation Study

In this section, we conduct several experiments to show the efficacy
of the components of our full model Ours Sem on Pix3D chair
class, which has large instance variations in complex real-world
environment, as shown in Table 4.

LSTM: Our bidirectional sequential proposal network captures
strong primitive dependency within an object and generates better
primitive proposals. With only one LSTM unit, our model per-
formance drops by 0.003 higher in HErr and 0.8% lower in IoU,.
Moreover, we also explored using a Faster R-CNN backbone in-
stead of LSTM. Specifically, we first train a Faster R-CNN on 2D

Table 2: Performance on ModelNet [51]. In addition to IoU),
we also evaluate primitives in IoU,, where v denotes we com-
pare our voxelized primitive predictions to original ground
truth voxel. We show both the originally reported results
and our re-implementation of 3D-PRNN before and after ’/’.

Methods HErr TAcc™! TAcc®? TAcc®® IoU, ToU,
Chair

Tulsiani - - - - 30.4 26.8
[51] - - - - - 253
3D-PRNN -/0.176 -/5.0 -/26.2 -/55.1 -/40.1 23.8/28.6
Ours Agn 0.160 6.6 29.5 54.6 444 32.2
Ours Sem 0.157 8.7 36.2 59.9 46.5 33.6
PQ-Net 0.210 1.4 11.7 354 34.7 22.0
Ours Sem* 0.156 11.0 39.2 64.2 47.9 31.2
Table

Tulsiani - - - - 30.3 22.4
[51] - - - - - 25.0
3D-PRNN -/0.190 -/12.4 -/38.0 -/66.6 -/34.0 26.3/28.9
Ours Agn 0.165 16.8 37.7 59.6 38.4 29.7
Ours Sem 0.160 20.1 42.9 64.7 41.9 33.3
PQ-Net 0.227 8.6 20.7 37.5 27.0 19.7
Ours Sem* 0.160 20.7 45.2 68.2 41.5 33.0
Night stand

Tulsiani - - - - 42.5 42.9
[51] - - - - - 29.5
3D-PRNN -/0.279 -/4.2 -/24.5 -/48.7 -/32.8 26.6/31.9
Ours Agn 0.244 7.6 33.2 56.4 41.2 39.9
Ours Sem 0.235 13.1 42.3 63.9 43.1 41.5
PQ-Net 0.285 1.9 16.8 41.0 39.6 38.5
Ours Sem* 0.234 13.1 43.0 64.8 43.4 41.9

Table 3: Performance on NYU Depth V2 [36]. We evaluate in
IoU, as there are no primitive annotations and we compare
our prediction to ground truth voxel.

Category 3D-PRNN Ours Agn Ours Sem PQ-Net Ours Sem*
Chair 13.8 14.6 17.2 13.1 16.9
Table 5.2 6.0 8.1 6.8 8.2
Night stand 8.6 18.7 28.0 31.7 28.3

bounding boxes to generate 2D proposals and then extract local
conv features from 2D proposals to regress corresponding 3D prim-
itive proposal parameters. In this case, model performance drops
significantly by 0.016 higher in HErr and 4.9% lower in IoU.

Sem: Semantic class supervision and semantic-aware reason-
ing helps reduce primitive output search space and provide more
guidance for object structure recovery. Without Sem, we observe a
performance drop, which is 0.005 higher in HErr and 1.4% lower in
IoUp than Ours Sem.

BConv: Local conv features extracted from box regions in an
image can help handle occlusion and improve the robustness of our
model. Without BConv, the performance of our model drops by
0.008 higher in HErr and 2.3% lower in IoU,.

Tulsiani PQ-Net 3D-PRNN Ours Agn Ours Sem

kR
o~
-

"Q?

Figure 3: Qualitative results on Pix3D [37] and ModelNet [51]. The color codings of Tulsiani, PQ-Net, 3D-PRNN, and Ours Agn
are based on the order of drawing primitives and have no semantic meaning. The color codings of Ours Sem and GT are based
on the semantics of primitives. Row 1-3 (Pix3D RGB): Chair, Table, Sofa; Row 4-6 (ModelNet Depth): Chair, Table, Night stand.

Table 4: Ablation study on Pix3D [37] chair. 1 or 2 under LSTM denotes the number of LSTM sequence models used to generate

primitive proposals. We conduct the experiments in a drop-one-out manner. TAcc

9 and IoUp are in %.

Module Metric
Methods LSTM Sem BConv Graph HErr | TAcc®!1 TAcc®?1 TAcc®3 1 IoUp T
Ours Sem 2 v v Dense 0.187 10.5 42.5 64.6 38.1
2 v v Star-like 0.195 10.2 40.5 62.6 36.5
2 v v K-nearest 0.197 10.5 39.6 61.7 35.8
2 Vv N - 0.199 9.4 35.5 56.0 36.6
2 Vv - Dense 0.195 10.5 39.2 60.9 35.8
2 - N Dense 0.192 9.1 38.6 60.9 36.7
1 v N Dense 0.190 9.7 38.0 63.1 37.3
Faster R-CNN v Dense 0.203 9.2 35.5 58.7 33.2
Baseline 2 - - - 0.211 6.4 28.7 48.4 34.0

Graph: Our graph network helps capture the global shape con-
text and mitigate errors in proposal generation. Without Graph,
we fully train the primitive proposal network and apply NMS on
final predictions to remove duplicate primitives. In this case, model
performance deteriorates by 0.012 higher in HErr and 1.5% lower
in IoUp. Note that the performance drops more significantly in
HErr and TAcc? than in IoUp. This is mainly because the fine-level
primitive quality is much lower without joint reasoning and global
refinement, while the coarse-level shapes after voxelization are less
affected by erratic primitives. To investigate the impact of graph
structure, we also conduct experiments on two variants of graph
design: (1) a distance graph in which each node is connected to
K-nearest (K=3) nodes based on primitive center distance; (2) a
star-like graph in which every node is connected to the central
cushion nodes. Our densely-connected graph outperforms those
two sparse graphs in all the metrics.

5 CONCLUSION

In this paper, we have developed a primitive-based graph neural
network for 3D object estimation from single images. Our method
first uses a proposal network to lift the image features into a pool
of primitive proposals, and then builds a fully-connected graph
network on these proposals to refine primitive features. Besides, we
optionally take into account semantic part cues to provide better
guidance for object shape. As a result, our method is able to conduct
joint reasoning on the primitives for coherent 3D recovery. More-
over, we adopt a stage-wise strategy in our model learning, in which
it first learns a recurrent network for primitive generation and then
trains a graph network to propagate messages between the prim-
itives. Evaluations on three benchmarks show that our approach
consistently outperforms prior approaches with a sizable margin.
Particularly, our method can robustly handle (self-)occlusion and
challenging viewpoints in real-world scenarios.

REFERENCES

(1]

[10

[11]

[12

[13

[14]

[15

[16]

[17]

=
&

[19]

[20

[21]

[22

[23]

[24

oo
A}

[26

[27

[28]

[29

Irving Biederman. 1987. Recognition-by-components: a theory of human image
understanding. Psychological review 94, 2 (1987), 115.

Zhigin Chen, Andrea Tagliasacchi, and Hao Zhang. 2020. Bsp-net: Generating
compact meshes via binary space partitioning. In CVPR.

Zhiqin Chen and Hao Zhang. 2019. Learning implicit fields for generative shape
modeling. In CVPR.

Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese.
2016. 3d-r2n2: A unified approach for single and multi-view 3d object recon-
struction. In ECCV.

Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hinton,
and Andrea Tagliasacchi. 2020. Cvxnet: Learnable convex decomposition. In
CVPR.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In CVPR.

Haogiang Fan, Hao Su, and Leonidas J Guibas. 2017. A point set generation
network for 3d object reconstruction from a single image. In CVPR.

Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and Thomas Funkhouser.
2020. Local Deep Implicit Functions for 3D Shape. In CVPR.

Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T Freeman, and
Thomas Funkhouser. 2019. Learning shape templates with structured implicit
functions. In ICCV.

Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Abhinav Gupta. 2016.
Learning a predictable and generative vector representation for objects. In ECCV.
Ruiqi Guo and Derek Hoiem. 2013. Support surface prediction in indoor scenes.
In ICCV.

Zhizhong Han, Chao Chen, Yu-Shen Liu, and Matthias Zwicker. 2020. ShapeCap-
tioner: Generative caption network for 3D shapes by learning a mapping from
parts detected in multiple views to sentences. In Proceedings of the 28th ACM
International Conference on Multimedia. 1018-1027.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. 2017. Mask r-cnn.
In ICCV.

Qian He, Desen Zhou, Xuming He, et al. 2018. 3D Object Structure Recovery via
Semi-supervised Learning on Videos. In BMVC.

Lin Huang, Jianchao Tan, Jingjing Meng, Ji Liu, and Junsong Yuan. 2020. HOT-
Net: Non-Autoregressive Transformer for 3D Hand-Object Pose Estimation. In
Proceedings of the 28th ACM International Conference on Multimedia. 3136-3145.
Qixing Huang, Hai Wang, and Vladlen Koltun. 2015. Single-view reconstruction
via joint analysis of image and shape collections. ACM TOG (2015).

Angjoo Kanazawa, Shubham Tulsiani, Alexei A Efros, and Jitendra Malik. 2018.
Learning category-specific mesh reconstruction from image collections. In ECCV.
Abhishek Kar, Shubham Tulsiani, Joao Carreira, and Jitendra Malik. 2015.
Category-specific object reconstruction from a single image. In CVPR.
Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2018. Neural 3d mesh
renderer. In CVPR.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Chen Kong, Chen-Hsuan Lin, and Simon Lucey. 2017. Using locally corresponding
CAD models for dense 3D reconstructions from a single image. In CVPR.

Chi Li, M Zeeshan Zia, Quoc-Huy Tran, Xiang Yu, Gregory D Hager, and Manmo-
han Chandraker. 2017. Deep supervision with shape concepts for occlusion-aware
3d object parsing. In CVPR.

Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and Leonidas
Guibas. 2017. Grass: Generative recursive autoencoders for shape structures.
ACM TOG (2017).

Yangyan Li, Hao Su, Charles Ruizhongtai Qi, Noa Fish, Daniel Cohen-Or, and
Leonidas J Guibas. 2015. Joint embeddings of shapes and images via cnn image
purification. ACM TOG (2015).

Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. 2017. Feature pyramid networks for object detection. In CVPR.
Yawen Lu, Yuxing Wang, and Guoyu Lu. 2020. Single Image Shape-from-
Silhouettes. In Proceedings of the 28th ACM International Conference on Multimedia.
3604-3613.

Quan Meng, Jiakai Zhang, Qiang Hu, Xuming He, and Jingyi Yu. 2020. LGNN: A
Context-aware Line Segment Detector. In Proceedings of the 28th ACM Interna-
tional Conference on Multimedia. 4364-4372.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and
Andreas Geiger. 2019. Occupancy networks: Learning 3d reconstruction in
function space. In CVPR.

Niloy J Mitra, Michael Wand, Hao Zhang, Daniel Cohen-Or, Vladimir Kim, and
Qi-Xing Huang. 2014. Structure-aware shape processing. In ACM SIGGRAPH
2014 Courses.

[30

[31

(32

[33

[34

[35

&
2

(37

[38

[39

[40

[42

[43

[44

[45]

[46

[48

[49

[50

o
=

[52

[53

[54

[55

‘5
S

Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy Mitra, and Leonidas
Guibas. 2019. StructureNet: Hierarchical Graph Networks for 3D Shape Genera-
tion. ACM TOG, Siggraph Asia 2019 (2019).

Chengjie Niu, Jun Li, and Kai Xu. 2018. Im2struct: Recovering 3d shape structure

from a single rib image. In CVPR.
Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven

Lovegrove. 2019. Deepsdf: Learning continuous signed distance functions for
shape representation. In CVPR.

Despoina Paschalidou, Luc Van Gool, and Andreas Geiger. 2020. Learning Un-
supervised Hierarchical Part Decomposition of 3D Objects from a Single RGB
Image. In CVPR.

Despoina Paschalidou, Ali Osman Ulusoy, and Andreas Geiger. 2019. Su-
perquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. In CVPR.
Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu
Maji. 2018. CSGNet: Neural Shape Parser for Constructive Solid Geometry. In
CVPR.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. 2012. Indoor
segmentation and support inference from rgbd images. In ECCV.

Xingyuan Sun, Jiajun Wu, Xiuming Zhang, Zhoutong Zhang, Chengkai Zhang,
Tianfan Xue, Joshua B Tenenbaum, and William T Freeman. 2018. Pix3d: Dataset
and methods for single-image 3d shape modeling. In CVPR.

Supasorn Suwajanakorn, Noah Snavely, Jonathan J Tompson, and Mohammad
Norouzi. 2018. Discovery of latent 3d keypoints via end-to-end geometric rea-
soning. NeurIPS (2018).

Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T. Freeman,
Joshua B. Tenenbaum, and Jiajun Wu. 2019. Learning to Infer and Execute 3D
Shape Programs. In ICLR.

Shubham Tulsiani, Hao Su, Leonidas J Guibas, Alexei A Efros, and Jitendra Malik.
2017. Learning shape abstractions by assembling volumetric primitives. In CVPR.
Meng Wang, Lingjing Wang, and Yi Fang. 2017. 3densinet: A robust neural
network architecture towards 3d volumetric object prediction from 2d image. In
Proceedings of the 25th ACM international conference on Multimedia. 961-969.
Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang
Jiang. 2018. Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images.
In ECCV.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. 2018. Non-local
neural networks. In CVPR.

Yanzhen Wang, Kai Xu, Jun Li, Hao Zhang, Ariel Shamir, Ligang Liu, Zhiquan
Cheng, and Yueshan Xiong. 2011. Symmetry hierarchy of man-made objects. In
CGF.

Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun, Bill Freeman, and Josh
Tenenbaum. 2017. Marrnet: 3d shape reconstruction via 2.5 d sketches. In NeurIPS.
Jiajun Wu, Tianfan Xue, Joseph J Lim, Yuandong Tian, Joshua B Tenenbaum,
Antonio Torralba, and William T Freeman. 2016. Single image 3d interpreter
network. In ECCV.

Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum.
2016. Learning a probabilistic latent space of object shapes via 3d generative-
adversarial modeling. In NeurIPS.

Jiajun Wu, Chengkai Zhang, Xiuming Zhang, Zhoutong Zhang, William T Free-
man, and Joshua B Tenenbaum. 2018. Learning shape priors for single-view 3d
completion and reconstruction. In ECCV.

Rundi Wu, Yixin Zhuang, Kai Xu, Hao Zhang, and Baoquan Chen. 2020. PQ-NET:
A generative part seq2seq network for 3D shapes. In CVPR.

Zhenyu Wu, Duc Hoang, Shih-Yao Lin, Yusheng Xie, Liangjian Chen, Yen-Yu
Lin, Zhangyang Wang, and Wei Fan. 2020. Mm-hand: 3d-aware multi-modal
guided hand generative network for 3d hand pose synthesis. arXiv preprint
arXiv:2010.01158 (2020).

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou
Tang, and Jianxiong Xiao. 2015. 3d shapenets: A deep representation for volu-
metric shapes. In CVPR.

Hongwen Zhang, Jie Cao, Guo Lu, Wanli Ouyang, and Zhenan Sun. 2019. Danet:
Decompose-and-aggregate network for 3d human shape and pose estimation. In
Proceedings of the 27th ACM International Conference on Multimedia. 935-944.
Yumeng Zhang, Li Chen, Yufeng Liu, Wen Zheng, and Junhai Yong. 2020. Adaptive
Wasserstein Hourglass for Weakly Supervised RGB 3D Hand Pose Estimation. In
Proceedings of the 28th ACM International Conference on Multimedia. 2076—-2084.
Youyi Zheng, Daniel Cohen-Or, Melinos Averkiou, and Niloy J Mitra. 2014. Re-
curring part arrangements in shape collections. In CGF.

Fan Zhu, Li Liu, Jin Xie, Fumin Shen, Ling Shao, and Yi Fang. 2018. Learning to
synthesize 3d indoor scenes from monocular images. In Proceedings of the 26th
ACM international conference on Multimedia. 501-509.

Chuhang Zou, Ersin Yumer, Jimei Yang, Duygu Ceylan, and Derek Hoiem. 2017.
3d-prnn: Generating shape primitives with recurrent neural networks. In ICCV.

Ours Sem GT Image Ours Sem GT

Figure 4: Two failure cases of our method on Pix3D chair.
The chair on the left has bilaterally crossed legs which are
unique in the dataset. The chair on the right has few texture
and is occluded by objects with very similar appearance.

Table 5: Performance on different subsets of Pix3D [37]
chair. Set A, B, C, and D are truncated, occluded, slightly oc-
cluded, and complete (neither truncated nor occluded), re-
spectively.

HErr | IoU, T
Methods Set A SetB SetC SetD SetA SetB SetC SetD

3D-PRNN 0.261 0.249 0.311 0.233 21.0 233 17.0 278
Ours Sem 0.176 0.186 0.249 0.184 408 38.1 30.7 38.2

PQ-Net 0.221 0.220 0.265 0.210 354 365 317 373
Ours Sem* 0.175 0.185 0.247 0.183 421 40.1 32.6 406

A IMPLEMENTATION DETAILS

We choose ResNet18 as backbone for its strong performance and ex-
tensive usage in the prior work [28, 33]. Empirically, we also found
that deeper ResNets provide little improvement. To handle different
inputs, we adopt the same network architecture, ResNet18+FPN,
as our backbone, which takes three-channel images as input. As a
result, we process the RGB and depth inputs in slightly different
manners. For experiments on Pix3D, we directly send the input
RGB images into the network, while for the ModelNet and NYUv2
dataset, we duplicate each depth image three times to build a 3-
channel input for the network. Our ResNet18 module is pretrained
on ImageNet [6].

We first train the proposal network for 20 epochs and then
freeze the parameters during the training of primitive reasoning,
to prevent it from overfitting on training data and providing no
training signals for the primitive reasoning network. We train our
model with batch size 16 for a maximum of 400 epochs and with
an Adam [20] optimizer, whose learning rate is le-4 and betas are
(0.95, 0.999). We explore batch size from 4 to 64, epochs from 200 to
500, and learning rate from 1e-2 to le-5. Final decisions on hyper-
parameters are based on the performance on validation split. Then

we fix all hyper-parameters to train on training and validation splits
together to obtain our final models.

The implementation of our method is based on PyTorch 1.0.0.
We run experiments on single TITAN Xp GPU cards, using less
than 2GB GPU memory, in Ubuntu 16.04.4. It takes about four days
to train a class-agnostic model on all three categories of Pix3D or
ModelNet. The seeds to randomness are all fixed to 0.

B MORE QUALITATIVE RESULTS

We also visually compare the results of Tulsiani, PQ-Net, 3D-PRNN,
Ours Agn and Ours Sem, as shown in Fig. 5 for Pix3D and Fig. 6
for ModelNet. For Pix3D real-world images, our models can more
robustly handle occlusion, truncation, unusual viewpoints and chal-
lenging novel instances, compared to Tulsiani, PQ-Net and 3D-
PRNN. For ModelNet synthetic data, our recovered shapes are also
better than Tulsiani, PQ-Net and 3D-PRNN, in terms of both de-
tailed shape consistency with images and global shape regularity.

C FURTHER ANALYSIS
C.1 Ablation on Proposal Network

We also evaluate our proposal network design comparing to other
variations in Table 6. Similar to TAcc‘S, we also use thresholded
recall (TRec® [%]) to evaluate the quality of proposals, which is the
percentage of ground truth primitives that H(V;, V") /L(V}") < 4,
where for each ground truth primitive V;", V} is its nearest match
in predicted primitives. Note that each predicted primitive can only
match one ground truth primitive. Our proposal module achieves
the best TRec’® with all thresholds, which verifies the capability of
our proposal network to capture rich semantic dependency and to
attend to local image features.

C.2 Robustness to Occlusion

In Table 5, we show results on different subsets of Pix3D chair
according to truncation and occlusion. Ours Sem consistently out-
performs 3D-PRNN and PQ-Net on all different subsets. In addition,
our performance stays comparable in truncated and occluded sub-
sets, which further demonstrates the robustness of our method.

C.3 Failure Cases

Our results include two typical failure cases: 1) novel object in-
stances with uncommon 3D shapes; 2) heavily occluded objects.
Two examples are shown in Fig. 4. Both scenarios can potentially be
improved with better modeling of object priors or utilizing larger
datasets.

Figure 5: Qualitative results on Pix3D [37]. Note that the color codings of Tulsiani, PQ-Net, 3D-PRNN, and Ours Agn are based
on the order of drawing primitives and have no semantic meaning. In contrast, the color codings of Ours Sem and GT are
based on the semantics of primitives.

Image PQ-Net 3D-PRNN Ours Agn Ours Sem GT Image Tulsiani ~ PQ-Net 3D-PRNN Ours Agn Ours Sem GT

-
S
-

£ 2

E ol e 2
1= e WX e 2

m
- $
3
$
®

IP e D
3

[S e R T
SVvevrere
LB K LR
EX X XX,
PVt
brVvevrore
Ve

EEELEL
'10@@f§

Il

Figure 6: Qualitative results on ModelNet [51]. Note that the color codings of Tulsiani, PQ-Net, 3D-PRNN, and Ours Agn are
based on the order of drawing primitives and have no semantic meaning. In contrast, the color codings of Ours Sem and GT
are based on the semantics of primitives.

ByswdPye

Table 6: Ablation of proposal networks on Pix3D [37] chair. 1 or 2 under LSTM denotes the number of LSTM units the model
uses to capture primitive sequence in different order. We conduct the experiments in drop-one-out manner.

Module Thresholded Recall (TRec®) 1
Proposal Network LSTM Sem BConv TRec’! TRec®? TRec®3 TRec®* TRec®> TRec’®
Ours Sem 2 v v 14.2 43.2 63.5 77.1 87.1 92.1
2 v - 13.8 41.3 61.4 74.9 86.7 92.0
2 - v 7.9 30.4 48.9 67.2 82.1 90.4
1 v v 9.5 33.2 50.6 65.5 77.3 82.7
Faseter R-CNN v v 8.7 30.8 47.3 58.3 69.4 77.6

	Abstract
	1 Introduction
	2 Related Work
	2.1 Single-view 3D Object Estimation
	2.2 Part-based 3D Shape Representation

	3 Method
	3.1 Problem Setting
	3.2 Model Overview
	3.3 Primitive Proposal Network
	3.4 Primitive Reasoning Network
	3.5 Model Learning
	3.6 Semantic-agnostic Model

	4 Experiment
	4.1 Datasets and Metrics
	4.2 Implementation Details
	4.3 Results
	4.4 Ablation Study

	5 Conclusion
	References
	A Implementation Details
	B More Qualitative Results
	C Further Analysis
	C.1 Ablation on Proposal Network
	C.2 Robustness to Occlusion
	C.3 Failure Cases

