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ABSTRACT

Transformer has achieved great success in computer vision, while
how to split patches in an image remains a problem. Existing meth-
ods usually use a fixed-size patch embedding which might destroy
the semantics of objects. To address this problem, we propose a new
Deformable Patch (DePatch) module which learns to adaptively
split the images into patches with different positions and scales in
a data-driven way rather than using predefined fixed patches. In
this way, our method can well preserve the semantics in patches.
The DePatch module can work as a plug-and-play module, which
can easily be incorporated into different transformers to achieve
an end-to-end training. We term this DePatch-embedded trans-
former as Deformable Patch-based Transformer (DPT) and conduct
extensive evaluations of DPT on image classification and object
detection. Results show DPT can achieve 81.9% top-1 accuracy on
ImageNet classification, and 43.7% box mAP with RetinaNet, 44.3%
with Mask R-CNN on MSCOCO object detection. Code has been
made available at: https://github.com/CASIA-IVA-Lab/DPT.
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(b) DePatch.

Figure 1: An example of vanilla patch splitting and our de-
formable way. (a) Original patch embedding module divides
the image in a fixed way. It sometimes destroys the seman-
tics of objects. (b) Our DePatch splits the image into patches
in a deformable way with learnable positions and scales.
(Better viewed in color)

1 INTRODUCTION

Recently, transformer [25] has made significant progress in natual
language process (NLP) and speech recognition. It has gradually be-
come the prevailing method for sequence modeling tasks. Inspired
by this, some studies have successfully applied transformer in com-
puter vision, and achieved promising performance on image classifi-
cation [17, 24], object detection [2, 35], and semantic segmentation
[33]. Similar to NLP, transformer usually divides the input image
into a sequence of fixed-size patches (e.g. 16 X 16) [7, 24, 26, 30],
and models the context relationships between different patches
through multi-head self-attention. Compared to convolution neural
networks (CNNs), transformer can effectively capture long-range
dependency inside the sequence, and the features extracted contain
more semantic information.

Although transformer has tasted sweetness in vision tasks, there
are still many aspects to be improved. DeiT [24] exploits data aug-
mentation and knowledge distillation to learn visual transformer in
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a data-efficient manner. T2T-ViT [30] decomposes the patch embed-
ding module by recursively aggregating neighboring tokens for bet-
ter local representation. TNT [10] maintains a fine-grained branch
to better model local details inside a patch. PVT [26] transforms
the architecture into four stages, and generates feature pyramid for
dense prediction. These works use a fixed-size patch embedding
under an implicit assumption that the fixed image split design is
suitable for all images. However, such ‘hard’ patch split may bring
two problems: (1) Collapse of local structures in an image. As shown
in Figure 1(a), a regular patch (16 x 16) is always hard to capture
the complete object-related local structure, since objects are with
various scales in different images. (2) Semantic inconsistency across
images. The same object in different images might have different
geometric variations (scale, rotation, etc). The fixed way of splitting
images will potentially capture inconsistent information for one
object in different images. As discussed, these fixed patches can
potentially destroy the semantic information, leading to degraded
performance.

To address the aforementioned problems, in this paper, we pro-
pose a new module, called DePatch, which divides images in a
deformable way. In this way, we can well preserve the semantics
in one patch, reducing the semantics destruction caused by im-
age splitting. To achieve this, we learn the offset and scale of each
patch in feature map space. The offset and scale are learned based
on the input feature map and are generated for each patch as il-
lustrated in Figure 1(b). The proposed module is lightweight and
introduces a very small number of parameters and computations.
More importantly, it can work as a plug-and-play module which can
easily be incorporated into other transformer architectures. A trans-
former with DePatch module is named Deformable Patch-based
Transformer, DPT. In this work, we integrate DePatch module to
Pyramid Vision Transformer (PVT) [26] to verify its efficacy since
PVT achieves state-of-the-art performance in pixel-level prediction
tasks like object detection and semantic segmentation. With de-
formable patch adjustment, DPT generates complete, robust and
discriminative features for each patch based on local contextual
structures. Therefore it can not only achieve high performance on
classification tasks, but also outperform other methods on tasks
which highly depend on local features, e.g. object detection. Our
method achieves 2.3% improvements on ImageNet classification,
and improves box mAP by 2.8%/3.5% with RetinaNet and Mask
R-CNN framework for MSCOCO object detection compared to its
conterpart, PVT-Tiny.

Our main contributions can be summarized as:

e We introduce a new adaptive patch embedding module, De-
Patch. DePatch can adjust the position and scale of each
patch based on the input image, and effectively preserve se-
mantics in one patch, reducing semantics destruction caused
by image splitting.

o Our DePatch is lightweight and can work as a plug-and-play
module integrated into different transformers, leading to a
Deformable Patch-based Transformer (DPT). In this work,
we incorporate DePatch into PVT to verify the efficacy of
DPT.

e We conduct extensive experiments on image classification
and object detection. For example, our module improves

top-1 accuracy by 2.3% on ImageNet classification, and also
gains 2.8%/3.5% improvements for both RetinaNet and Mask
R-CNN detectors under the tiny configuration.

2 RELATED WORK

2.1 Vision Transformer

Transformer [25] has been the mainstream approach for NLP tasks.
It uses self-attention to capture long-range dependence within the
whole sequence, and achieves state-of-the-art performance. This
idea is applied into computer vision firstly by Non-Local block and
its variants [1, 14, 27]. Recently, there appear a large amount of
works building pure vision transformers without convolution layers.
ViT [7] is as far as we know the first work in this trend. It achieves
comparable results with traditional CNN architectures with the help
of large training data. DeiT [24] uses complex training schedules
and knowledge distillation to improve performance trained on
ImageNet only.

Current works focus on combining the advantages of transformer
and CNN in order to capture better local information. This object
is obtained by combining convolution blocks and self-attention
layers together [3, 22], maintaining high-resolution feature maps
[10, 17, 26], adding parameters biased for locality [6, 9] or re-
designing the brute-force patch-embedding module [30]. Though
large improvements achieved, most architectures split the input
image with a fixed pattern, without awareness of the input content
and geometric variations. Our DPT can modify the position and
scale of each patch in an adaptive way. To the best of our knowledge,
our model is the first vision transformer that do patch splitting in a
data-specific way.

2.2 Deformable-Related Work

Modifying fixed pattern into an adaptive way is a common idea to
improve performance. There have been a great number of works
help models focus on important features and adopt geometric varia-
tions in computer vision. All related works fall into two categories,
attention-based methods [1, 13, 14, 27] and offset-based methods
[5, 8, 28, 34, 35]. We mainly review offset-based ones.
Offset-based methods predict offsets to explicitly direct impor-
tant locations. This idea bears some similarity with region proposal
network in object detection [11, 20]. Unlike our task, region pro-
posal network uses supervision of bounding box annotations. In
image classification task, there are also some works explicitly learn-
ing positions of the important regions for better performance [8]
or faster inference [28]. The learning process are merely guided
by cross-entropy loss and final accuracy. Deformable convolution
[5, 34] is the work most similar to ours. It predicts an offset for each
pixel of the convolution kernel, while the predicted regions in our
method are more regular ones. Irregular patches are not compatible
in vision transformers. Deformable-DETR [35] applies deformable
operations in the self-attention layers and cross-attention layers
of DETR. However, its main purpose is to accelerate training, and
Deformable-DETR still relies on feature maps extracted from CNNs.
As far as we know, our work is the first to apply deformable op-
erations in a pure vision transformer architecture. We focus on
adjusting the position and scale of each patch, therefore extracting
features better maintaining local structures. Our module can work



as a plug-and-play module, and is compatible for various vision
transformer architectures.

3 METHOD

3.1 Preliminaries: Vision Transformer

Vision transformer is composed of three parts, a patch embedding
module, multi-head self-attention blocks and feed-forward multi-
layer perceptrons (MLP). The network starts with the patch embed-
ding module which transforms the input image into a sequence of
tokens, and then alternately stacks multi-head self-attention blocks
and MLPs to obtain the final representation. We mainly elaborate
on the patch embedding module in this section, and then have a
quick review over the multi-head self-attention.

Patch embedding module divides images into patches with fixed
size and positions, and embeds each of them with a linear layer. We
denote the input image or feature map as A € RHXWXC Eor sim-
plicity, we assume H = W. Previous works split A into a sequence
of N patches with size s X s (s = [H/VNT). The sequence is denoted
as {z0}1<ien.

To better interpret the patch splitting process, we reformulate the
patch embedding module. Each patch z() canbe seenasa represen-
tation for a rectangle region of the input image. We denote its center

coordinate as (xc(;), yg) ). Since patch size is fixed, the left-top cor-

ner and right-bottom corner are determined as (xg) -s/2, y(i) -s/2)

ct
and (xc(;) +5/2, yg) +5/2). There are s X s pixels inside this region,

their coordiIAlaAtes are represented by p(b/) = (P)(ci’j), P(yi’j)). All co-
ordinates ﬁ(”f ) are integers themselves. The features at these pixels
are denoted as {a(®/) }; <j<N- These features are then flattened and

processed by a linear layer to get representation for the new patch,
as shown in Eq. (1).

20 = Waich - concat{a®V, .., a9} + bparch (1)

Multi-head self-attention module aggregates relative informa-
tion over the whole input sequence, giving each token a global
view. This module learns three groups of representative features
for each head, query (Qp € RN*9), key (K}, € RN*9) and value
(v}, € RN*d) Q) and K, are multiplied to obtain the attention map
Attny, which represents similarity between different patches. The
attention map is used as the weights to sum up V. Independent re-
sults are calculated for different heads to get more variant features.
Results from all heads are then concatenated and transformed to
become new representations Z’.

Attny, = Softmax(QhKhT/\/c_l) (2)

Z' = Concat{Attn\Vy, .., Attng Vi }Wproj + bproj (3)

3.2 DePatch Module

The patch embedding process described in 3.1 is fixed and inflexible.
Positions (xc(;), yg)) and size s are fixed, therefore the rectangle
region is unchangable for each patch. The feature for each patch is
directly represented with its inside pixels. In order to better locate
important structures and handle geometric deformation, we loosen
these constraints to develop our deformable patch embedding mod-

ule, DePatch.
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(a) Vanilla patch embedding module in PVT
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(b) DePatch module (k = 3)

Figure 2: DePatch module instruction. Offsets and scales are
predicted with local features, and new embeddings are ob-
tained by bilinear interpolation.

Firstly, we turn the location and the scale of each patch into
predicted parameters based on input contents. As for the location,
we predict an offset (dx, dy) allowing it to shift around the original
center. As for the scale, we simply replace the fixed patch size s
with predictable s and s,,. In this way, we can determine a new
rectangle region, and denote its left-top corner as (x1,y1) and right-
bottom corner as (x2, y2). For clarity, we omit the superscript (i).
We emphasize that (Jx, 8y, sw, sp) can be different even for patches
in a single image.

X1 = Xcr +0x — %V, Y1 = Yer +0Y — s?h
2 2 ()

X2 =xct+5x+7, Y2 =yct+5y+?

As shown in Figure 2, we add a new branch to predict these pa-
rameters. Based on the input feature map, we predict (x, 8y, sw, Sp)
densely for all patches first, and then embed them with predicted
regions. Offsets and scales are predicted with Eq. (5) and (6). f, ()
can be any feature extractor, and here we use a single linear layer.
After that, W, e and Wyqje are followed to predict offsets and
scales. At the beginning of training, these weights are initialized to
zero. by 4. 18 initialized to make sure each patch focuses on exactly

the same rectangle region as the original model.
ox, 6y = Tanh(Woffset - fp(A)) (5)
Sws Sp = ReLU (Tanh(Wsc g, 'fp(A) +bscate)) (6)

After the rectangle region is determined, we extract the feature
for each patch. The main problem is that regions are with different
sizes, and the predicted coordinates are usually fractional. We solve
this problem in a sampling-and-interpolation manner. Given the
rectangle coordinates (x1,y1) and (x2,y2), we sample k X k points
uniformly inside the region, k is a super-parameter for our method,
which will be ablated in 4.3. Each sampling location is denoted

as pU) = (p,(cj),pgj)) for any 1 < j < k X k. The features of all



Figure 3: Left: Original PVT architecture. Right: DPT,
Equipped with our DePatch module.

sampled points {av }1<j<kxk are then flattened and processed in
a linear layer to generate patch embedding, as in Eq. (7).

2D —w. concat{d(l), e d(ka)} +b (7)

The index of sampled points is mostly fractional. Assume that
we intend to extract feature at point (px, py). Its corresponding
feature is obtained via bilinear interpolation as

Apxpy) = ), ClpxPyidnay) - Algr.ay) (8
dx,qy

G(px: Pys Gx> qy) = max(0, 1= |px —qx|) -max(0,1-[py—qyl) (9)
In Eq. (8), G(+) is the bilinear interpolation kernel all over the
integral spatial locations. It only becomes non-zero at the four
locations close to (px, py). Therefore, it can be computed quickly
with few multiply-adds.

3.3 Overall Architecture

DePatch is a self-adaptive module to change positions and scales
of patches. As DePatch can work as a plug-and-play module, we
can easily incorporate DePatch into various vision transformers.
Because of the superiority and generality, we choose PVT as our
base model. PVT has four stages with feature maps of decreasing

scales. It utilizes spatial-reduction attention to reduce cost on high
resolution feature maps. For detailed information please refer to
[26]. Our model is denoted as DPT. It is built by replacing the
patch embedding modules at the beginning of stage 2, 3 and 4
with DePatch, while keeping other configurations unchanged. The
overall architecture is shown in Figure 3.

4 EXPERIMENTS

In this section, we conduct image classification experiments on
ImageNet [21] and object detection experiments on COCO [16].
After that, some ablation studies are provided then for further
analysis.

4.1 Image Classification

Experiment Settings We use ImageNet [21] for image classifica-
tion experiments. The ImageNet dataset consists of 1.28M images
for training and 50K for validation. These images belong to 1000
categories. We report top-1 error on validation set for compari-
son. The images are resized into 256 X 256 and randomly cropped
into 224 x 224 for training. Advanced data augmentation methods
including Mixup [32], CutMix [31], label smoothing [23] and Rand-
Augment [4] are utilized. Our models are trained with the batch
size of 1024 for 300 epochs and optimized by AdamW [19] with
initial learning rate of 1 x 1073 and cosine schedule [18]. Weight
decay is set to 0.05 for non-bias parameters. All these settings keep
the same with original PVT [26] for fair comparison.

Results As shown in Table 1, our smallest DPT-Tiny achieves
77.4% top-1 accuracy, which is 2.3% higher than the corresponding
baseline PVT model. The best result is achieved by our medium
one. It achieves 81.9% top-1 accuracy, and even outperforms models
with much larger costs like PVT-Large and catch up with DeiT-Base.
As for CNN-based models, DPT-Small outperforms the popular
ResNet50 by 4.9%. Our models achieve better results than both
CNN-based and transformer-based models, and outperform them
by a large margin.

4.2 Object Detection

Experiment Settings Our experiments for object detection are
conducted on COCO [16], a large-scale detection benchmark. We
set train2017 split with 118K images as our training set, and val2017
split with 5K images for validation. Mean Average Precision (mAP)
is used as our evaluation metric. Following [26], we evaluate our
DPT backbones on three prevailing frameworks, RetinaNet [15],
Mask R-CNN [11] and DETR [2]. We load ImageNet pretrained
weights to initialize the backbone. Our models are trained with the
batch size of 16 and optimized by AdamW [19] with initial learning
rate 1 x 107%. As to RetinaNet and Mask R-CNN, we report results
with both 1x and multi-scale 3x train schedules (12 and 36 epochs).
For 1x schedule, images are resized so that the shorter edge has
800 pixels and the longer edge does not exceed 1333 pixels. For
multi-scale training, the shorter edge is resized within the range of
[640, 800]. As for DETR, the model is trained for 50 epochs with
random flip and random scale.

Results We compare DPT to PVT [26] and standard ResNe(X)t
[12, 29]. The comparison is shown in Table 2. As for RetinaNet, DPT-
Small significantly outperforms PVT-Small by 2.1% and Resnet50



Table 1: Results on ImageNet Classification.

Method #Param (M) FLOPs (G) Top-1 Acc(%)
ResNet18 [12] 11.7 1.8 69.8
DeiT-Tiny [24] 5.7 13 72.2
PVT-Tiny [26] 13.2 1.9 75.1
DPT-Tiny (ours) 15.2 2.1 77.4
ResNet50 [12] 25.6 4.1 76.1
DeiT-Small [24] 22.1 4.6 79.9
T2T-ViT-14 [30] 21.4 5.2 80.6
PVT-Small [26] 24,5 3.8 79.8
DPT-Small (ours) 264 4.0 81.0
ResNet101 [12] 44.7 7.9 77.4
X101-32x4d [29] 44.2 8.0 78.8
X101-64x4d [29] 83.5 15.6 79.6
ViT-Base [7] 86.6 17.6 77.9
DeiT-Base [24] 86.6 17.6 81.8
T2T-ViT-19 [30] 39.0 8.0 81.2
PVT-Medium [26] 442 6.7 81.2
PVT-Large [26] 61.4 9.8 81.7
DPT-Medium (ours) 46.1 6.9 81.9

by 6.2% mAP at a comparable computational cost, which indicates
that DPT provides more discriminative features for target objects
in images. With our DePatch module, each patch is aware of its
neighboring content, and extracts crucial information needed for
different locations. Moreover, with 3xX training schedule and multi-
scale training, RetinaNet+DPT-Medium achieves 43.7% mAP. It
outperforms PVT-Medium and ResNet101 by a large margin, and
even achieves better performance than PVT-Large model, but with
more than 20% cost reduced.

Results for Mask R-CNN are similar. Our DPT-Small model
achieves 43.1% box mAP and 39.9% mask mAP under 1X schedule,
outperforming PVT-Small by 2.7% and 2.1%. With 3X training sched-
ule and multi-scale training, Mask R-CNN+DPT-Small achieves the
best result with 44.4% box mAP and 41.0% mask mAP.

DETR is a latest framework for object detection. It requires a
long trained schedule (e.g. 500 epochs). We only validate our model
with a shorter schedule (50 epochs). According to Table 4, our DPT-
Small achieves 37.7% box mAP, outperforming PVT-Small by 3.0%
and ResNet50 by 5.4%. Therefore we conclude that DPT is also
compatible with transformer-based detectors.

4.3 Ablation Studies

Effect of module position There are four patch embedding mod-
ules in PVT. The first directly operates on the input image, and
the rest are inserted at the beginning of the following stages. We
perform detailed experiments to illustrate where we should add
DePatch.

Since raw images contain little semantic information, it is diffi-
cult for the first module to predict offsets and scales beyond its own
region. Therefore, we only attempt to replace the rest three patch
embedding modules. The results are shown in Table 5. The improve-
ments obtained by stage 2, 3 and 4 are 0.3%, 1.0%, and 1.5%. The more
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Figure 4: Region scale learned by DPT-Tiny with different
number of sampling points k X k. We illustrate statistics in
stage 2, 3 and 4. Scale is measured by the edge size of the
region.

patch embedding modules we replace, larger improvement it brings.
According to the results, replacing all patch embedding modules
in stage 2, 3 and 4 achieves the best performance. It outperforms
baseline PVT model by 1.5%, with only 0.86M parameters increased.
In the following experiments, it will be our default configuration
to replace all three patch embedding modules.

Effect of number of sampling points We experiment to show
how many points we should sample in one predicted region. Sam-
pling more points slightly increases FLOPs, but also has a stronger
learning ability to capture features from a larger region. The results
are shown in Table 6. Increasing sampling points from 2 X 2 to
3 X 3 provides another 0.8% improvement, while further increas-
ing it to 4 X 4 only improves by 0.2%. Since sampling 4 X 4 points
only gets marginal improvement. We take the k = 3 as the default
configuration in following experiments.

We claim that sampling more points will benefits DPT with
stronger ability to extract features from larger area. We show how
the distributions of predicted scales change during training with dif-
ferent number of sampling points in Figure 4. Although we initialize
the region scales strictly the same as that in PVT (patch_size = 2),
DePatch can learn to expand on its own. This phenomenon accords
to the common sense in CNN, that enlarging the receptive field



Table 2: Object detection performance on MS COCO (RetinaNet)

RetinaNet 1x RetinaNet 3X + MS
Backbone #Param(M) | mAP APso AP;5 APs APy AP ‘ AP APsy AP;5 APs APy AP
ResNet18 [12] 21.3 31.8 49.6 33.6 16.3 343 432 | 354 539 37.6 195 382 46.8
PVT-Tiny [26] 23.0 36.7 56.9 389 226 388 50.0 | 394 598 42.0 255 42.0 52.1
DPT-Tiny (ours) 249 39.5 604 41.8 23.7 43.2 522|412 62.0 440 25.7 44.6 539
ResNet50 [12] 37.7 36.3 55.3 38.6 19.3 40.0 48.8 | 39.0 584 41.8 224 428 51.6
PVT-Small [26] 34.2 404 613 43.0 250 429 557 | 422 627 450 262 452 572
DPT-Small (ours) 36.1 425 63.6 453 26.2 45.7 56.9 | 43.3 64.0 46.5 278 46.3 58.5
ResNet101 [12] 56.7 38.5 57.8 41.2 214 426 51.1 | 409 60.1 440 23.7 45.0 53.8
ResNeXt101-32x4d [29] 56.4 39.9 59.6 42.7 223 442 525 | 414 610 443 239 455 537
ResNeXt101-64x4d [29] 95.5 41.0 60.9 44.0 239 452 54.0 | 41.8 61.5 444 252 454 54.6
PVT-Medium [26] 53.9 41.9 63.1 44.3 25.0 449 57.6 | 43.2 6338 46.1 273 463 58.9
PVT-Large [26] 71.1 42.6 63.7 454 258 46.0 584 | 434 63.6 46.1 26.1 46.0 595
DPT-Medium (ours) 55.9 43.3 64.6 459 27.2 46.7 58.6 |43.7 64.6 464 27.2 47.0 584

Table 3: Object detection performance on MS COCO (Mask R-CNN)

Mask R-CNN 1x Mask R-CNN 3x + MS

Backbone #Param(M) | mAP®  APY  APL mAP™ APT  APM | mAP® AP AP, mAP™ AP APM
ResNet18 [12] 31.2 34.0 54.0 36.7 31.2 51.0 327 36.9 57.1  40.0 33.6 53.9 357
PVT-Tiny [26] 32.9 36.7 59.2 393 35.1 56.7 373 39.8 62.2 430 37.4 593 399
DPT-Tiny (ours) 34.8 40.2 62.8 43.8 37.7 59.8 404 | 42.2 64.4 46.1 39.4 61.5 42.3
ResNet50 [12] 44.2 38.0 58.6 414 34.4 55.1 36.7 41.0 61.7 449 37.1 58.4  40.1
PVT-Small [26] 441 40.4 629 438 37.8 60.1 40.3 43.0 653 469 39.9 625 4238
DPT-Small (ours) 46.1 43.1 65.7 47.2 39.9 629 43.0 | 444 665 48.9 41.0 63.6 44.2
ResNet101 [12] 63.2 40.4 61.1 442 36.4 57.7  38.8 42.8 63.2 47.1 38.5 60.1 413
ResNeXt101-32x4d [29] 62.8 41.9 62.5 459 37.5 59.4  40.2 44.0 64.4 48.0 39.2 61.4 419
ResNeXt101-64x4d [29] 101.9 42.8 63.8 473 38.4 60.6 413 444 64.9  48.8 39.7 619 42.6
PVT-Medium [26] 63.9 42.0 644 456 39.0 61.6 42.1 44.2 66.0 48.2 40.5 63.1 435
PVT-Large [26] 81.0 429 65.0 46.6 39.5 61.9 425 44.5 66.0 483 40.7 63.4 437
DPT-Medium (ours) 65.8 43.8 66.2 48.3 40.3 63.1 434 44.3 65.6 48.8 40.7 63.1 44.1

Table 4: Object detection performance on MS COCO (DETR Table 6: Effect of number of sampling points

with 50 epochs)
Sampling points  #Params(M) Flops(G) Top-1 Acc(%)

Backbone mAP AP50 AP75 APS APM APL Baseline 13.23 1.94 75.1

I;\e]S’II?IgtSOIFZ] 323 539 323 107 338 53.0 2% 2 14.09 203 76.6

DPT— sma 11[26] 347 557 354 120 364 56.7 3%3 15.15 2.14 77.4

-Small (ours) 37.7 59.2 38.8 15.0 40.3 58.5 4x4 16.64 230 776

Table 5: Effect of module position (k = 2)
Table 7: Decouple of predicting offsets and scales

Stage 2 Stage3 Stage4 #Params(M) Top-1 Acc(%)

Offsets Scales Top-1 Acc(%)

13.23 75.1
v 13.26 75.4 75.1
v v 13.43 76.1 4 76.6
v v v 14.09 76.6 v v 774




Table 8: Top-1 accuracy (%) with short training schedule

Method 150 epochs 300 epochs
PVT-Tiny [26] 73.1 75.1
DPT-Tiny (Ours) 76.2 77.4
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Figure 5: Training curve for both DPT-Tiny and PVT-Tiny.

benefits the model. The distributions of scales for k = 2 converge
early with low variance. Sampling 2 X 2 points is unable to represent
any larger regions, hence it limits the capacity of the our module
for understanding images with heavy geometric deformation. The
statistics do not differ much for k = 3 and 4 except in stage 2. We
assume that sampling more points will achieve even better per-
formance, while it is not worth additional cost. Designing a more
sophisticated spatial pyramid cound be another way to improve
our method. We leave it as our future work.

Decouple offsets and scales DePatch learns both the offset
and scale for each patch. Offsets are predicted to shift the patches
towards more important regions, and scales are for better main-
taining local structures. They both facilitates the performance of
our model. We decouple these two factors in Table 7 in order to
see how each single one influences our model. When scales are
not predicted, the shape of all rectangle regions is fixed the same
as patches in original PVT. Only predicting offsets can improve
1.5% above baseline, and another 0.8% is obtained by predicting
scales. We claim that both offsets and scales are important for our
self-adaptive patch embedding module.

Analysis for fast convergence DePatch module is able to ad-
just the patches to a proper shape for each image. Adequate patches
maintain important local structures, and features are learned more
efficiently. Therefore the whole network can learn at a faster speed.
We draw the training curve for both our DPT-Tiny and PVT-Tiny
in Figure 5. The training loss and test accuracy do converge faster
in first few epochs.

Based on this phenomenon, we expect that our module can
alleviate the requirement of long training schedule. We prove it
by simply reducing training epochs by half. As shown in Table 8,
DPT-Tiny trained with only 150 epochs outperforms a fully-trained
PVT-Tiny by 1.1%, and the performance degradation caused by a
shorter schedule is only 1.2%, which is much smaller than original
PVT-Tiny. This indicates that our DePatch module can significantly
accelerate training for vision transformers, which would benefit
further research.

Table 9: Effect of initialization for Wy rse; and Wegpe

Initialization Top-1 Acc(%)
Truncated normal 77.36
Zero init 77.39

Effect of parameter initialization As stated in 3.2, we initial-
ize Wy fser and Wseqje to zero. We shown in Table 9 that initializa-
tion methods have little impact on final performance. We take zero
initialization in the all experiments.

4.4 Visualization

We illustrate offsets learned by DePatch in Figure 6. The visualiza-
tion shows that patches predicted by DePatch are well-located to
capture important features. DePatch has more obvious impacts at
the edge of foreground objects. It encourages the patches outside to
shift a bit towards the object, thus covering more critical areas than
normal patches. When there are more than one object appearing
in the image, patches would adjust their positions to the closest
one (the two whales in Figure 6(b)). This attribute would be more
crucial for object detection, since different patches can be more rep-
resentative for different objects. Therefore, the detector can better
locate and classify all the objects with more related features. The
predicted scales are also influenced by richness of local context,
such as edges or corners. It becomes small when it needs to focus
on subtle details (the beak of the bird in Figure 6(d)), and large if
more context is needed (homogenous area of the dog’s stomach
Figure 6(h)). The high variance of offsets and scales indicates strong
self-adaptability of our method.

5 CONCLUSION

In this paper, we introduce DePatch, a deformable module to split
patches. It encourages the network to extract patch information
from object-related regions and make our model insensitive to
geometric deformation. This module can work as a plug-and-play
module and improve various vision transformers. We also build a
transformer with DePatch module, named Deformable Patch-based
Transformer, DPT. Extensive experiments on image classification
and object detection indicate that DPT can extract better features
and outperform CNN-based models and other vision transformers.
DePatch can be utilized in other vision transformers as well as other
downstream tasks to improve their performance. Our model is the
first work to modify vision transformer in a data-dependant way.
We hope our idea could serve as a good starting point for future
studies.
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Figure 6: Visualization of learned patches and their offsets with our DPT-Small at stage 4. Our method can adaptively adjust

the position and scale for each patch based on the input content.
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