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ABSTRACT
Few-shot object detection (FSOD) aims at learning a detector that
can fast adapt to previously unseen objects with scarce annotated
examples, which is challenging and demanding. Existing methods
solve this problem by performing subtasks of classification and
localization utilizing a shared component (e.g., RoI head) in the
detector, yet few of them take the distinct preferences of two sub-
tasks towards feature embedding into consideration. In this paper,
we carefully analyze the characteristics of FSOD, and present that
a general few-shot detector should consider the explicit decom-
position of two subtasks, as well as leveraging information from
both of them to enhance feature representations. To the end, we
propose a simple yet effective Adaptive Fully-Dual Network (AFD-
Net). Specifically, we extend Faster R-CNN by introducing Dual
Query Encoder and Dual Attention Generator for separate feature
extraction, and Dual Aggregator for separate model reweighting.
Spontaneously, separate state estimation is achieved by the R-CNN
detector. Besides, for the acquisition of enhanced feature repre-
sentations, we further introduce Adaptive Fusion Mechanism to
adaptively perform feature fusion in different subtasks. Extensive
experiments on PASCAL VOC and MS COCO in various settings
show that, our method achieves new state-of-the-art performance
by a large margin, demonstrating its effectiveness and generaliza-
tion ability.
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1 INTRODUCTION
Recent years have witnessed impressive advances of convolutional
neural networks (CNNs) [9, 18, 19] in object detection [4, 8, 14, 15,
24, 31, 32, 34], due to the availability of large-scale benchmarks
with accurate annotations [10, 25, 35]. However, training general
object detection models from scratch typically requires rich labeled
data, which is extremely expensive to obtain or even hard to collect,
such as endangered animals or certain medical data. Thus, detectors
significantly suffer a performance drop when training examples are
inadequate [47]. On the contrary, humans exhibit a strong ability to
address this issue: even a child can easily learn to recognize novel
characteristics from only a few instances [36].

This triggers recent researches on few-shot learning (FSL). It
is considered promising to enhance the generalization ability of
deep networks from limited training examples [1, 12, 23, 27, 39].
Concretely, FSL aims at recognizing instances from novel classes
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Figure 1: Comparison of our framework and traditional meth-
ods. Traditional methods use shared encoded features to perform
the estimation of object categories and locations, while our Adap-
tive Fully-Dual Network decomposes the tasks of classification
(white arrow) and localization (brown arrow). Besides, feature fu-
sionmechanism (concatenating encoded features with different col-
ors) is introduced for enhancing feature representations.

given only a few annotated data per category in the inference stage,
with the availability of abundant labeled training samples from base
classes. Most researches in few-shot learning community focus on
image classification [13, 22, 29, 37–39], while far less progress has
been made in the field of object detection [20, 44, 46], which is
generally considered much more challenging due to the existence of
an additional subtask, i.e., few-shot localization, besides the subtask
of object recognition.

A trend to solve few-shot object detection is to conjoin a reweight-
ing module with a base object detector, e.g., Faster R-CNN [34]. Con-
cretely, these few-shot detectors [44, 46] introduce an additional
branch to extract discriminative features of support set from novel
classes, and then use these features to reweight RoI (Region-of-
Interest) head, which is shared for subsequent estimation of object
categories and locations. However, classification and localization
are two fundamentally different subtasks in few-shot object detec-
tion. The former subtask focuses on providing a coarse location of
the object via classification, while the latter aims at estimating an
accurate object state by a refined bounding box [43, 45]. This leads
to distinct preferences towards feature representation of these two
subtasks. In other words, generated features for classification are
probably not suitable for bounding box regression, and using the
same RoI representations in two subtasks is suboptimal. Owing to
the explicit task decomposition, in the process of a specific subtask,
the obtained features for state estimation can be enriched by the
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information from the unfocused subtask. Therefore, it is crucial
to exploit an efficient feature fusion mechanism between tasks of
classification and location regression.

Motivated by the abovementioned analysis, we present that a
general few-shot detector should: 1) decouple the process of classi-
fication from that of localization, involving feature representations,
model reweighting and state estimation; 2) introduce efficient fea-
ture fusion mechanism between two subtasks into the encoder
of few-shot detector, to enhance feature representations for both
query image and support set, as shown in Fig. 1.

In this paper, we propose a novel and intuitive framework for
few-shot object detection, namely Adaptive Fully-Dual Network
(AFD-Net), as illustrated in Fig.2. Specifically, we extend Faster R-
CNN by introducing three modules, i.e., Dual Query Encoder (DQE),
Dual Attention Generator (DAG), and Dual Aggregator (DA), for
separate process of two subtasks in various key stages of FSOD.
Besides, Adaptive Fusion Mechanism (AFM), guiding the design
of DQE and DAG, is introduced for the acquisition of enhanced
feature representations. Query features generated by backbone
network are encoded by DQE into two groups of RoI vectors. These
vectors contain meta information generalizable to detect novel
objects within RoIs, and each group is utilized for a specific subtask.
In parallel with DQE, DAG takes support images as input and
encodes them into class-attentive vectors in the same scheme. DA,
consisting of two aggregators for two subtasks, performs separate
model reweighting. Each RoI vector from query image and each
class-attentive vector from support set assigned the same subtask
are aggregated in the corresponding aggregator. In this way, some
meta features of query image informative for detecting novel objects
would be activated. Finally, the aggregated features are fed into
the R-CNN detector to estimate the object location and category,
respectively, achieving separate state estimation, spontaneously.

Extensive experiments on two public datasets, i.e., PASCAL VOC
and MS COCO, in various settings, show that despite its simplicity,
our method outperforms state-of-the-art approaches by a large
margin, demonstrating its effectiveness and generalization ability.

In summary, the main contributions of this paper are three-fold:

• We propose a simple yet effective framework for few-shot
object detection. To the best of our knowledge, we are among
the first to solve FSOD by decomposing the process of clas-
sification and localization.

• We further introduce three modules, i.e., Dual Query En-
coder, Dual Attention Generator and Dual Aggregator, to
perform decomposition in multiple components of our net-
work, along with Adaptive Fusion Mechanism for enhancing
feature representations.

• The experimental results demenstrate that our proposed
method achieves new state-of-the-art performance on multi-
ple benchmarks.

2 RELATEDWORK
General Object Detection. Recent object detectors based on deep
CNNs can be mainly divided into two steams, i.e., one-stage detec-
tors and two-stage ones. R-CNN series [8, 14, 15, 17, 24, 34] belong to
the first category, which generate region proposals [34] of potential
objects in the first stage, and then perform category and bounding

box estimation at the proposal-level. On the contrary, YOLO [31]
and the variants [3, 26, 32, 33] dominate the one-stage steam. These
methods use a single CNN to predict categories and locations of
the objects directly, without explicitly generating proposals. These
two branches of general object detectors unanimously depend on
a huge amount of data with elaborate bounding box annotations.
When training samples are limited, they struggle heavily.

Few-shot Learning. Few-shot learning refers to learning to
learn general knowledge that can be easily transferred to new tasks
with only a handful of annotated examples [1, 23, 39]. Few-shot
classification has recently been widely investigated as a representa-
tive task of few-shot learning. Generally, solutions to this problem
involve two groups: meta-learning based and fine-tuning based
methods. The former can be further categorized into: 1) metric-
learning based methods [22, 37, 38] that focus on the similarity
of input images in the embedding space; 2) optimization-based
ones [12, 27, 30], where a meta-learner is designed to simulate the
optimization process for the fast adaptation to novel classes with
limited samples; 3) model-based methods [2, 13, 41] that aim to
estimate the network parameters for novel tasks with the help of a
learned predictor. Fine-tuning based approaches [6, 7] demonstrate
that simple fine-tuning techniques are crucial and effective towards
few-shot learning.

Few-shot Object Detection. While substantial progress has
been made in few-shot classification, the problem of few-shot ob-
ject detection is relatively unsolved, since object localization should
be additionally processed in the scenario where distracting irrele-
vant objects may exist or even there is no object within an image.
LSTD [5] applies transfer learning technique in object detection
with limited examples and demonstrates its effectiveness. TFA [40]
proposes that only fine-tuning the last layer of existing detectors is
crucial and effective despite its simplicity. Metric learning widely
explored in few-shot classification can be extended to few-shot
object detection. For example, RepMet [21] scores the pair-wise
similarity between embedded features of input query and support
images. [11] incorporates attention mechanism into RPN (Region
Proposal Network) and explicitly defines a multi-relation detector
to suppress detection of the background. Recently, methods based
on meta-learning have been a popular trend. FSRW [20] attaches a
reweighting module with YOLOv2 [32] to adjust the full input im-
age features using class-attentive vectors of support images, while
Meta R-CNN [46] applies reweighting on RoI features based on
Faster R-CNN [34]. MetaDet [42] presents a meta-model to predict
the parameters of category-agnostic and category-specific compo-
nents in a detector, separately. FSDetView [44] applys a slightly
more complicated feature aggregation scheme to further improve
the detection performance and evaluation reliability.

3 METHODOLOGY
3.1 Problem Setup
As in previous work [20, 44, 46], we adopt the following few-shot
object detection settings. In the training phase, we are providedwith
two training sets, i.e., a base set 𝐷base from base classes 𝐶base with
abundant instances and a novel set 𝐷novel from novel classes𝐶novel
with only a few samples per category, where 𝐶base and 𝐶novel are
non-overlapping, i.e., 𝐶base ∩𝐶novel = ∅. For each sample (𝑥,𝑦) ∈



…

Backbone

Backbone
… Dual Attention 

Generator

Dual Query 
Encoder

…

…

…

…

Dual 
Aggregator

x y h w

c

location

class score
Weight Sharing

Detector

RoI
Align

Query Features

Support Features

Reg RoI Vectors

Cls RoI Vectors

Reg Attentions

Cls AttentionsSupport Set

Query Image

Adaptive Fusion Mechanism

for each RoI

Figure 2: The pipeline of Adaptive Fully-Dual Network for few-shot object detection. It consists of three key components: 1) the top query
branch receives a query image and generates its RoI vectors; 2) the bottom support branch encodes support set into its class-attentive vec-
tors; 3) two groups of features from two branches are aggregated for subsequent estimation of object categories and locations with a R-CNN
detector. We further introduce three modules, i.e., Dual Query Encoder, Dual Attention Generator and Dual Aggregator in three components,
along with Adaptive Fusion Mechanism for enhancing feature representations. All these three modules are in a dual architecture, where the
specific subtask is performed in the assigned path. Black line represents shared path for two subtasks, red and blue lines represent subtasks
of bounding box regression and category classification, respectively.

𝐷base ∪𝐷novel , 𝑥 = {obj𝑖 }𝑁𝑖=1 is an image containing 𝑁 objects, and
𝑦 = {(cls𝑖 , box𝑖 )}𝑁𝑖=1 denotes 𝑁 categories {cls𝑖 }𝑁𝑖=1 with each cls𝑖 ∈
𝐶base ∪𝐶novel along with 𝑁 structured annotations {box𝑖 }𝑁𝑖=1 of the
𝑁 objects in the image 𝑥 . The aim of the few-shot object detector
is to classify and locate objects from both novel and base classes
in an image with only 𝐾 (usually less than 10) available instances
per class in the phase of inference, with the help of transferable
knowledge learned from abundant examples from base classes.

3.2 Adaptive Fully-Dual Network
Pipeline. Our proposed Adaptive Fully-Dual Network decomposes
the process of few-shot classification and localization, as well as
enhancing feature representations. We adopt the widely used two-
stage detector Faster R-CNN [34] as the base model, which first
generates RoIs of potential objects, and then performs state estima-
tion using a single RoI head. The pipeline of our proposed network
is demonstrated in Fig. 2. Concretely, we extend Faster R-CNN to a
dual Siamese architecture, where a query image is encoded by the
top Faster R-CNN branch, and the bottom branch is designed for
support set. Each branch further contains two paths, and feature ex-
traction for the specific subtask is performed in the corresponding
path. Generated features from two branches are then aggregated,
achieving the reweighting of Faster R-CNN for the subsequent de-
tection of novel instances. We introduce Dual Query Encoder (DQE)
and Dual Attention Generator (DAG) for separate feature repre-
sentations, along with Dual Aggregator (DA) for separate model
reweighting, in our proposed architecture. Furthermore, we present
Adaptive Fusion Mechanism (AFM) to efficiently encode both the
query image and support set.

Dual Feature Representations. Adaptive Fully-Dual Network
consists of two branches, i.e., the top Faster R-CNN branch for

processing the query image and the bottom support branch for
support set, as shown in Fig. 2. The Faster R-CNN branch aims to
learn meta features generalizable to detect novel objects within the
input query image. The support branch encodes the input support
set into discriminative vectors, which will be subsequently utilized
to adjust the contribution of meta features generated from Faster
R-CNN branch. In this way, meta features informative for detecting
novel objects would be activated. Therefore, these support vec-
tors, namely class-attentive vectors, can be seen as the attention
coefficients of meta features.

In two-stage object detectors, for an input image 𝑄 , RPN is
applied to generate 𝑛 class-agnostic RoIs. These RoIs are then
embeded by the RoI head into RoI vectors for subsequent state
estimation. Instead of generating a single group of RoI vectors
{𝑟𝑖 }𝑛𝑖=1 for the input query image 𝑄 by a single RoI head in pre-
vious work [44, 46], we propose Dual Query Encoder E in Faster
R-CNN branch, to obtain two groups of𝑚-dimensional RoI vectors{
𝑟𝑐𝑙𝑠
𝑖
, 𝑟
𝑟𝑒𝑔

𝑖

}𝑛
𝑖=1

∈ R2𝑛×𝑚 containing meta information for subtasks
of classification and bounding box regression respectively, guided
by our observation that these two subtasks in few-shot detection
should be treated separately. This procedure is formulated as below:{

𝑟𝑐𝑙𝑠𝑖 , 𝑟
𝑟𝑒𝑔

𝑖

}𝑛
𝑖=1

= E(R(B(𝑄))) (1)

where B denotes the backbone network of Faster R-CNN, and R
denotes the RoIAlign operation.

As for the support branch, it takes support images as input and
generates their class-attentive vectors for subsequently reweighting
meta features from Faster R-CNN branch. To effectively capture
the support information, the input support image 𝑆 is concatenated
with a structured binary mask𝑀 indicating the bounding box an-
notation of the target object to detect [20]. Supposing there are
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Figure 3: Illustration of Adaptive Fusion Mechanism.

𝑠 categories in the support set. Support features of input support
image concatenated with its associated mask [𝑆 𝑗 , 𝑀𝑗 ] from class
𝑗, 𝑗 = 1, 2, . . . , 𝑠 , are generated from backbone network B shar-
ing weights with Faster R-CNN branch. Then our proposed Dual
Attention Generator G embeds them into two𝑚-dimensional class-
attentive vectors

{
𝑎𝑐𝑙𝑠
𝑗
, 𝑎
𝑟𝑒𝑔

𝑗

}
∈ R2×𝑚 for category classification

and bounding box regression, respectively:{
𝑎𝑐𝑙𝑠𝑗 , 𝑎

𝑟𝑒𝑔

𝑗

}
= G(B[𝑆 𝑗 , 𝑀𝑗 ]) (2)

Each RoI vector of query image and each class-attentive vector
of support set assigned the same subtask will be aggregated by our
proposed Dual AggregatorD before being fed into R-CNN detector
for state estimation. We will discuss the details next.

In this paper, the input query image 𝑄 and support image 𝑆
are resized into 224 × 224. The backbone network B is the first
four ResNet blocks, and the input dimension of support branch is
224 × 224 × 4. The size of each query RoI is 7 × 7 × 1024, and that
of each support feature is 14 × 14 × 1024. All of the RoI vectors and
class-attentive vectors are 3072-dimensional.

Adaptive Fusion Mechanism. To enhance feature represen-
tations for both the query and support set, we propose Adaptive
Fusion Mechanism. Its key philosophy is performing feature ex-
traction for two subtasks in distinct manners, as well as using the
information from the unfocused subtask for further enhancing fea-
ture representations. Adaptive Fusion Mechanism guides the design
of Dual Query Encoder and Dual Attention Generator. Actually
these two modules share weights except for the additional Max
Pool layer in Dual Attention Generator, and we take this module
as an example to elaborate this mechanism, as shown in Fig. 3.

Dual Attention Generator firstly applies a Max Pool layer to
ensure the consistency in the size of input feature with Dual Query
Encoder. Then it involves two parallel branches and each branch en-
codes input support images into class-attentive vectors for the spe-
cific subtask 𝑡 , i.e., 𝑐𝑙𝑠 for category classification and 𝑟𝑒𝑔 for bound-
ing box regression. We adopt a two-layer fully-connected (2-fc)
encoder G𝑓 𝑐 in regression branch and a convolution (conv) encoder
G𝑐𝑜𝑛𝑣 in classification branch. Output task-specific class-attentive
vectors from two branches are the concatenation of weighted fc
features and conv features. The weights can be adaptively adjusted
according to the specific subtask, and their values indicate the con-
tributions to the integrated task-specific outputs. Therefore, Eq. (2)
can be rewritten as:{
𝑎𝑡𝑗

}
=

[
𝜆𝑡convGconvB([𝑆 𝑗 , 𝑀𝑗 ]), 𝜆𝑡fcGfcB([𝑆 𝑗 , 𝑀𝑗 ])

]
, 𝑡 ∈ {cls, reg}

(3)
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Figure 4: Illustration of feature aggregation scheme.

where 𝜆𝑡conv and 𝜆𝑡fc denote the learnable weights of corresponding
task-specific class-attentive vectors and are initialized to 1, [·, ·]
denotes the depth-wise concatenation operation.

In this paper, the kernel size of Max Pool layer is 2 × 2. The conv
encoder G𝑐𝑜𝑛𝑣 is the last ResNet block, and the Global Pool layer
encodes the output conv features into a 2048-dimensional vector.
Two layers of fc encoder G𝑓 𝑐 are both 1024-dimensional, thus the
output vector of G𝑓 𝑐 is 1024-dimensional. Output task-specific
class-attentive vectors are 3072-dimensional.

Dual Feature Aggregation. The class-attentive vectors are re-
sponsible for reweighting RoI vectors and activating those that
encode potential novel objects. The aggregated RoI vectors are
then fed into the R-CNN detector for state estimation. In this pa-
per, besides separate feature representations for two subtasks, we
decompose the process of feature aggregation to realize separate
model reweighting, leading to our Dual Aggregator A. It consists
of a classification aggregator and a bounding box regression aggre-
gator in parallel. In each aggregator, each RoI vector of query image
is aggregated with each class-attentive vector of support features
following the scheme introduced in [44], as shown in Fig. 4, which
can be formulated as:

𝑟𝑡𝑖, 𝑗 = A
(
𝑟𝑡𝑖 , 𝑎

𝑡
𝑗

)
=

[
𝑓𝑚 (𝑟𝑡𝑖 ⊗ 𝑎

𝑡
𝑗 ), 𝑓𝑠 (𝑟

𝑡
𝑖 − 𝑎

𝑡
𝑗 ), 𝑟

𝑡
𝑖

]
, 𝑡 ∈ {cls, reg}

for each 𝑖 ∈ {1, 2, · · · , 𝑛}, 𝑗 ∈ {1, 2, · · · , 𝑠}

(4)

where 𝑟𝑡
𝑖, 𝑗

denotes the 𝑖-th RoI vector reweighted by the 𝑗-th class-
attentive vector from the aggregator assigned the specific subtask 𝑡 ,
and ⊗ denotes the depth-wise multiplication implemented through
1 × 1 depth-wise convolution. 𝑓𝑚 and 𝑓𝑠 are FC layers in Fig. 4, and
they are both 1536-dimensional. Therefore, the output aggregated
features are 6144-dimensional.

Dual State Estimation. As the input features of R-CNN detec-
tor are divided into two groups 𝑟𝑐𝑙𝑠

𝑖, 𝑗
and 𝑟𝑟𝑒𝑔

𝑖, 𝑗
where 𝑖 = 1, 2, . . . , 𝑛,

𝑗 = 1, 2, . . . , 𝑠 , the state estimation in our framework is decomposed
as well. Specifically, the aggregated RoI vector 𝑟𝑐𝑙𝑠

𝑖, 𝑗
is utilized for

predicting the probability of the 𝑖-th RoI containing an object from
novel class 𝑗 . Therefore, the classifier will produce 𝑠 outcomes for
each RoI, and the category ℎ with the highest confidence score will
be assigned. Then the associated RoI vector 𝑟𝑟𝑒𝑔

𝑖,ℎ
will be used for

location estimation of the 𝑖-th RoI by the regressor. If the highest
confidence score is lower than the threshold, this RoI will be re-
garded as background and discarded, consistent with the process
in [44, 46].



3.3 Training Procedure
Training Phase. Following the common practice in [20, 40, 44, 46],
we train our network in two phases. Base data 𝐷base from base
classes 𝐶base with abundant samples per class are used to train
the model in the first base training phase. Then the balanced base
data 𝐷base and novel data 𝐷novel with only 𝐾 samples per class are
fed into the network in the second fine-tuning phase for the fast
adaptation to novel classes.

Training Data Organization. In the training phase, distinct
from general object detectors that applying an image 𝑥𝑖 as the train-
ing mini-batch, our few-shot detector applies a task 𝑇𝑖 as an input
training data in the meta-learning paradigm [20, 44, 46]. Each input
task 𝑇𝑖 = 𝑆𝑖 ∪𝑄𝑖 is the union of a query set 𝑄𝑖 and a support set
𝑆𝑖 , where 𝑄𝑖 provided to query branch in Fig.2 is a query image 𝑞𝑖
containing objects from𝑚 classes 𝐶meta

𝑖
⊆ 𝐶base ∪ 𝐶novel , and 𝑆𝑖

for support branch contains𝑚 𝐾-shot (𝐾 = 200 in the base train-
ing phase and 𝐾 = {1, 2, 3, 5, 10} in the fine-tuning phase) clusters
{𝑔𝑝
𝑖
}𝑚
𝑝=1, where each cluster 𝑔𝑝

𝑖
includes 𝐾 images {𝑠𝑝

𝑖,𝑗
}𝐾
𝑗=1 in the

category 𝑝 . Each support image 𝑠𝑝
𝑖,𝑗

is depth-wise concatenated
with a structured binary mask𝑝

𝑖,𝑗
(see the input support set in Fig. 2,

only one object is considered when multiple objects are present
within an image).

Loss Function.Weoptimize our network in both training phases
using the loss function introduced in [46]:

𝐿 = 𝐿Faster R-CNN + 𝐿meta (5)

where 𝐿Faster R-CNN denotes the loss function of base detector Faster
R-CNN, involving the RPN loss, and classification loss together
with bounding box regression loss for the state estimation, 𝐿meta
denotes a meta loss aiming at encouraging class-attentive vectors
of support set to distinguish with each other.

Since our proposed Dual Attention Generator and Dual Query
Encoder are in a dual architecture, 𝐿meta in this paper is a combina-
tion of two components for classification and regression, respec-
tively. Thus the loss function in Eq. (5) can be precisely written
as:

𝐿 = 𝐿Faster R-CNN + 𝐿meta-cls + 𝐿meta-reg (6)
where 𝐿meta-cls and 𝐿meta-reg denote themeta losses for classification
and boundinng box regression, respectively, implemented by the
cross-entropy loss.

4 EXPERIMENTS
4.1 Experimental Settings
Benchmarks. We evaluate our method on general object detec-
tion benchmarks, i.e., PASCAL VOC 2007, 2012 and MS COCO, in
few-shot detection settings. As for PASCAL VOC, we follow the
common practice in previous work [20, 40, 44, 46], and use train/val
sets of VOC 07 and 12 for training while the test set of VOC 07
for testing. This benchmark covers 20 object categories, where 15
of them are regarded as base classes for the base training phase
and the remaining 5 categories with only 𝐾 (𝐾 = {1, 2, 3, 5, 10})
samples per class are considered as novel classes for few-shot fine-
tuning phase. For the fair quantitative comparison, we adopt the
same three class splits provided in [20]. For the evaluation protocol,
we use mean Average Precision (𝑚𝐴𝑃 ) of novel objects and the

Intersection of Union (IoU ) is set as 0.5 (𝐴𝑃50). Another benchmark
we evaluate on is MS COCO, which has 80k train images and 40k
validation images, covering 80 classes. Among them, we denote the
20 classes overlapped with PASCAL VOC as novel classes with 𝐾
(𝐾 = {10, 30}) samples per category and the rest 60 classes as base
classes. We use 5k images from validation set for evaluation with
the standard COCO-style evaluation metrics [26, 33] and the rest
for training. To compare empirically, on both datasets, we evaluate
on novel classes over 𝑛 (𝑛 = 30 for PASCAL VOC and 𝑛 = 10 for
MS COCO) repeated runs unless otherwise specified, and report
the average performance.

Implementation Details. Our proposed approach is imple-
mented in the PyTorch [28] library. It employs the backbone net-
work of ResNet [18] pre-trained on ImageNet [35] along with a
RoIAlign [16] layer. Specifically, we use ResNet-101 on PASCAL
VOC and ResNet-50 on MS COCO. Our model is trained end-to-end
using a batch size of 4 on a single Nvidia GeForce GTX 1080Ti with
13 GB memory. For optimization, we keep the setups in [44, 46] on
both benchmarks. Concretely, we adopt the SGD optimizer with an
initial learning rate of 0.001, weight decay of 0.0005 and momentum
of 0.9. The model is trained for 20 epochs in the base training phase
and 9 epochs in the 𝐾-shot fine-tuning phase. The learning rate is
reduced by 0.1 every 5 epochs in two training phases. During infer-
ence, the support branch will be removed for directly performing
detection without requiring support images as input. It is because
that class-attentive vectors for model reweighting can be obtained
in the 𝐾-shot fine-tuning phase by averaging the outputs from
support branch over the input 𝐾 support images.

4.2 Comparison with State-of-the-art Methods
PASCALVOC.Our evaluation results are presented in Table 1. The
comparison experiments cover few-shot object detection scenarios
in five setups (𝐾 = {1, 2, 3, 5, 10}) across three base/novel set splits.
As can be observed, our method outperforms recent state-of-the-art
methods by a large margin and obtains the best performance in all
15 cases. We notice that in the majority of cases, the improvements
are much larger than the gap among previous approaches, which
indicates the strong generalization ability of our model. Surpris-
ingly, although the existence of high variance of support data in
the extreme few-shot setup (𝐾 = 1), we obtain large improvements
(+6.4% in the first split and +6.2% in the third split), showing the
robustness of our model in tough scenarios. Besides, in the robust
10-shot setup, the improvements (+2.9% in the first split, +1.2% in
the second split and +3.9% in the third split) are lower than those
in other setups. This can be explained by that, as the number of
instances per novel class increases, the sample variance decreases
and the detection performance stabilizes.

Taking evaluation performance on base classes into consider-
ation, we provide detailed results on the first base/novel split in
Table 2. Note that our proposed method achieves a new state-of-
the-art performance on both base and novel classes. Additionally,
the performance improvements are much larger in novel classes
compared with that in base classes. As for the performance on the
single category, our approach has the best detection performance
for most of categories except several base classes in 3-shot scenario,
such as “table” and “train”. We will give detailed analysis in the
ablation study, from the perspective of sample variance.



Table 1: Few-shot detection performance (𝐴𝑃50) for novel categories on PASCAL VOC dataset. We evaluate baselines on three different novel
sets. Our approach consistently outperforms other methods by a large margin. ∗𝑛Reported results are averaged over 𝑛 repeated runs.

Novel Set 1 Novel Set 2 Novel Set 3Method / Shot 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10
LSTD [5] 8.2 11.0 12.4 29.1 38.5 11.4 3.8 5.0 15.8 31.0 12.6 8.5 15.0 27.3 36.3
FSRW [20] 14.8 15.5 26.7 33.9 47.2 15.7 15.2 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9

MetaDet∗5 [42] 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1
Meta R-CNN∗5 [46] 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1
TFA∗30 w/ fc [40] 22.9 34.5 40.4 46.7 52.0 16.9 26.4 30.5 34.6 39.7 15.7 27.2 34.7 40.8 44.6
TFA∗30 w/ cos [40] 25.3 36.4 42.1 47.9 52.8 18.3 27.5 30.9 34.1 39.5 17.9 27.2 34.3 40.8 45.6
FSDetView∗10 [44] 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6
AFD-Net∗30 (Ours) 31.7 41.4 49.5 54.6 60.3 23.2 31.3 38.4 41.9 46.9 27.4 35.3 41.7 46.7 53.5

Table 2: Few-shot detection performance (𝐴𝑃50) for base and novel categories on Novel Set 1 of PASCAL VOC dataset. Our approach outper-
forms other methods on both base and novel classes. ∗𝑛Reported results are averaged over 𝑛 repeated runs.

Shot Method Novel classes Base classes mAPbird bus cow mbike sofa mean aero bike boat bottle car cat chair table dog horse person plant sheep train tv mean

3

LSTD [5] 23.1 22.6 15.9 0.4 0.0 12.4 74.8 68.7 57.1 44.1 78.0 83.4 46.9 64.0 78.7 79.1 70.1 39.2 58.1 79.8 71.9 66.3 52.8
FSRW [20] 26.1 19.1 40.7 20.4 27.1 26.7 73.6 73.1 56.7 41.6 76.1 78.7 42.6 66.8 72.0 77.7 68.5 42.0 57.1 74.7 70.7 64.8 55.2

Meta R-CNN∗5 [46] 30.1 44.6 50.8 38.8 10.7 35.0 67.6 70.5 59.8 50.0 75.7 81.4 44.9 57.7 76.3 74.9 76.9 34.7 58.7 74.7 67.8 64.8 57.3
AFD-Net∗30 (Ours) 51.8 60.3 43.8 60.5 31.3 49.5 69.9 75.2 56.9 57.9 79.5 84.2 47.9 60.5 82.4 76.7 77.4 40.8 68.6 75.2 71.0 68.3 63.6

10

LSTD [5] 22.8 52.5 31.3 45.6 40.3 38.5 70.9 71.3 59.8 41.1 77.1 81.9 45.1 67.2 78.0 78.9 70.7 41.6 63.8 79.7 66.8 66.3 59.4
FSRW [20] 30.0 62.7 43.2 60.6 39.6 47.2 65.3 73.5 54.7 39.5 75.7 81.1 35.3 62.5 72.8 78.8 68.6 41.5 59.2 76.2 69.2 63.6 59.5

Meta R-CNN∗5 [46] 52.5 55.9 52.7 54.6 41.6 51.5 68.1 73.9 59.8 54.2 80.1 82.9 48.8 62.8 80.1 81.4 77.2 37.2 65.7 75.8 70.6 67.9 63.8
AFD-Net∗30 (Ours) 62.7 67.9 60.2 68.1 42.7 60.3 73.0 77.9 60.4 59.7 81.8 85.4 51.0 66.5 84.7 80.3 78.1 44.6 70.1 77.6 72.7 70.9 68.3

Table 3: Few-shot detection performance for novel categories on MS COCO dataset. Our approach achieves an significant improvement over
other methods with notably smaller standard deviations. ∗𝑛Reported results are averaged over 𝑛 repeated runs.

Average Precision Average RecallShots Method 0.5:0.95 0.5 0.75 S M L 1 10 100 S M L
LSTD [5] 3.2 8.1 2.1 0.9 2.0 6.5 7.8 10.4 10.4 1.1 5.6 19.6
FSRW [20] 5.6 12.3 4.6 0.9 3.5 10.5 10.1 14.3 14.4 1.5 8.4 28.2

MetaDet∗5 [42] 7.1 14.6 6.1 1.0 4.1 12.2 11.9 15.1 15.5 1.7 9.7 30.1
Meta R-CNN∗5 [46] 8.7 19.1 6.6 2.3 7.7 14.0 12.6 17.8 17.9 7.8 15.6 27.2
TFA∗10 w/ fc [40] 9.1 ± 0.5 17.3±1.0 8.5±0.5 - - - - - - - - -
TFA∗10 w/ cos [40] 9.1 ± 0.5 17.1±1.1 8.8±0.5 - - - - - - - - -

FSOD [11] 11.1 20.4 10.6 - - - - - - - - -
FSDetView∗10 [44] 12.5 27.3 9.8 2.5 13.8 19.9 20.0 25.5 25.7 7.5 27.6 38.9

10

AFD-Net∗10 (Ours) 17.3 ± 0.1 33.4 ± 0.2 16.6 ±0.1 5.7±0.2 18.6±0.2 27.4±0.2 24.5±0.1 31.5±0.1 31.8±0.1 12.7±0.2 33.8±0.1 45.8±0.2
LSTD [5] 6.7 15.8 5.1 0.4 2.9 12.3 10.9 14.3 14.3 0.9 7.1 27.0
FSRW [20] 9.1 19.0 7.6 0.8 4.9 16.8 13.2 17.7 17.8 1.5 10.4 33.5

MetaDet∗5 [42] 11.3 21.7 8.1 1.1 6.2 17.3 14.5 18.9 19.2 1.8 11.1 34.4
Meta R-CNN∗5 [46] 12.4 25.3 10.8 2.8 11.6 19.0 15.0 21.4 21.7 8.6 20.0 32.1
TFA∗10 w/fc [40] 12.0±0.4 22.2±0.6 11.8±0.4 - - - - - - - - -
TFA∗10 w/cos [40] 12.1±0.4 22.0±0.7 12.0±0.5 - - - - - - - - -
FSDetView∗10 [44] 14.7 30.6 12.2 3.2 15.2 23.8 22.0 28.2 28.4 8.3 30.3 42.1

30

AFD-Net∗10 (Ours) 19.1±0.04 35.8±0.1 18.7±0.2 5.7±0.1 20.6±0.1 29.2±0.2 26.0±0.2 33.4±0.2 33.7±0.2 14.3±0.1 36.1±0.2 47.6±0.4

MS COCO.We show the evaluation of 20 novel classes on MS
COCO in 10/30-shot setups, and report the standard COCO-style
metrics in Table 3. Obviously, our approach significantly outper-
forms recent state-of-the-art methods with much smaller confi-
dence intervals, despite the complexity and a huge amount of data
in MS COCO, verifying its effectiveness and robustness. Note that
our method performs much better in detection of small objects in
comparison with other state-of-the-arts, indicating that our pro-
posed network indeed enhances feature representations and obtains
high-quality image information.

In Fig. 5, we provide the comparison of qualitative 30-shot de-
tection results between our approach and baseline method FS-
DetView [44]. We can find that our method performs better on
detecting small and occluded objects, e.g., the first two columns.
This is consistent with the observations from Table 3. Besides, our
model provides accurate locations of target objects, e.g., the third
column. The last two columns show the ability of our approach in
classifying objects from both base and novel categories, including
correctly classifying target objects and avoiding duplicate estima-
tions of object categories.



Ba
se

Cl
as
se
s

Ba
se
lin

e
O
ur
s

N
ov
el
Cl
as
se
s

Ba
se
lin

e
O
ur
s

Figure 5: Comparison of qualitative 30-shot detection results on base and novel classes from MS COCO between our approach and baseline
method FSDetView [44].
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Figure 6: Performance visualization of our proposed Adaptive Fu-
sionMechanism.Weplot values of four learnableweights, i.e., 𝜆𝑐𝑙𝑠𝑐𝑜𝑛𝑣 ,
𝜆𝑐𝑙𝑠
𝑓 𝑐

, 𝜆𝑟𝑒𝑔𝑐𝑜𝑛𝑣 , and 𝜆
𝑟𝑒𝑔

𝑓 𝑐
against number of training iterations on: (a)

PASCAL VOC in the first split, (b) MS COCO, in the base training
phase. cls-conv, cls-fc, reg-conv, reg-fc indicate 𝜆𝑐𝑙𝑠𝑐𝑜𝑛𝑣 , 𝜆𝑐𝑙𝑠𝑓 𝑐

, 𝜆𝑟𝑒𝑔𝑐𝑜𝑛𝑣 , and

𝜆
𝑟𝑒𝑔

𝑓 𝑐
, respectively.

4.3 Feature Fusion Analysis
In this subsection, we discuss the performance of Adaptive Fu-
sion Mechanism. We introduce four learnable weights, i.e., 𝜆𝑐𝑙𝑠𝑐𝑜𝑛𝑣 ,
𝜆𝑐𝑙𝑠
𝑓 𝑐

, 𝜆𝑟𝑒𝑔𝑐𝑜𝑛𝑣 , and 𝜆
𝑟𝑒𝑔

𝑓 𝑐
in Eq. (3), to control the contributions of en-

coded conv and fc feature components from two paths to the fused
output features in Dual Query Encoder and Dual Attention Gen-
erator shown in Fig.3. Obviously, larger 𝜆 𝑗

𝑖
with 𝑖 ∈ {conv, fc}, 𝑗 ∈

{cls, reg} indicates that extractor 𝑖 dominates the subtask 𝑗 in fea-
ture extraction.

We visualize the variation of these four weights in base training
phase (𝐾 = 200) on PASCAL VOC and MS COCO benchmarks, as
shown in Fig. 6. As for PASCAL VOC, it is illustrated that the stable

value of 𝜆𝑐𝑙𝑠𝑐𝑜𝑛𝑣 is larger than 𝜆𝑐𝑙𝑠𝑓 𝑐 while 𝜆𝑟𝑒𝑔𝑐𝑜𝑛𝑣 is lower compared

with 𝜆𝑟𝑒𝑔
𝑓 𝑐

, representing that conv extractor dominates the classifica-
tion subtask but is less important than fc extractor in bounding box
regression in this experimental setup and implementation. Besides,
we note that 𝜆𝑐𝑙𝑠

𝑖
with 𝑖 ∈ {conv, fc} in classification subtask is

larger than 𝜆𝑟𝑒𝑔
𝑖

with 𝑖 ∈ {conv, fc} in regression subtask respec-
tively, indicating that performing classification generally needs
more information than location estimation. When it comes to MS
COCO, conv extractor consistently leads the classification subtask
while these two kinds of extractors almost have equal contributions
to bounding box regression. Besides, after stabilizing, all these four
weights are larger than those in the experiments on PASCAL VOC
respectively, showing that training on complex MS COCO dataset
generally requires richer information. Analysis above validates
the efficacy of Adaptive Fusion Mechanism when facing distinct
subtasks and datasets.

4.4 Ablation Study
In this subsection, we conduct relative ablations in 10-shot scenario
on the first base/novel split of PASCAL VOC. Results in all exper-
iments are obtained by averaging over 10 random runs, as 10 is
sufficient to provide statistically stable results in this scenario.

Effect of Feature Fusion.To examine the effectiveness of Adap-
tive Fusion Mechanism in the design of Dual Query Encoder and
Dual Attention Generator, we compare the performance of various
feature fusion combinations and report 𝐴𝑃50 of novel classes in
10-shot setup, as shown in Tabel 4, where 𝑗-𝑖, 𝑗 ∈ {cls, reg}, 𝑖 ∈
{conv, fc} in the header represents applying extractor i in subtask
j. The existence of two extractors within a branch indicates that
the information fusion is applied (e.g., the regression branch in



Figure 7: Ablation study on effect of multiple runs on PASCAL VOC. We plot cumulative means of𝐴𝑃50 with 95% confidence intervals across
30 repeated runs on novel classes of three novel sets. The means and variances have been stable before 30 runs.

Table 4: Ablation study on effect of feature fusion. Comparison re-
sults among various fusion combinations in terms of𝐴𝑃50 for novel
categories on Novel Set 1 of PASCAL VOC dataset are reported.

Ablation cls-conv cls-fc reg-conv reg-fc Novel 𝐴𝑃50
1 ✓ ✓ 49.9
2 ✓ ✓ 56.2
3 ✓ ✓ 55.5
4 ✓ ✓ 55.1
5 ✓ ✓ ✓ 59.1
6 ✓ ✓ ✓ 57.6
7 ✓ ✓ ✓ 59.0
8 ✓ ✓ ✓ ✓ 60.7

Table 5: Ablation study on effect of meta losses. Comparison re-
sults among various meta loss combinations in terms of 𝐴𝑃50 for
both base and novel categories on Novel Set 1 of PASCAL VOC
dataset are reported.

Ablation meta-cls meta-reg Base 𝐴𝑃50 Novel 𝐴𝑃50
1 70.8 57.3
2 ✓ 70.3 58.9
3 ✓ 70.8 58.4
4 ✓ ✓ 70.6 60.7

Fig.3 can be represented by “reg-fc & reg-conv”). In Ablation 1-4,
we adopt only one extractor in each branch without feature fusion.
Among these four experiments, “cls-conv & reg-fc” achieves the
best performance, while “cls-fc & reg-conv” performs the worst,
indicating that conv extractor prefers classification and fc extractor
is more suitable for bounding box regression in the first split on
PASCAL VOC dataset. This is consistent with the observations in
Section 4.3. In Ablation 5-7, feature fusion is adopted in only one
branch and boost the detection performance, suggesting that lever-
aging information from unfocused tasks is essential in each subtask.
Applying feature fusion in both branches, as shown in Ablation 8,
obtains the best performance, further verifying the effectiveness of
Adaptive Fusion Mechanism.

Effect of Meta Losses. In our approach, we further divide meta
loss 𝐿𝑚𝑒𝑡𝑎 introduced in [46] into task-specific meta losses, i.e.,
𝐿𝑚𝑒𝑡𝑎-𝑐𝑙𝑠 for classification and 𝐿𝑚𝑒𝑡𝑎-𝑟𝑒𝑔 for bounding box regres-
sion. Similarly, we evaluate the effect of meta losses in Table 5.
Obviously, both the introduced 𝐿𝑚𝑒𝑡𝑎-𝑐𝑙𝑠 and 𝐿𝑚𝑒𝑡𝑎-𝑟𝑒𝑔 can indeed
improve the performance on novel classes. Besides, they provide
similar contributions individually. Interestingly, the existence of
meta losses almost have no positive influence on the detection of
base classes. We believe the reason is that, the few-shot detector
has already been able to detect objects from base classes after base
training phase with abundant annotations, despite the lack of meta
losses.

Figure 8: Ablation study on effect of multiple runs on MS COCO.
We plot cumulative means with 95% confidence intervals across 10
repeated runs on novel classes. The means are stable and the vari-
ances are notably small, consistently.

Effect of Multiple Runs. In this ablation study, we focus on
the effect of repeated runs in obtaining reported results on PASCAL
VOC and MS COCO, as shown in Fig. 7 and Fig. 8, respectively.
For PASCAL VOC, the confidence intervals are large across the
first few runs (even up to 10 runs, in 3-shot setting), indicating the
existence of large sample variance in low-shot scenarios. Therefore,
overestimating the actual performance would occur when using
only the first few random samples of training shots, as can be ob-
served in the plot of 2-shot case in Fig. 7, leading to the unreliability
of performance comparisons. In this paper, we adopt 30 repeated
runs to obtain stable reported results with smaller variance. For
MS COCO, we can observe from Fig. 8 that, the cumulative means
are stable and the confidence intervals are quite small consistently,
indicating the robustness of our model. In this paper, we adopt 10
repeated runs for fair comparisons with other methods.

5 CONCLUSION
This work targets the problem of few-shot object detection (FSOD).
We carefully analyzed the characteristics of FSOD and presented
that a general few-shot detector should: 1) explicitly decompose the
process of category classification and localization; 2) utilize infor-
mation from both subtasks for enhancing feature representations.
Based on our observations, we proposed Adaptive Fully-Dual Net-
work (AFD-Net) that performs two subtasks separately, involving
feature representations, model reweighting, and state estimation.
For the acquisition of enhanced features, we proposed a novel Adap-
tive Fusion Mechanism to guide the design of the feature extractor.
Despite its simplicity, our approach achieved significant perfor-
mance on multiple benchmarks, demonstrating its effectiveness
and generalization ability. It is worth noting that, our proposed
framework and feature fusion mechanism are general and simple,
thus can be potentially applied into other two-stage models, and
the performance could be further improved with carefully designed
architectures.
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