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ABSTRACT
We propose a novel implicit feature refinement module for high-
quality instance segmentation. Existing image/video instance seg-
mentation methods rely on explicitly stacked convolutions to refine
instance features before the final prediction. In this paper, we first
give an empirical comparison of different refinement strategies,
which reveals that the widely-used four consecutive convolutions
are not necessary. As an alternative, weight-sharing convolution
blocks provides competitive performance. When such block is iter-
ated for infinite times, the block output will eventually converge
to an equilibrium state. Based on this observation, the implicit
feature refinement (IFR) is developed by constructing an implicit
function. The equilibrium state of instance features can be obtained
by fixed-point iteration via a simulated infinite-depth network.
Our IFR enjoys several advantages: 1) simulates an infinite-depth
refinement network while only requiring parameters of single resid-
ual block; 2) produces high-level equilibrium instance features of
global receptive field; 3) serves as a plug-and-play general mod-
ule easily extended to most object recognition frameworks. Ex-
periments on the COCO and YouTube-VIS benchmarks show that
our IFR achieves improved performance on state-of-the-art im-
age/video instance segmentation frameworks, while reducing the
parameter burden (e.g. 1% AP improvement on Mask R-CNN with
only 30.0% parameters in mask head). Code is made available at
https://github.com/lufanma/IFR.git.
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1 INTRODUCTION
Owing to the great success of deep convolutional networks [12, 19,
28], object recognition tasks, such as object detection and instance
segmentation, have achieved impressive progress during the last
decade. Mainstream methods follow the "backbone with head" par-
adigm [11, 18, 25, 40]. The backbone network [19], pretrained on
ImageNet, extracts features from input images. Then, the extracted
features are fed into the head network to generate predictions for
different recognition tasks, i.e., classification, box regression and
mask segmentation.

Most image/video instance segmentation [9, 18, 20, 47] and ob-
ject detection approaches [25, 40] share similar design of the head
network. Specifically, four consecutive 3 × 3 convolutions are usu-
ally stacked in the head network to refine coarse instance features
(see Fig. 1(a)) before the final prediction. Indeed, such explicit refine-
ment design enlarges the receptive field and improves the semantic
level. However, simply stacking weight-independent convolutions
have some limits. The receptive field obtained is still limited under
the explicit setting since it has been proven that the effective re-
ceptive field is usually much more smaller compared to theoretical
receptive field. Also, such method tends to forget the original in-
stance signal, suffering from the degraded performance and large
parameter burden as the number of convolutions increases.

One question may arise: is it possible to replace such stacked 3×3
convolutions with a light-weight module while achieving promising
performance?One direct solution is tomake these four convolutions
weight-sharing (see Fig. 1(b)). To demonstrate it, we first give an
empirical comparison with the weight-sharing strategy. We find
that the widely-used four weight-independent 3×3 convolutions are
not necessary in the head network. In contrast, the weight-sharing
design can achieve competitive performance with less parameters.

To prevent the weight-sharing network from degraded perfor-
mance, shortcut connection in ResNet [19] can be introduced (see
Fig. 1(c)). The shortcut path can propagate the gradients smoothly
and avoid the network forgetting original instance features. While
improving the overall segmentation performance, theweight-sharing
strategy is still restricted by limited receptive field. Therefore, we
explore a new perspective: What if refining the instance features
via a recursive network stacked with infinite blocks? An intuitive
idea is that we stack the weight-sharing blocks for infinite times.
In this way, we observe that the output of the refinement network
will eventually converge to an equilibrium state as the number of
blocks increases, which can be represented as:

𝐻∗ = 𝐹\ (𝐻∗;𝑋 ), (1)
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Figure 1: Comparison of different feature refinement strate-
gies in the mask head of Mask R-CNN [18]. (a) stacks four
weight-independent 3×3 convolutions (𝑓 1

\
-𝑓 4
\
). (b) stacks four

weight-sharing 3 × 3 convolutions 𝑓\ . (c) stacks four weight-
sharing convolution block 𝑓\ with skip connection. (d) devel-
ops the implicit feature refinement via fixed-point iteration,
where a residual block with double residual connections is
adopted as the transformation 𝐹\ .

where 𝐹\ represents the nonlinear transformation with parameters
\ .𝐻∗ and𝑋 are the equilibrium instance feature and original coarse
instance feature, respectively.

Inspired by DEQ [3, 5], we introduce the implicit feature re-
finement (IFR) to enhance feature representation via a simulated
infinite-depth network, where the transformation 𝐹\ is employed
to build the implicit model. Based on the Eq. 1, we can tackle the
instance feature refinement as a fixed-point iteration problem. For
the explicit design of transformation 𝐹\ , we simply adopt a sin-
gle residual block with double residual connections to reduce the
overall parameters of mask head (see Fig. 1(d)). For the forward
computation, several black-box Root-Find solvers (e.g., Broyden
method [5]) can be adopted to solve the root 𝐻∗ of the equilib-
rium equation presented in Eq. 1. While for the back-propagating,
gradients are computed based on the equilibrium feature solved.

Different from the explicitly stacked convolutions, IFR enjoys
several advantages: 1) Simulates an infinite-depth feature refine-
ment network only with parameters of a single residual block; 2)
Produces the equilibrium instance features of large receptive field,
which is beneficial to instance segmentation. It should be noted that
IFR can be easily extended to the head network of most image/video
instance segmentation frameworks, including both two-stage and
one-stage approaches.

Extensive experiments on the COCO benchmark [26] demon-
strate that our proposed IFR benefits most image instance segmenta-
tion frameworks. For example, it improves the segmentation AP by
1.0% on Mask R-CNN [18] with ResNet-50-FPN backbone. Further-
more, it is also robust and flexible for video instance segmentation
on YouTube-VIS [47] benchmark, achieving promising improve-
ments on the state-of-the-art frameworks. Also, it can be applied
to several one-stage object detectors with slight modifications.

Our main contributions are summarized as:

• Empirical experiments are conducted to analyze the effect
of multiple stacked convolutions on refining the instance
features.

• Implicit feature refinement (IFR), which only requires param-
eters of a residual block, is proposed to produce high-level
equilibrium instance features of global receptive field by
fixed-point iteration.

• Double residual network is further introduced to prevent
the network from degraded performance and propagate the
gradients smoothly.

• The proposed IFR is exactly a general plug-and-play module
that can be easily extended to most instance segmentation
frameworks and serves as a strong alternative of explicitly
stacked convolutions in the head network.

2 RELATEDWORK
2.1 Implicit Modeling
The implicit models aim to solve a fixed-point equation of hidden
states in a recursive feedforward neural networks [16]. Recurrent
back-propagation algorithms [1, 23, 31] utilized implicit differentia-
tion techniques to train recurrent systems. Recently, implicit models
have attracted attention in network design. Neural ODEs [13, 17]
implicitly models a recursive residual block with ODE solvers to
simulate an infinite-depth ResNet, while [35] provides a systematic
analysis of the stabilities properties in the recurrent backpropaga-
tion algorithm. For sequence modeling, DEQ [3] employs black-box
root solvers to find the fixed point equilibrium, while TrellisNet [4]
designs truncated recurrent networks in a weight-tied way. Analo-
gously, RAFT [38] iteratively updates the fixed flow field through
a lot of modified GRU units. Based on [3], Bai further develops
a multiscale deep equilibrium model (MDEQ) [5] for both image
classification and semantic segmentation while i-FPN [41] presents
an implicit feature pyramid network for object detection.

2.2 Instance Segmentation
Image Instance Segmentation: Existing methods can be divided
into two groups. Two-stage methods [11, 14, 18, 20–22, 30] follow
the “detect-then-segment” paradigm. Typically, Mask R-CNN [18]
extends Faster R-CNN [33] by adding a FCN mask branch. Based
on [18], Mask Scoring R-CNN [20] further addresses the misalign-
ment problem between the mask quality and classification score.
HTC [11] interweaves the box and mask branches in a multi-stage
cascaded manner. PointRend [22] refines the boundary details by
adaptively sampling points. On the other hand, one-stage meth-
ods [29, 39, 42, 43, 46] incorporate the mask prediction into sim-
ple FCN-like framework without RoI cropping. PolarMask [46]



encodes the instance mask by the instance contour in polar coordi-
nates. SOLO [42] directly outputs full instance masks by locations
without detection while CondInst [39] introduces the conditional
convolutions to predict the instance-aware masks.
Video instance segmentation: VIS requires simultaneous detec-
tion, segmentation, and tracking of instances across frames in
videos. MaskTrack R-CNN [47] extends the Mask R-CNN [18]
with a new tracking branch and external memory that saves the
features of instances across multiple frames. Based on HTC [11],
Maskprop [6] re-uses the predicted masks to crop the extracted
features, then propagates them temporally to improve the segmen-
tation and tracking. STEm-Seg [2] proposes to model video clips
as 3D space-time volumes and then separates object instances by
clustering learned embeddings. Wang et al. [44] proposes an end-
to-end framework VisTR built upon Transformers. In this paper,
we present the implicit feature refinement to produce high-level
segmentation representations for both two-stage and one-stage
methods.

2.3 Object Detection
Existing object detection approaches can also be summarized into
two categories. Two-stage detectors [8, 33, 36] first generate the
foreground proposals by region proposal network (RPN). The pro-
posals generated are further classified and regressed in the second
stage. In contrast, one-stage detectors [7, 15, 25, 27, 32, 40, 49]
directly predicts the locations and categories of objects in a single-
shot manner. Among these methods, anchor-based frameworks,
such as SSD [27], YOLO [7, 32], RetinaNet [25] perform the predic-
tions on pre-defined anchors, which densely cover the spatial posi-
tions. Anchor-free approaches [15, 40, 49] replace the hand-crafted
anchors by reference points. Recently, end-to-end detectors [10,
37, 50] remove the hand-crafted anchors and non-maximum sup-
pression via bipartite matching. The implicit feature refinement
introduced in this paper can be used to refine the instance features
of one-stage object detectors as well.

3 METHODOLOGY
In this section, we first provide analysis on the explicit feature refine-
ment with multiple stacked convolutions. Then the implicit feature
refinement that implicitly refines the instance features for instance
segmentation is described. Double residual network (Sec. 3.3) and
hybrid optimization (Sec. 3.4) employed in the implicit module are
further introduced. Finally, we further extend the implicit refine-
ment module to the head network of one-stage object detectors.

3.1 Analysis on Explicit Feature Refinement
For two-stage instance segmentation, existing methods [18, 20, 22]
leverage multiple 3 × 3 convolutions to refine RoI features in the
head network (e.g., four 3 × 3 convolutions with 256 channels in
Mask R-CNN). Formally, such explicit feature refinement can be
represented as:

𝐻 = 𝑓𝑀
\

(· · · 𝑓 2
\
(𝑓 1
\
(𝑋 ))), (2)

where 𝑋 ∈ 𝑅14×14×256 is the RoI feature cropped by RoIAlign. 𝑀
is the total number of stacked convolutions. 𝑓 𝑖

\
represents the 𝑖𝑡ℎ

3 × 3 convolution with parameter \ . 𝐻 is the output feature refined
by stacked convolutions.

To demonstrate the effect of stacked convolutions on feature
refinement, we perform a simple ablation study on the number of
stacked convolutions on the COCO [26] benchmark. As shown in
Tab. 1, the experiments are conducted on Mask R-CNN [18] with
ResNet-50 backbone and tested on COCO val2017 set. The ablation
results show continuous improvements as the number of stacked
convolutions increases. Therefore, such stacked convolutions im-
prove the segmentation performance due to the enlarged receptive
field and semantic levels of RoI features, revealing their superiority
on feature refinement. For more details, please kindly refer to the
visualization in Fig. 4.

However, these stacked convolutions lead to large parameter
burden simultaneously. As mentioned in Sec. 1, one direct way to
reduce the overall parameters is to share the weights across the
stacked convolutions. Tab. 1 also reveals that weight-sharing convo-
lutions can achieve the same segmentation performance compared
to the weight-independent counterpart. Therefore, the stacked four
3× 3 convolutions are not necessary for the mask head network. In-
stead, a single weight-sharing block enables the same performance
with the parameters of one convolution layer.

Table 1: The effect of stacked 3× 3 convolutions in the mask
head of Mask R-CNN [18] on segmentation performance.
∗ indicates the weight-sharing version of stacked convolu-
tions and achieves the same performance compared to the
weight-independent counterpart.

Num. of convs 0 1 2 3 4 4∗

mAP 30.4 32.7 34.0 34.8 35.0 35.0

3.2 Implicit Feature Refinement
As depicted in Fig. 2, the image 𝐼 is first fed to the feature extractor,
which includes backbone (e.g. ResNet-50 [19] ) and FPN [24], to
produce the pyramidal multi-scale features {𝑃3, 𝑃4, ..., 𝑃7}. For two-
stage methods (e.g. Mask R-CNN [18]), bounding boxes generated
from the detection branch (ignored in the Fig. 2) together with the
corresponding pyramid feature 𝑃𝑖 perform the RoIAlign to generate
the fixed-size (e.g. 14 × 14) instance features for the mask branch
(see Fig. 2(a)). For one-stage approaches (e.g. CondInst [39]), the
mask branch tends to employ the whole feature of high resolu-
tion level 𝑃3 to directly produce the full masks without RoIAlign
(see Fig. 2(b)). For the mask head network in both one-stage and
two-stage frameworks, the RoI feature or the whole feature will
pass through multiple stacked 3 × 3 convolutions for feature re-
finement. Afterwards, the refined features are used to produce the
mask predictions by specific mask predictors. The proposed implicit
feature refinement module can be integrated into both two-stage
and one-stage instance segmentation frameworks to replace the
stacked convolutions in the mask head.

The implicit feature refinement module (see Fig. 2(c)) has two
inputs: instance feature (or whole feature)𝑋 and the zero-initialized
hidden feature 𝐻0. Taking the two-stage Mask R-CNN as an ex-
ample, the unrolling process of implicit refinement module can be



Figure 2: The overall architectures of one stage and two-stage instance segmentation with the proposed implicit feature re-
finement. Note that the implicit refinement module contains only one residual block with double residual connections.

formulated as:
𝐻 𝑖+1 = 𝐹\ (𝐻 𝑖 ;𝑋 ), 𝑖 = 0, 1, · · · , 𝑁 − 1, (3)

where 𝑋 ∈ 𝑅14×14×256 represents the instance feature cropped by
RoIAlign. 𝐹\ is the transformation block, which is shared for all
stacked blocks. 𝐻 𝑖+1 denotes the output of the 𝑖𝑡ℎ transformation
block. 𝑁 is the overall number of stacked transformation blocks.

When such unrolling process is repeated for infinite times, the
IFR module exactly simulates an infinite-depth network. Intuitively,
as we perform the transformation 𝐹\ for infinite times (𝑁 → +∞),
the network output will eventually reach the equilibrium state as
formulated in Eq. 4.

lim
𝑖→+∞

𝐹\ (𝐻 𝑖 ;𝑋 ) = 𝐹\ (𝐻∗;𝑋 ) = 𝐻∗, (4)

where 𝐻∗ is the equilibrium state of hidden instance feature. Based
on this analysis, the optimal instance feature predicted by our im-
plicit module is exactly equivalent to the fixed point 𝐻∗ of Eq. 4.
Besides, the fixed point can be directly solved by several black-box
Root-Find solvers rather than explicitly unrolling the transforma-
tion blocks.

3.3 Double Residual Network
Intuitively, the transformation block 𝐹\ is a key component since it
is used to construct the implicit function that interacts the instance
feature with hidden feature. Therefore, the explicit design of 𝐹\
determines the capability of feature refinement.

Inspired by [19], we introduce a simple yet effective strategy,
called double residual connection, for the transformation 𝐹\ . Dou-
ble residual connections are designed to avoid gradient vanishing
of the simulated infinite-depth network. Its explicit design is illus-
trated in Fig. 2. The input feature 𝑋 and the initial hidden feature
𝐻 𝑖 are first added. Then the summed features of 𝑋 and 𝐻0 pass
through through a well-designed residual block [19] with residual

connection. Note that the addition between 𝑋 and 𝐻0 perform an-
other residual connection implicitly. Overall, the double residual
network 𝐹\ can be formally expressed as:

𝐹\ (𝐻 𝑖 ;𝑋 ) =𝑊2 (𝜎 (𝑊1 (𝑅))) +𝑊𝑠 (𝑅), (5)

where 𝜎 is the activation function ReLU. 𝑊𝑠 performs a linear
identity mapping in the shortcut path.𝑊 1 and𝑊 2 denote an inte-
grated layer consisting of a 3 × 3 convolution and normalization,
where group normalization (GN) [45] is adopted for stable training.
𝑅 = 𝐻0 + 𝑋 is the summed features of 𝑋 and 𝐻0.

To this end, we can reformulate the feature refinement as implicit
residual learning with respect to both the instance feature𝑋 and the
summed feature 𝑅. Owing to the advantage of residual learning, our
double residual connection strategy effectively eases the training
of network, thus enhancing the feature refinement for instance
segmentation. Note that our IFR module only contains parameters
of a single residual block, which are much fewer compared to the
stacked weight-independent convolutions.

3.4 Hybrid Optimization
In this section, we describe the hybrid optimization process of the
instance segmentation framework with the proposed IFR.
Explicit Optimization: For the instance segmentation framework
with implicit feature refinement, only the IFR part obtains the op-
timal features based on the fixed-point iteration. Therefore, the
rest networks (i.e., feature extractor, mask predictor) still follow
the explicit optimization. The explicit optimization includes the
forward process by the explicit network and backward propagation
via the chain rule.
Implicit Optimization: The equilibrium state presented in Eq. 4
can be directly reformulated as a root-finding problem:

Φ\ (𝐻∗;𝑋 ) = 𝐹\ (𝐻∗;𝑋 ) − 𝐻∗ = 0, (6)



where 𝐻∗ is the root that satisfies Φ\ (𝐻∗;𝑋 ) = 0. Moreover, it is
essentially the fixed point that represents the equilibrium hidden
feature to be solved.

For the forward computation, several black-box root-solvers
(e.g., Newton, quasi-Newton methods) can be employed to find the
root 𝐻∗ [5]. While for the backward propagation, we follow [3]
and leverage the equilibrium hidden feature 𝐻∗ solved above to
compute the gradients of both the parameters \ of 𝐹\ and the input
feature 𝑋 . Consider the segmentation loss as:

𝐿(�̂�,𝑚) = 𝐿(𝑓 (𝐻∗),𝑚), (7)

where �̂�, 𝑚 are the predicted mask and ground-truth mask, re-
spectively. 𝑓 (·) represents any subsequent mask predictor. The
backward gradients with respect to (\ or 𝑋 ) can be calculated by:

𝜕𝐿

𝜕(·) =
𝜕𝐿

𝜕𝐻∗ (−𝐽
−1
Φ\

|𝐻 ∗ ) 𝜕𝐹\ (𝐻
∗;𝑋 )

𝜕(·) , (8)

where 𝐽−1Φ\
|𝐻 ∗ denotes the Jacobian inverse of Φ\ at the equilibrium

state 𝐻∗.

3.5 Convergence Analysis
For the convergence analysis of infinite loop presented in Eq. 4, we
first simulated the unrolling process by 100k steps given a random
variable input and the double residual network. We calculated the
norm difference between adjacent steps and found that the norm
difference will gradually converge to zero. Then we calculated the
spectral radius by the Jacobian matrix and the spectral radius of
each step is always less than one, which guarantees the convergence
of equilibrium state. Since our IFR is built on Eq. 1, therefore the root
of Eq. 1 solved will be approximately same as the equilibrium state.
Given the same image, we compare the norm difference between
the features generated by our IFR module and the infinite loop,
where the difference between them is less than 𝑒−8.

3.6 Extensions on Object Detectors
Our implicit refinement module can also be extended to object
detectors with slight modifications. Notably, most one-stage object
detectors tend to adopt multiple stacked convolutions in the head
network to refine whole features for the final predictions [15, 25,
40, 49]. To this end, our IFR can be directly integrated into the head
network to replace the explicitly stacked convolutions (e.g., four
consecutive 3 × 3 convolutions involved in RetinaNet head [25]).

Different from the implicit module plugged in Mask R-CNN,
the input of implicit refinement module is each pyramidal feature
𝑋

′ ∈ 𝑅ℎ𝑖×𝑤𝑖×𝐶 from FPN [24], where ℎ𝑖 and𝑤𝑖 are the height and
width of the 𝑖𝑡ℎ level feature map, respectively. The equilibrium
hidden feature 𝐻∗ output by the implicit module is then fed into
the subsequent classification and regression predictors.

4 EXPERIMENTS
Weevaluate ourmethod on the challenging COCO [26] and YouTube-
VIS [47] benchmarks. We present a thorough performance com-
parison with baselines on both two-stage and one-stage instance
segmentation approaches along with detailed ablation studies.

4.1 Datasets and Metrics
COCO [26]: The COCO benchmark contains 118k images for train-
ing, 5k images for validation and 20k images for testing, involving
80 object categories with instance-level segmentation annotations.
Following [18, 25, 39, 40], our models are trained on train2017 set.
We report the results on val2017 set for ablation study and com-
parison with the baselines. For evaluation, we follow the standard
COCO metrics including AP, AP50, AP75, and AP𝑠 , AP𝑚 , AP𝑙 .
YouTube-VIS [47]: YouTube-VIS is a large-scale video instance seg-
mentation benchmark. It consists of 2,883 high-resolution YouTube
videos, a 40-category label set, 4,883 video instances, and 131k high-
quality instance masks. Following [9, 47], evaluation metrics are
AP, AP50, AP75, AR1, AR10.

4.2 Implementation Details
We employ the implicit refinement module to replace stacked con-
volutions in different instance segmentation frameworks. The back-
bone network is pretrained on ImageNet dataset while the parame-
ters of FPN is randomly initialized. For the parameters of transfor-
mation block, we initialize them as in [18]. The hidden features 𝐻0

are initialized to zeros. Following [18, 25, 40, 42], the input image
from COCO is resized such that the shorter side is in the range of
[640, 800] and the longer side is less or equal to 1333. In testing
phase, the shorter side is set to 800. For the YouTube-VIS [47] bench-
mark, input size is set as 640 × 360. All the models are trained over
8 GPUs using stochastic gradient descent (SGD) with a mini-batch
of 16 for 90k (1x) iterations. The initial learning rate is 0.01 and
reduced by a factor of 0.1 at 60k and 80k iterations, respectively. The
warm-up strategy is adopted for the first 1k iterations during the
training process. The forward and backward iterations of Broyden
root-solver are all set to 15. In addition, weight normalization [34]
is adopted to stabilize the training process.

4.3 Results on Image Instance Segmentation
We first evaluate our IFR on the state-of-the-art two-stage and
one-stage instance segmentation frameworks.
Two-Stage Methods: Tab. 2 shows the performance comparison
between stacked convolutions and our IFR on two-stage instance
segmentation frameworks. For all the given approaches, our IFR
outperforms the stacked convolutions with less parameters. These
results show the effectiveness of our IFR even when deploying on
the state-of-the-art instance segmentation approaches, e.g. BMask
R-CNN [14]. Compared to the Mask Scoring R-CNN with stacked
convolutions, Mask Scoring R-CNN integrated with IFR improves
+1.2% and +1.0% on large (AP𝑙 ) and medium (AP𝑚) objects. The
results reveal that our IFR can produce high-level equilibrium in-
stance features of larger receptive field, owing to the fixed-point
iteration.

Fig. 3 illustrates the qualitative comparison on Mask R-CNN [18]
between the stacked four convolutions and our proposed IFR. More
visualization results are shown in Appendix A.1. Fig. 4 further
shows the comparison between the RoI features refined by stacked
convolutions and our IFR on several images from the COCO val2017
set. Specifically, Fig. 4 depicts the object of interest cropped from
input images, original RoI features produced by RoIAlign, refined
features by stacked four convolutions and our proposed IFR. From



the qualitative visualization, we can easily find that the RoI fea-
tures refined by the stacked convolutions are coarse and of limited
receptive field. On the contrary, the RoI features refined by our IFR
are much finer and of larger receptive field. It means our IFR can
further enlarge the receptive field and improve semantic levels of
RoI features.

Table 2: Performance comparison between four 3 × 3 convs
and our IFR on two-stage instance segmentation frame-
works, evaluated on COCO val2017 set. 1x (12 epochs) train-
ing strategy is adopted.

Methods AP AP50 AP75 AP𝑠 AP𝑚 AP𝑙
Mask R-CNN 35.1 56.2 37.6 16.9 37.4 50.8
w/ IFR 36.1 56.7 39.0 17.9 38.5 51.8
Cascade Mask RCNN 36.1 56.7 38.8 17.0 38.4 53.1
w/ IFR 36.6 56.7 39.5 17.1 39.0 53.9
Mask Scoring RCNN 36.4 56.4 39.1 17.2 38.7 52.0
w/ IFR 36.9 56.6 40.1 17.4 39.7 53.2
BMask R-CNN 36.6 56.7 39.4 17.3 38.8 53.8
w/ IFR 37.3 57.0 40.1 17.3 39.3 54.5
Hybrid Task Cascade 37.3 58.3 40.5 19.7 40.4 51.2
w/ IFR 37.6 58.2 40.8 19.8 40.6 51.5

One-Stage Methods: Analogously, Tab. 3 shows the performance
comparison on some one-stage instance segmentation frameworks.
The results demonstrate that our IFR is robust and also flexible for
one-stage approaches that directly outputs the full instance masks
from whole features without RoIAlign. For instance, our proposed
IFR improves the average AP by +1.0% mAP on MEInst [48]. Simi-
larly, more improvements on large-scale objects are achieved due
to the enlarged receptive field.

Table 3: Performance comparison between four 3 × 3 convs
and our IFR on one-stage instance segmentation frame-
works, evaluated onCOCO val2017 set. Except for SOLO [42]
and SOLOv2 [43], which adopt a 3x training schedule, other
models are trained with 1x schedule.

Methods AP AP50 AP75 AP𝑠 AP𝑚 AP𝑙
MEInst 31.6 53.5 33.0 15.0 34.1 45.3
w/ IFR 32.6 54.3 33.9 15.9 35.1 47.3
BlendMask 35.8 56.3 38.2 17.3 39.1 50.8
w/ IFR 36.4 56.7 39.0 17.6 39.3 52.3
SOLO 35.3 56.6 37.2 16.0 38.1 52.2
w/ IFR 35.9 56.7 38.2 14.6 39.2 53.3
SOLOv2 37.3 57.5 39.7 15.2 40.8 56.5
w/ IFR 37.6 57.8 39.9 16.0 41.2 57.3
CondInst 35.5 56.2 37.8 16.7 39.1 50.8
w/ IFR 36.0 56.6 38.3 17.2 39.2 52.0
BoxInst 30.5 52.3 30.8 13.5 33.4 45.1
w/ IFR 30.9 52.7 31.5 14.3 33.2 46.5

4.4 Results on Video Instance Segmentation
We also evaluate the effectiveness of our implicit feature refinement
on video instance segmentation. Tab. 4 shows the performance com-
parison between stacked 3 × 3 convolutions and our IFR on two

state-of-the-art video instance segmentation frameworks. Mask-
Track R-CNN [47] is a typical two-stage method while SipMask [9]
is an one-stage framework. The experimental results demonstrate
that IFR is also effective for video instance segmentation since a
strong and robust feature representation is generated by the fixed-
point iteration. Besides, our IFR provides relatively larger gains
under multi-scale training setting. It improves both the MaskTrack
R-CNN [47] and SipMask [9] by +0.9% in terms of mask accuracy.

Table 4: Performance comparison between four 3 × 3 convs
and our IFR on video instance segmentation frameworks,
evaluated on YouTube-VIS validation set. ”MST” refers to
multi-scale training. All the models are reproduced by de-
fault setting reported in [9, 47] and trained with a 1x train-
ing schedule.

Methods MST AP AP50 AP75 AR1 AR10
MaskTrack R-CNN - 29.9 50.4 31.8 31.6 35.9
w/ IFR 30.5 51.3 32.2 31.0 35.7
MaskTrack R-CNN

✓
30.5 50.7 33.2 31.6 35.9

w/ IFR 31.4 53.3 32.9 32.0 37.4
SipMask - 31.6 51.2 33.5 33.2 37.7
w/ IFR 31.9 53.0 33.6 33.9 39.6
SipMask

✓
33.7 52.6 36.9 35.1 40.7

w/ IFR 34.6 55.6 36.7 35.1 40.4

Fig. 5 shows the qualitative results of IFR enhanced SipMask
on several frames from the YouTube-VIS validation set [47]. As
illustrated, our method can accurately segment instances in each
frame and associates them across frames. More visualization results
are shown in Appendix A.2.

4.5 Results on Object Detection
We further extend IFR to the detection head of some one-stage ob-
ject detectors. Tab. 5 shows the performance comparison between
the stacked convolutions and our IFR on one-stage object detec-
tors. Compared with stacked convolutions, our IFR achieves better
performance with less parameters, especially on large-scale object
detection (AP𝑙 ). The results demonstrate that our IFR can produce
equilibrium features of global receptive field. Therefore, our IFR
can serve as a strong alternative of explicitly stacked convolutions
in many object recognition tasks.

4.6 Ablation Study
Different Refinement Strategies:We first analyse the impact of
different feature refinement strategies (explicit vs implicit). As pre-
sented in Eq. 2, the explicit feature refinement strategy stacks four
weight-independent blocks to refine RoI features. For the implicit
refinement strategy, both the unrolling and Broyden solvers can
be employed. The unrolling solver stacks the blocks in a weight-
sharing manner while the Broyden solver directly produces the
equilibrium feature via the fixed point iteration. For fair comparison,
double residual network is adopted as the basic block for different
refinement strategies. Tab. 6 shows the performance comparison on
Mask R-CNN [18], where the unrolling process iterates four blocks
with or without weight sharing. The implicit unrolling strategy
achieves the same performance (36.0 AP) compared to the explicit



Figure 3: The qualitative comparison between (a) ground-truth annotations, (b) Mask R-CNN [18], and (c) improved Mask
R-CNN with our implicit feature refinement on COCO val2017.

Figure 4: Visualization comparison of RoI features refined
by different approaches on the basis ofMask R-CNN [18]. (a)
object of interest cropped from input image. (b) coarse RoI
features cropped by RoIAlign before feature refinement. (c)
and (d) depicts the RoI features refined by stacked convolu-
tions and our IFR, respectively.

strategy with only 30.0% parameters in the mask head. In contrast,
implicit feature refinement with the Broyden solver produces 36.1
AP without explicitly iterating these unrolling blocks, since it can
directly solve out the fixed point of implicit model constructed.

Table 5: Performance comparison between four 3 × 3 convs
and our IFR on object detectors, evaluated on COCO val2017
set. 1x training strategy is adopted. For the given object de-
tectors, our IFR outperforms the four 3×3 convolutionswith
less parameters.

Methods AP AP50 AP75 AP𝑠 AP𝑚 AP𝑙
RetinaNet 36.3 56.1 39.1 21.3 40.1 47.9
w/ IFR 36.8 57.4 39.6 21.4 40.5 48.1
FreeAnchor 38.4 57.0 41.1 21.9 41.7 51.8
w/ IFR 39.5 58.5 42.3 22.4 42.3 53.7
FCOS 38.6 57.8 41.7 23.2 42.4 49.7
w/ IFR 39.0 57.9 42.1 23.4 42.5 50.7
RepPoints 38.5 58.8 41.5 22.4 42.5 51.1
w/ IFR 38.8 58.9 41.8 21.9 42.5 52.1

Table 6: Analyzing the impact of different refinement strate-
gies with the unrolling and Broyden solvers. "P(M)" indi-
cates the number of parameters in the mask head network
of Mask R-CNN [18].

Strategy Solver AP AP50 AP75 AP𝑠 AP𝑚 AP𝑙 𝑃 (𝑀)
Explicit Unrolling 36.0 56.7 38.9 17.4 38.5 51.7 5.0

Implicit Unrolling 36.0 56.6 38.9 17.4 38.3 51.6 1.5
Broyden 36.1 56.7 39.0 17.9 38.5 51.8 1.5

Iterations of the Broyden Solver: As mentioned above, we em-
ploy the Broyden solver [3] to obtain the fixed point. For optimiza-
tion, the iteration number of the solver is a hyper-parameter. Tab. 7
shows the continuous improvements as the number of iterations in-
creases from 3 to 15 while no further improvement if increased to 20.



Figure 5: Qualitative results of IFR enhanced SipMask [9] on several example frames fromdifferent videos in YouTube-VIS [47]
validation set. The object with same predicted identity has the same color.

Considering both efficiency and accuracy, the iterations of Broyden
solver are set to 15 for both forward and backward propagation.

Table 7: Impact of the iterations of Broyden solver.

Num. of iters 3 5 10 15 20
𝐴𝑃 31.7 33.2 35.9 36.1 36.1

Double Residual Connection: We introduce the double residual
connections for the explicit design of nonlinear transformation.
Here, we evaluate its effect on Mask R-CNN [18]. Specifically, we
remove these two residual connections in our IFR and only keep two
consecutive convolution layers. Tab. 8 show that double connection
improves the overall performance since it benefits from residual
learning and smooth gradient propagation.

Table 8: Impact of integrating the double residual connec-
tions into the standard Mask R-CNN on COCO val2017 set.

Double res-connection AP AP50 AP75 AP𝑠 AP𝑚 AP𝑙
- 35.8 56.6 38.6 17.2 38.2 51.1
✓ 36.1 56.7 39.0 17.9 38.5 51.8

Number of Intermediate Channels in Res-Block: For the em-
ployed res-block, we evaluate the effect of intermediate channels
between two 3×3 convolutions. Tab. 9 shows the performance com-
parison on Mask R-CNN [18], where 𝑋1 denotes the basic number
of channels, 256. The results show continuous improvements as
the number of intermediate channels increases from 32 to 256. To
achieve the trade-off between performance and parameter burden,
we set the number of intermediate channels to 256.

Table 9: Impact of the number of convolution channels.

Num. of channels 𝑋1/8 𝑋1/4 𝑋1/2 𝑋1 𝑋2
𝐴𝑃 35.3 35.4 35.6 36.1 36.1
𝑃 (𝑀) 0.4 0.6 0.9 1.5 2.6

Larger Backbone: To further demonstrate the effectiveness of
our IFR, we also conduct the experiments with larger backbones.
Tab. 10 shows that our IFR can still produce better performance
than stacked convolutions even when using larger backbone.

Table 10: Performance comparison between the stacked four
3 × 3 convolutions and our IFR on Mask R-CNN [18] with
larger backbone. 3x (36 epochs) training strategy is adopted.

Methods AP AP50 AP75 AP𝑠 AP𝑚 AP𝑙
Mask R-CNN-Res101 38.6 60.5 41.4 19.1 41.2 55.3
w/ IFR 39.0 60.5 42.0 19.9 41.8 56.0

5 CONCLUSION
In this paper, we propose an implicit feature refinement framework
for image/video instance segmentation. Current instance segmenta-
tion methods tend to apply multiple convolutions to refine instance
features but the refined features are of limited receptive field. In this
paper, we propose to refine instance features of global receptive
field via a simulated infinite-depth network, which can be employed
in both one-stage and two-stage approaches. The proposed IFR pro-
duces improved performance on most state-of-the-art frameworks
while reducing the overall parameter burden.
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