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ABSTRACT
Attempting to fully exploit the rich information of topological
structure and node features for attributed graph, we introduce
self-supervised learning mechanism to graph representation learn-
ing and propose a novel Self-supervised Consensus Representation
Learning (SCRL) framework. In contrast to most existing works
that only explore one graph, our proposed SCRL method treats
graph from two perspectives: topology graph and feature graph.
We argue that their embeddings should share some common infor-
mation, which could serve as a supervisory signal. Specifically, we
construct the feature graph of node features via k-nearest neigh-
bour algorithm. Then graph convolutional network (GCN) encoders
extract features from two graphs respectively. Self-supervised loss
is designed to maximize the agreement of the embeddings of the
same node in the topology graph and the feature graph. Extensive
experiments on real citation networks and social networks demon-
strate the superiority of our proposed SCRL over the state-of-the-art
methods on semi-supervised node classification task. Meanwhile,
compared with its main competitors, SCRL is rather efficient. The
source code is available at https://github.com/topgunlcs98/SCRL.
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1 INTRODUCTION
With the proliferation of information collected on the Internet, be-
sides topological structure, vertices in a graph are often associated
with content information, i.e., node attributes, on the top of a plain
graph. This type of system is modeled by attributed graph [21]. It
poses a new challenge: how to learn a holistic representation for at-
tributed graph? Since deep learning methods can effectively extract
useful representation of data, graph neural networks have been ap-
plied on a wide range of disciplines, including social network [30],
chemistry and biology [10, 32], traffic prediction [7, 31], text classi-
fication [9, 13], and knowledge graph [12, 41]. As a representative
method in graph neural networks, GCN [19] has shown impres-
sive performance for semi-supervised classification task because it
propagates feature information over the graph topology, providing
a new fusion strategy for topological structure and node features.
By contrast, some models, like multi-layer perceptron (MLP) [27],
rely exclusively on node features.

Some recent studies theoretically analyze the weakness of the
fusion mechanism in GCN. Li et al. [20] indicate that the graph
convolution of the GCN model is actually a special form of Lapla-
cian smoothing on node features. However, repeatedly applying
Laplacian smoothing maymix the features of vertices from different
clusters and make them indistinguishable, which has a negative
impact on downstream tasks [23]. [26] and [42] show that GCN
only performs low-pass filtering on feature vectors of nodes and
graph structure only provides a way to denoise the data. To further
prove that the fusion capability of current GCN [19] is not optimal,
Wang et al. [40] set up a series of experiments and demonstrate that
MLP [27] and DeepWalk [29] can easily perform better than GCN
even under some simple situations that the correlation between
node labels and features or topology structure is very obvious. The
situation becomes more complex in reality. For example, in a so-
cial network, the relationship between people is very complicated,
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Figure 1: The framework of SCRL model. SCRL consists of two parts: feature extraction module and self-supervision module.
First, we use node features to construct feature graph. Then, in feature extraction module, we adopt two independent GCNs to
extract the latent features of nodes in two graphs, respectively. Consensus representation is learnt in the self-supervisionmod-
ule by solving the "exchanged prediction" problem. We use cross-entropy loss to penalize the difference between prediction
and the ground-truth label.

while most of current GCN-based methods mainly consider the re-
lationship between connected individuals and ignore other implicit
information. In a citation network where nodes represent papers
and there is an edge between two papers if they share the same
author, if we conduct information aggregation based on the original
topology structure, it will ignore the situation that an author may
write papers belonging to different categories or similar papers are
actually written by different authors, hence we may mistakenly
aggregate different types of papers together.

Towards a better fusion strategy integrating both node features
and topology structure, attention mechanism is also introduced.
Graph attention network (GAT) [36] assigns attention weights to
every edge, which measures the local similarities among features
of neighbors. Wang et al. [40] propose an adaptive multi-channel
GCN (AMGCN) that learns suitable weights for fusing feature and
topology information. However, these attention-based approaches
need to compute weights for every node, which is inefficient for
large-scale graphs. These issues motivate us to design a new frame-
work which can improve the capability of fusing topology structure
and node features and, at the same time, enhance the computational
efficiency.

In fact, there are correlations between graph structure and node
features and the underlying information from these two aspects
could supervise each other [15]. For example, a blogger may tend
to follow another one who has similar interests listed on his/her
homepage. Hence, we mine the common information between node
features and graph structure with an efficient self-supervised mech-
anism.

Specifically, we argue that the shared information could boost
the performance of downstream tasks. As shown in Fig.1, firstly
a kNN graph is generated from the node features as the feature
graph. Secondly, with the feature graph and topology graph, we use
different convolution modula to extract node embeddings in feature
space and topology space. Finally, in order to learn a consensus
representation, we propose a self-supervised module that uses the
node embedding in one graph to predict the classification result of
the same node in the other graph.

Our main contributions are summarized as follows:
• We propose a novel self-supervised framework to learn a
consensus representation for attributed graph. To the best
of our knowledge, we are the first to explore the role of self-
supervised mechanism in fusing the topology information
and node feature information of graph.

• We develop an efficient graph representation learning algo-
rithm which takes less time in training compared with other
approaches.

• We conduct extensive experiments on a series of datasets. It
shows that our approach outperforms many state-of-the-art
methods on semi-supervised node classification task. Even
with very small amounts of labeled data, our SCRL is still
superior to main competitors.

2 RELATEDWORKS
Graph-based Semi-supervised Learning
Large numbers of approaches for semi-supervised learning on
graphs have been proposed in the past two decades. Some early
studies use graph Laplacian regularization and graph embedding



[16, 17] to learn graph representation. Inspired by the Skip-gram
model [25] for natural language processing, Perozzi et al. propose
DeepWalk [29] that learns latent representation from sampled trun-
cated random walks via the prediction of local neighborhood of
nodes. Subsequently, some varients are proposed to improve Deep-
Walk, prominent examples include Line [35] and node2vec [11].

Recently, thanks to the breakthroughs in deep learning, atten-
tion has turned to various types of graph neural networks. Bruna
et al. [2] propose a general graph convolution framework based on
graph Laplacian. [9] then optimizes it utilizing Chebyshev polyno-
mial approximation to improve efficiency. Besides, GCN [19] uses
a localized first-order approximation to simplify the convolution
operation. GAT [36] gives different attention weights to different
nodes in a neighborhood to aggregate node features. Demo-Net
[43] builds a degree-specific graph neural network for both node
and graph classification. MixHop [1] utilizes multiple powers of
adjacency matrix to learn general mixing of neighborhood infor-
mation. However, these methods only use a single topology graph
for node aggregation, which may cause graph structure to be em-
phatically considered and fails to make full use of rich feature
information. AMGCN [40] utilizes attention mechanism to merge
embeddings extracted from topology graph and feature graph. How-
ever, attention-based methods always require high time and space
complexity.

Self-supervised Learning
Self-supervised learning aims to learn representative features with-
out label information, which is able to reduce human cost for an-
notating data. Self-supervised learning has found many successful
applications ranging from language modeling [6] to computer vi-
sion [22, 28]. As a category of self-supervised learning, contrastive
learning trains the network by comparing the representations learnt
from augmented samples. For example, MoCo [14] and SimCLR [5]
construct negative pairs and positive pairs via data augmentation
techniques and then compare them. However, it becomes computa-
tionally expensive for large datasets. Another class is cluster-based
approaches. For instance, Caron et al. [4] present a simplified train-
ing pipeline by mapping features to cluster prototypes.

Recently, there are a few works focusing on self-supervised
learning in the domain of graph. M3S [34] utilizes self-supervised
learning approach to improve the generalization performance of
GCN. Deep Graph Infomax (DGI) [37] drives local network embed-
dings to capture global structural information by maximizing local
mutual information. Deep graph contrastive representation learn-
ing (GRACE) [45] is a graph contrastive representation learning
framework by maximizing agreement at the node level. Most graph
contrastive learning approaches conduct random corruption on
nodes and edges, which may bring noise into original graph data
and degrade the learnt representation. Nevertheless, whether self-
supervised mechanism can improve the capability of GCN in fusing
topological structure and node features still remains unexplored.

3 THE PROPOSED METHODOLOGY
3.1 Notation
An attributed graph can be represented as 𝐺 = {𝐴,𝑋 }, where
𝐴 ∈ R𝑁×𝑁 is the adjacency matrix of 𝑁 nodes and 𝑋 ∈ R𝑁×𝑑 is

the node feature matrix wherein every node is described by a vector
with 𝑑 dimensions. Each node belongs to one out of M classes. As
for 𝐴, 𝐴𝑖 𝑗 = 1 represents that there is an edge between node 𝑖
and node 𝑗 while 𝐴𝑖 𝑗 = 0 indicates that node 𝑖 and node 𝑗 are not
connected. In our study, we derivate the corresponding feature
graph 𝐺 =

{
𝐴,𝑋

}
, which shares the same 𝑋 with 𝐺 , but has a

different adjacency matrix. Therefore, topology graph and feature
graph refer to 𝐺 and 𝐺 respectively.

3.2 The Framework of SCRL
As shown in Fig.1, we use topology graph and feature graph to
capture the underlying information in topology space and feature
space. Our model mainly contains two components: the feature
abstraction module that uses GCN to extract features from graph,
the self-supervision module that measures the consistency between
the representations learned from the topology graph and feature
graph.

Feature Graph.
Merely propagating feature information over topology graph may
hinder the fusion capability of GCN under some circumstances [40].
A natural idea would be to complement topology graph by fully
making use of the information inside node features. Therefore we
introduce feature graph into our work.

To represent the structure of nodes in the feature space, we build
a kNN graph 𝐺 based on the feature matrix 𝑋 . To be precise, a
similarity matrix 𝑆 is computed using the cosine similarity formula:

𝑆𝑖 𝑗 =
𝑥𝑖 · 𝑥 𝑗
|𝑥𝑖 | · |𝑥 𝑗 |

(1)

where 𝑆𝑖 𝑗 is the similarity between node feature 𝑥𝑖 and node feature
𝑥 𝑗 . Then for each node we choose the top k nearest neighbors and
establish edges. In this way, we construct feature graph.

Feature Extraction Module.
To extract meaningful features from graphs, we adopt GCN that is
comprised of multiple graph convolutional layers. With the input
graph G, the (𝑙 + 1)-th layer’s output 𝐻 (𝑙+1) can be represented as:

𝐻 (𝑙+1) = 𝑅𝑒𝐿𝑈 (𝐷− 1
2𝐴𝐷− 1

2𝐻 (𝑙)𝑊 (𝑙) ) (2)

where 𝑅𝑒𝐿𝑈 is the Relu activation function (𝑅𝑒𝐿𝑈 (·) =𝑚𝑎𝑥 (0, ·)),
𝐷 is the degree matrix of 𝐴, 𝑊 (𝑙) is a layer-specific trainable
weight matrix, 𝐻 (𝑙) is the activation matrix in the 𝑙-th layer and
𝐻 (0) = 𝑋 . In our study we use two GCNs to exploit the infor-
mation in topology and feature space. The output is donated by
𝑥𝑡 = {𝑥𝑡1, 𝑥𝑡2, · · · , 𝑥𝑡𝑁 } and 𝑥 𝑓 =

{
𝑥 𝑓 1, 𝑥 𝑓 2, · · · , 𝑥 𝑓 𝑁

}
, respec-

tively.

Self-Supervision Module.
An important component of our framework is self-supervision mod-
ule that is used to fuse the representations learnt by feature extrac-
tion modules. To convert the learnt representations into vectors of
class scores, the representations of the i-th node 𝑥𝑡𝑖 and 𝑥 𝑓 𝑖 are fol-
lowed by a prototype head C: R𝑈 → R𝐵 . 𝑈 refers to the dimension
of 𝑥𝑡𝑖 and 𝑥 𝑓 𝑖 . 𝐵 refers to the number of prototypes. In prototype
head C, we store a set of prototype vectors: {𝑐1, · · · , 𝑐𝐵}. Every pro-
totype vector projects the node feature to a prototype/cluster. By
computing the dot product between 𝑥𝑡𝑖 and 𝑐𝑏 , we can get the class



score of node 𝑖 corresponding to prototype 𝑏 in topology graph.
Specifically,

𝑧
(𝑡 )
𝑖

= 𝐶 (𝑥𝑡𝑖 ) = 𝑥⊤𝑡𝑖𝐶 (3)

𝑧
(𝑓 )
𝑖

= 𝐶 (𝑥 𝑓 𝑖 ) = 𝑥⊤
𝑓 𝑖
𝐶 (4)

C is a linear layer. Prototypes are initialized randomly and are learnt
along with the training process.

Then we compute the probability of assigning prototype 𝑗 to
node representation 𝑥𝑖 by taking the softmax of its projection:

𝑝
(𝑡 )
𝑖 𝑗

=
𝑒𝑥𝑝 ( 1𝜏 𝑧

(𝑡 )
𝑖 𝑗

)∑𝐵
𝑗 ′ 𝑒𝑥𝑝 (

1
𝜏 𝑧

(𝑡 )
𝑖 𝑗 ′ )

(5)

𝑝
(𝑓 )
𝑖 𝑗

=
𝑒𝑥𝑝 ( 1𝜏 𝑧

(𝑓 )
𝑖 𝑗

)∑𝐵
𝑗 ′ 𝑒𝑥𝑝 (

1
𝜏 𝑧

(𝑓 )
𝑖 𝑗 ′ )

(6)

where 𝜏 is a temperature parameter. We use 𝑝 (𝑡 )
𝑖

=

{
𝑝
(𝑡 )
𝑖1 , · · · , 𝑝 (𝑡 )

𝑖𝐵

}
and 𝑝

(𝑓 )
𝑖

=

{
𝑝
(𝑓 )
𝑖1 , · · · , 𝑝 (𝑓 )

𝑖𝐵

}
to denote the probabilities of the 𝑖-

th node belonging to different prototypes in topology graph and
feature graph.

A key question in our self-supervision module is to find a ‘target’
for the projection of prototype vectors. Inspired by previous works
[? ], we utilize pseudo label in this module. We cast pseudo label
assignment problem as an optimal transport problem and com-
pute the soft labels using the iterative Sinkhorn algorithm [8]. The
outputs are denoted by 𝑞 (𝑡 )

𝑖
and 𝑞 (𝑓 )

𝑖
for 𝑧 (𝑡 )

𝑖
and 𝑧 (𝑓 )

𝑖
respectively.

With 𝑝
(𝑡 )
𝑖

, 𝑝 (𝑓 )
𝑖

and 𝑞 (𝑡 )
𝑖

, 𝑞 (𝑓 )
𝑖

, we set up the "exchanged predic-
tion" problem. We assume that both topology graph and feature
graph should produce the same label. Therefore the pseudo labels
obtained from one graph are predicted using the other graph. To
be precise, for every node, it is our goal to minimize the cross en-
tropy of two pairs of probabilities: 𝑞 (𝑓 )

𝑖
, 𝑝 (𝑡 )

𝑖
and 𝑞

(𝑡 )
𝑖

, 𝑝 (𝑓 )
𝑖

. The
loss function of exchanged prediction can be defined as:

𝑙
(𝑖)
𝑠𝑠 = 𝑙 (𝑝 (𝑡 )

𝑖
, 𝑞

(𝑓 )
𝑖

) + 𝑙 (𝑝 (𝑓 )
𝑖

, 𝑞
(𝑡 )
𝑖

) (7)

𝑙 (𝑝 (𝑡 )
𝑖

, 𝑞
(𝑓 )
𝑖

) = −
𝐵∑︁

𝑏=1

𝑞
(𝑓 )
𝑖𝑏

log 𝑝
(𝑡 )
𝑖𝑏

(8)

𝑙 (𝑝 (𝑓 )
𝑖

, 𝑞
(𝑡 )
𝑖

) = −
𝐵∑︁

𝑏=1

𝑞
(𝑡 )
𝑖𝑏

log 𝑝
(𝑓 )
𝑖𝑏

(9)

Summing this loss over all nodes leads to the following loss
function for the "exchanged prediction" problem.

𝐿𝑠𝑠 =
1

𝑁

𝑁∑︁
𝑖=1

𝑙 (𝑝 (𝑡 )
𝑖

, 𝑞
(𝑓 )
𝑖

) + 𝑙 (𝑝 (𝑓 )
𝑖

, 𝑞
(𝑡 )
𝑖

)

= − 1

𝑁

𝑁∑︁
𝑖=1

[ 1
𝜏
𝑥⊤𝑡𝑖𝐶𝑞

(𝑓 )
𝑖

+ 1

𝜏
𝑥⊤
𝑓 𝑖
𝐶𝑞

(𝑡 )
𝑖

− log
𝐵∑︁

𝑏=1

exp(
𝑥⊤
𝑡𝑖
𝑐𝑏

𝜏
) − log

𝐵∑︁
𝑏=1

exp(
𝑥⊤
𝑓 𝑖
𝑐𝑏

𝜏
)]

(10)

This loss function is jointly minimized with respect to prototypes
C and the parameters of the GCN encoders that produce represen-
tations 𝑥𝑡 and 𝑥 𝑓 .

Node Classification.
Ideally, 𝑋𝑡 and 𝑋𝑓 should be close to each other. To preserve the
information from feature graph and topology graph, 𝑋𝑡 and 𝑋𝑓

are concatenated as the consensus representation 𝑅. Then we use
𝑅 for semi-supervised classification with a linear transformation
and a softmax function. 𝑌 ′ is the prediction result and 𝑌 ′

𝑖 𝑗
is the

probability of node 𝑖 belonging to class 𝑗 .𝑊 and 𝑎 are weights and
bias of the linear layer, respectively.

𝑌 ′ = softmax(𝑊 · 𝑅 + 𝑎) (11)

Suppose there are𝑇 nodes with labels in the training set. We adopt
cross-entropy to measure the difference between prediction label
𝑌 ′
𝑖 𝑗
and ground truth label 𝑌𝑖 𝑗 :

𝐿𝑐𝑒 = −
𝑇∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝑌𝑖 𝑗 ln𝑌
′
𝑖 𝑗 (12)

Finally, by combining 𝐿𝑠𝑠 and 𝐿𝑐𝑒 , overall loss function of our
SCRL model can be represented as:

𝐿 = 𝐿𝑐𝑒 + 𝐿𝑠𝑠 (13)

The parameters of the whole framework are updated via backpropa-
gation. The consensus representation of the attributed graph can be
learnt at the same time. The detailed description of our algorithm
is provided in Algorithm 1.

Algorithm 1: The proposed algorithm SCRL
Input: Node feature matrix 𝑋 ; adjacency matrix 𝐴; node label

matrix 𝑌 ; maximum number of iterations [; temperature
parameter 𝜏

1 Compute the feature graph𝐺 according to 𝑋 by running kNN
algorithm.

2 for 𝑖𝑡 = 0 to [ do
3 /* Consensus representation learning */

4 𝑥𝑡 = GCN(𝐺 ) // embeddings of two graphs

5 𝑥𝑓 = GCN(𝐺 )
6 𝑧 (𝑡 ) = prototype(𝑥𝑡 )
7 𝑧 (𝑓 ) = prototype(𝑥𝑓 )
8 𝑝 (𝑡 ) = softmax(𝑧 (𝑡 ) / 𝜏 )
9 𝑝 (𝑓 ) = softmax(𝑧 (𝑓 ) / 𝜏 )

10 𝑞 (𝑡 ) = sinkhorn(𝑧 (𝑡 ) )
11 𝑞 (𝑓 ) = sinkhorn(𝑧 (𝑓 ) )
12 Calculate the overall loss with Equation(13)
13 Update all parameters of framework according to the overall

loss
14 end for
15 Predict the labels of unlabeled nodes based on the trained

framework.
Output: Classification results 𝑌 ′

4 EXPERIMENT
In this section, we conduct extensive experiments to evaluate the ef-
fectiveness of the self-supervised consensus representation learning
framework for attributed graph.



(a) ACM Epoch 0 (b) ACM Epoch 10 (c) ACM Epoch 20 (d) Flickr Epoch 0 (e) Flickr Epoch 30 (f) Flickr Epoch 60

Figure 2: The t-SNE demonstration of node representations of ACM and Flickr during training.

Table 1: The statistics of datasets.

Datasets Nodes Edges Dimensions Classes
Citeseer 3327 4732 3703 6
PubMed 19717 44338 500 3
ACM 3025 13128 1870 3

BlogCatalog 5196 171743 8189 6
UAI2010 3067 28311 4973 19
Flickr 7575 239738 12047 9

4.1 Datasets
For the graph dataset, we select four commonly used citation net-
works (Citeseer [19], PubMed [33], UAI2010 [38], ACM [39]) and
two social networks (BlogCatalog [24], Flickr [24]).

Specifically, Citeseer consists of 3327 scientific publications ex-
tracted from the CiteSeer digital library classified into one of six
classes. PubMed consists of 19717 scientific publications fromPubMed
database pertaining to diabetes classified into one of three classess.
ACM network is extracted from ACM database where publications
are represented by nodes and those with the same author are con-
nected by edges. UAI2010 contains 3067 nodes in 19 classes and it
has been tested in GCN for community detection. BlogCatalog is a
social blog directory containing links between 5196 blogs. Flickr
is widely used by photo researchers and bloggers to host images
that they embed in blogs and social media. Flickr is composed of
7575 users and they are classified into nine groups. The statistical
information of datasets is summarized in Table 1.

4.2 Baselines
We thoroughly verify the performance of our proposed SCRL with
representative baselines.

DeepWalk [29] is a graph embedding approach that merely takes
into account the structure of the graph. LINE [35] is a graph embed-
ding method for very large graph that utilizes both first-order and
second-order proximity of the network. ChebNet [9] is a spectral-
based GCN that uses Chebyshev polynomials to reduce computa-
tional complexity. GCN [19] further solves the efficiency problem
by introducing first-order approximation of ChebNet. For compari-
son, we use the sparse k-nearest neighbor graph calculated from
feature matrix as the input graph of GCN and name it kNN-GCN.
GAT [36] adopts attention mechanism to learn the relative weights
between two connected nodes. Demo-Net [43] is a degree-specific
graph neural network for node classification. MixHop [1] is a GCN-
based method that concatenates embeddings aggregated using the
transition matrices of k-hop random walks before each layer. DGI
[37] leverages local mutual information maximization across the

(a) GCN (b) AMGCN (c) GRACE (d) SCRL

Figure 3: Visualization of learnt representations of different
methods on BlogCatalog dataset.

graph’s patch representations. M3S [34] is a self-supervised frame-
work that utilizes DeepCluster [3] to choose nodes with precise
pseudo labels. GRACE [45] is a recently proposed graph contrastive
learning framework. It generates two graph views by corruption
and learns node representations by maximizing the agreement of
node representations in these two views. AMGCN [40] extracts
embeddings from node features, topological structure, and uses the
attention mechanism to learn the adaptive importance weights of
embeddings.

4.3 Experimental Setup
The experiments are run on the PyTorch platform using an Intel(R)
Core(TM) i7-8700 CPU, 64G RAM and GeForce GTX 1080 Ti 11G
GPU. Technically two layer GCN are built andwe train ourmodel by
utilizing the Adam [18] optimizer with learning rate ranging from
0.0001 to 0.0005. In order to prevent over-fitting, we set the dropout
rate to 0.5. In addition, we set weight decay ∈ {1𝑒 − 4, · · · , 5𝑒 − 3}
and k ∈ {2, · · · , 9} for the kNN graphs. Two popular metrics are
applied to quantitatively evaluate the semi-supervised node classifi-
cation performance: Accuracy (ACC) and F1-Score (F1). For fairness,
we follow Wang et al. [40] and Yang et al. [44] and select 20, 40, 60
nodes per class for training and 1000 nodes for testing. For exam-
ple, there are 19 types of nodes in UAI2010, therefore we train our
model on training set with 380/760/1140 nodes, corresponding to
label rate of 12.39%, 24.78%, 37.17%, respectively. The selection of
labeled nodes on each dataset is identical for all compared baselines.
We repeatedly train and test our model for 5 times with the same
partition of dataset and then report the average of ACC and F1.

4.4 Node Classification Results
The results of experiments are summarized in Table 2, where the
best performance is highlighted in bold. Some results are directly
taken from [40]. We have following findings:

• It can be seen that our proposed method boosts the perfor-
mance of the listed baselines across most evaluation metrics
on six datasets, which proves its effectiveness. Particularly,



Table 2: Node classification results(%). L/C refers to the number of labeled nodes per class.

Dataset ACM BlogCatalog
L/C 20 40 60 20 40 60

Label Rate 1.98% 3.97% 5.95% 2.31% 4.62% 6.93%
Metrics ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

DeepWalk [29] 62.69 62.11 63.00 61.88 67.03 66.99 38.67 34.96 50.80 48.61 55.02 53.36
LINE [35] 41.28 40.12 45.83 45.79 50.41 49.92 58.75 57.75 61.12 60.72 64.53 63.81

ChebNet [9] 75.24 74.86 81.64 81.26 85.43 85.26 38.08 33.39 56.28 53.86 70.06 68.37
GCN [19] 87.80 87.82 89.06 89.00 90.54 90.49 69.84 68.73 71.28 70.71 72.66 71.80

kNN-GCN [40] 78.52 78.14 81.66 81.53 82.00 81.95 75.49 72.53 80.84 80.16 82.46 81.90
GAT [36] 87.36 87.44 88.60 88.55 90.40 90.39 64.08 63.38 67.40 66.39 69.95 69.08

Demo-Net [43] 84.48 84.16 85.70 84.83 86.55 84.05 54.19 52.79 63.47 63.09 76.81 76.73
MixHop [1] 81.08 81.40 82.34 81.13 83.09 82.24 65.46 64.89 71.66 70.84 77.44 76.38
GRACE [45] 89.04 89.00 89.46 89.36 91.08 91.03 76.56 75.56 76.66 75.88 77.66 77.08
AMGCN [40] 90.40 90.43 90.76 90.66 91.42 91.36 81.89 81.36 84.94 84.32 87.30 86.94

SCRL 91.82 91.79 92.06 92.04 92.82 92.80 90.22 89.89 90.26 89.90 91.58 90.76
Dataset Flickr UAI2010
L/C 20 40 60 20 40 60

Label Rate 2.38% 4.75% 7.13% 12.39% 24.78% 37.17%
Metrics ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

DeepWalk [29] 24.33 21.33 28.79 26.90 30.10 27.28 42.02 32.92 51.26 46.01 54.37 44.43
LINE [35] 33.25 31.19 37.67 37.12 38.54 37.77 43.47 37.01 45.37 39.62 51.05 43.76

ChebNet [9] 23.26 21.27 35.10 33.53 41.70 40.17 50.02 33.65 58.18 38.80 59.82 40.60
GCN [19] 41.42 39.95 45.48 43.27 47.96 46.58 49.88 32.86 51.80 33.80 54.40 32.14

kNN-GCN [40] 69.28 70.33 75.08 75.40 77.94 77.97 66.06 52.43 68.74 54.45 71.64 54.78
GAT [36] 38.52 37.00 38.44 36.94 38.96 37.35 56.92 39.61 63.74 45.08 68.44 48.97

Demo-Net [43] 34.89 33.53 46.57 45.23 57.30 56.49 23.45 16.82 30.29 26.36 34.11 29.03
MixHop [1] 39.56 40.13 55.19 56.25 64.96 65.73 61.56 49.19 65.05 53.86 67.66 56.31
GRACE [45] 49.42 48.18 53.64 52.61 55.67 54.61 65.54 48.38 66.67 49.50 68.68 51.51
AMGCN [40] 75.26 74.63 80.06 79.36 82.10 81.81 70.10 55.61 73.14 64.88 74.40 65.99

SCRL 79.52 78.89 84.23 84.03 84.54 84.51 72.90 57.80 74.58 67.40 74.90 67.54
Dataset Citeseer PubMed
L/C 20 40 60 20 40 60

Label Rate 3.61% 7.21% 10.82% 0.30% 0.61% 0.91%
Metrics ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

DeepWalk [29] 43.47 38.09 45.15 43.18 48.86 48.01 - - - - - -
LINE [35] 32.71 31.75 33.32 32.42 35.39 34.37 - - - - - -

ChebNet [9] 69.80 65.92 71.64 68.31 73.26 70.31 74.20 73.51 76.00 74.92 76.51 75.83
GCN [19] 70.30 67.50 73.10 69.70 74.48 71.24 79.00 78.45 79.98 79.17 80.06 79.65

kNN-GCN [40] 61.35 58.86 61.54 59.33 62.38 60.07 71.62 71.92 74.02 74.09 74.66 75.18
GAT [36] 72.50 68.14 73.04 69.58 74.76 71.60 - - - - - -

Demo-Net [43] 69.50 67.84 70.44 66.97 71.86 68.22 - - - - - -
MixHop [1] 71.40 66.96 71.48 67.40 72.16 69.31 - - - - - -
GRACE [45] 71.70 68.14 72.38 68.74 74.20 70.73 79.50 79.33 80.32 79.64 80.24 80.33
AMGCN [40] 73.10 68.42 74.70 69.81 75.56 70.92 76.18 76.86 77.14 77.04 77.74 77.09

SCRL 73.62 69.78 75.08 70.68 75.96 72.84 79.62 78.88 80.74 80.24 81.03 80.55

compared with AMGCN, SCRL achieves a maximum im-
provement of 8.33% for ACC and 8.53% for F1 on BlogCata-
log. Additionally, on Flickr our method can exceed AMGCN
by 4.26% and 4.67% for ACC and F1, respectively. This is
mainly attributed to the self-supervision component.

• Our SCRL achieves better performances than GRACE on
most of the metrics, especially when the label rate is rela-
tively low. This could be explained by the fact that GRACE
performs corruption by randomly adding/deleting edges to
generate views for graphs that may damage the original
graph topology, hence degrading performance of classifica-
tion.

• On some occasions, feature graph produces better result than
topology graph. For example, on BlogCatalog, Flickr, and
UAI2010, kNN-CGN easily outperforms GCN. This confirms
the necessity of incorporating the feature graph into our
framework. On all datasets, SCRL achieves impressive im-
provement compared with both GCN and kNN-GCN, which
indicates that the consensus representation of two graphs
provides more holistic information than a single graph.

For a more intuitive understanding, we use t-SNE to visualize the
evolution of the representation learnt by our SCRL in the training
process. As shown in Fig.2, at the beginning the representation of
ACM is chaotic and scattered. At apoch 10, compact clusters begin



Figure 4: Averaged time cost per epoch of AMGCN, GRACE
and SCRL for six datasets. (*) indicates out-of-memory error
and vertical axis is in log-scale.

to form. By epoch 20, a well learnt representation is established
that makes it easier to separate data points into different groups.
The representation of Flickr has a similar evolution process in the
training. To further show the advantage of our proposed method,
we also visualize the embedding results of BlogCatalog generated
by GCN, GRACE, AMGCN and SCRL, which are shown in Fig.3.
It can be observed that the embedding generated by our proposed
SCRL exhibits clearer cluster structure compared to other three
methods.

To verify the efficiency of SCRL, we report the averaged train-
ing time per epoch when training SCRL, GRACE and AMGCN in
Fig.4. Experiments are conducted with a GeForce GTX 1080 Ti
11G GPU. It can be seen that SCRL always costs much less time
to train than others. For instance, for Flickr our proposed SCRL
costs 65.9ms per epoch but AMGCN and GRACE need 237.7ms
and 122.8ms, respectively. For BlogCatalog, SCRL needs 78.2ms
per epoch while AMGCN needs 784.5ms and SCRL needs 243.8ms.
What’s more, for larger datasets like PubMed, AMGCN and GRACE
are subject to out-of-memory error. As mentioned above, AMGCN
introduces attention mechanism and computes attention weights
for every node. GRACE divides node in two views into positive
pairs, inter-view negative pairs and intra-view negative pairs, and
then makes pair-wise comparisons in the contrastive loss. There-
fore, both AMGCN and GRACE become computationally inefficient
and resource-consuming during training.

4.5 Few Labeled Classification
To further investigate the capability of our proposed SCRL in deal-
ing with scarce supervision data, we conduct experiments when
the number of labeled examples is extremely small. Taking Citeseer
and PubMed for example, we strictly follow Li et al. [20] and select
a small set of labeled examples for model training. Specifically, for
Citeseer, we select 3, 6, 12, 18 nodes per class, corresponding to
four label rates: 0.5%, 1%, 2% and 3%. For PubMed, we select
2, 3, 7 nodes per class, corresponding to three label rates: 0.03%,

Table 3: Classification accuracy on Citeseer and PubMed
with low label rates.

Datasets Citeseer PubMed
L/C 3 6 12 18 2 3 7

Label Rate 0.5% 1% 2% 3% 0.03% 0.05% 0.10%
ChebNet [9] 19.7 59.3 62.1 66.8 55.9 62.5 69.5
GCN [19] 33.4 46.5 62.6 66.9 61.8 68.8 71.9
GAT [36] 45.7 64.7 69.0 69.3 65.7 69.9 72.4
DGI [37] 60.7 66.9 68.1 69.8 60.2 68.4 70.7
M3S [34] 56.1 62.1 66.4 70.3 59.2 64.4 70.5

GRACE [45] 55.4 59.3 63.4 67.8 64.4 67.5 72.3
AMGCN [40] 60.2 65.7 68.5 70.2 60.5 62.4 70.8

SCRL 62.4 67.3 69.8 73.3 67.9 71.9 73.4

(a) ACM (b) BlogCatalog

(c) Citeseer (d) UAI2010

Figure 5: The influence of iteration number in Sinkhorn al-
gorithm.

0.05% and 0.10%. To make a fair comparison, we report mean
classification accuracy of 10 runs.

We report the result in Table 3. We can observe that SCRL outper-
forms all state-of-the-art approaches. It can be seen that the accu-
racy of GCN, ChebNet, andGAT decline severelywhen the label rate
is very low, especially on 0.5% Citeseer, due to insufficient propaga-
tion of label information. By contrast, self-supervised/contrastive
approaches, i.e., DGI, M3S, GRACE, are obviously much better
because they additionally exploit supervisory signals with data
themselves. Different from them, SCRL explores supervisory sig-
nals in feature graph, which is ignored by other self-supervised
methods. Specifically, SCRL improves DGI, M3S, GRACE by 3.03%,
5.29%, and 5.12% on average, respectively.

4.6 Parameter Analysis
In this section, we analyze the sensitivity of parameters of our
method on ACM, BlogCatalog, Citeseer, and UAI2020.

Number of prototypes 𝐵. In Table 4, we evaluate the influence
of prototype number on Flickr via varying the value of 𝐵. We can
observe that when 𝐵 is bigger than 27, increasing prototype number



(a) ACM (b) BlogCatalog

Figure 6: The influence of parameter k in feature graph.

Table 4: The influence of prototype number on Flickr.

Number of prototypes 9(M) 27(3M) 45(5M) 90(10M)
20 L/C 78.54 79.52 78.82 78.75
40 L/C 83.82 84.15 84.23 83.90
60 L/C 84.03 84.54 84.48 84.42

may not improve the performance substantially. This suggests that
𝐵 has little influence as long as there are "enough" prototypes.
In fact, using too many prototypes increases computation time.
Throughout this paper, we set 𝐵 in the range of𝑀 to 3𝑀 when we
train SCRL.

Number of iterations p. We investigate the impact of normaliza-
tion steps performed during Sinkhorn algorithm [8]. We test it by
setting p to 5 values: 3, 5, 10, 15, 30. The results are shown in Fig.5.
As the number of iterations increases, the accuracy normally raises
first and then holds steady. We observe that 5 iterations are usually
good enough for the model to reach an ideal accuracy.

Parameter k. Finally, we study the impact of parameter k in the
kNN feature graph with various k ranging from 2 to 9. We conduct
experiments on ACM and BlogCatalog and fix the iteration number
p to 5. For every k, we repeat experiments 10 times and record ACC
to further calculate its average and standard deviation, which are
displayed in Fig.6. For ACM, with the increasing of k, the perfor-
mance usually becomes better as well. It is because a larger k can
provide more information about the relationship between nodes in
feature space. Generally, BlogCatalog has a similar trend. However,
with 60 labeled nodes per class, SCRL achieves the best performance
when k is 7. That is perhaps because too many neighbor nodes in
feature graph may introduce some noisy edges.

5 ABLATION STUDY
Asmentioned above, our proposed SCRLmodel employs self-supervised
loss to learn a consensus representation from topological structure
and node features. To elucidate the contribution of self-supervision
module, we report the classification results of SCRL when this com-
ponent is removed on three datasets: Citeseer, ACM, and Flickr. For
fairness, the split of data is identical with the experimental setting
in Section 4. We adopt "SCRL(w/o SSL)" to represent the simplified
model when self-supervised loss (SSL) is removed. The comparison
is shown in Table 5. Apparently, ACC and F1 decrease when the
aforementioned component is dropped from the framework. It re-
veals that our proposed self-supervision module is able to improve

Table 5: The influence of self-supervised module.

Dataset Metrics L/C SCRL SCRL
(w/o SSL)

Flickr
ACC

20 79.52 76.28
40 84.23 79.10
60 84.54 83.58

F1
20 78.89 74.70
40 84.03 78.37
60 84.51 83.12

ACM
ACC

20 91.82 90.24
40 92.06 90.32
60 92.82 91.50

F1
20 91.79 90.20
40 92.04 90.28
60 92.80 91.45

Citeseer
ACC

20 73.50 71.82
40 75.08 74.48
60 75.96 74.30

F1
20 69.91 68.26
40 70.41 69.35
60 72.81 70.74

the performance on semi-supervised learning task substantially.
For example, the accuracy can be boosted by over 5% in some cases
due to the introduction of self-supervised loss. In addition, the im-
provement of SCRL(sw/o SSL) over GCN verifies the importance of
feature graph.

6 CONCLUSION
In this paper, we propose a self-supervised consensus representation
learning framework for semi-supervised classification on attributed
graph. We make the first attempt to introduce the idea of self-
supervised learning to integrate the correlated information from
the topology structure and node features. Specifically, we require
that the embeddings of feature graph and topology graph should
be consistent and generate the same labels. It is realized by the
"exchanged prediction" in the self-supervised module. Extensive
experiments well demonstrate its superior performance over the
state-of-the-art models on real world datasets. For example, our
SCRL improves AMGCN by 2.74% and 2.94% for ACC and F1 on
average across all datasets; SCRL improves GRACE by 9.28% and
10.58% for ACC and F1.
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