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ABSTRACT
With the advance of the multi-media and multi-modal data, multi-
view clustering (MVC) has drawn increasing attentions recently.
In this field, one of the most crucial challenges is that the charac-
teristics and qualities of different views usually vary extensively.
Therefore, it is essential for MVC methods to find an effective ap-
proach that handles the diversity of multiple views appropriately.
To this end, a series of MVC methods focusing on how to integrate
the loss from each view have been proposed in the past few years.
Among these methods, the mainstream idea is assigning weights to
each view and then combining them linearly. In this paper, inspired
by the effectiveness of non-linear combination in instance learning
and the auto-weighted approaches, we propose Non-Linear Fusion
for Self-Paced Multi-View Clustering (NSMVC), which is totally
different from the the conventional linear-weighting algorithms. In
NSMVC, we directly assign different exponents to different views
according to their qualities. By this way, the negative impact from
the corrupt views can be significantly reduced. Meanwhile, to ad-
dress the non-convex issue of the MVC model, we further define a
novel regularizer-free modality of Self-Paced Learning (SPL), which
fits the proposed non-linear model perfectly. Experimental results
on various real-world data sets demonstrate the effectiveness of
the proposed method.

CCS CONCEPTS
• Computing methodologies→ Cluster analysis.
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1 INTRODUCTION
As a fundamental field of machine learning, clustering [6] has been
studied extensively and a great number of classical clustering al-
gorithms have been developed in the past few decades, such as 𝑘-
means [20], density-based clustering [5], distribution-based cluster-
ing [1], subspace-based clustering [12], matrix factorization based
clustering [19], hierarchical clustering [10], mean shift clustering
[4], and consensus clustering [26]. Unfortunately, while in most
real-world clustering tasks, an object can be usually described by
multiple aspects, these conventional clustering methods only work
on the single-view data. To address this issue, a series of multi-view
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clustering (MVC) methods [3, 13, 14, 16, 17, 27, 28, 30, 31, 34–37]
have been proposed recently and achieve much better clustering
results comparing with their single-view counterparts.

For MVC analysis, finding an appropriate approach to integrate
different views is the foundation of making use of the complemen-
tary information within them. To tackle this problem, most existing
MVC methods [29, 33] are based on the following simple and in-
tuitive idea: finding some measurements to weight each view and
then combining them linearly, while the idea of non-linear fusion
has been always neglected. On the other hand, the non-linear com-
bining idea such as using ℓ2,1-norm has already been applied in
instance learning [3, 15, 22] and has shown better robustness com-
paringwith the ordinary Frobenius norm. As inmost distance-based
machine learning models, a few outliers with large losses always
dominate the objective function and result in the poor performance
of these algorithms. By applying ℓ2,1-norm, the exponent of each
sample’s loss is decreased to 0.5 (i.e., rooted), thus the negative
impact from the corrupt samples can be effectively alleviated and
the robustness of the model can be enhanced.

Inspired by ℓ2,1-norm, there have been a few recent attempts of
the implied weighting algorithms capable of mimicking its effects,
with an aim of decreasing the exponent of the original loss function
and thus achieving remarkable clustering results. Enlighten by the
idea of parameter-free learning, a series of MVC methods based
on the auto-weighted (i.e. self-weighted) idea have been developed
[7, 23–25]. In these algorithms, instead of using some criterion to
measure the quality of each view and then assigning weights to
them, the weights of different views are directly generated from
their loss values. Through this approach, the objective functions
of these methods no longer have the form like the linear-weighted
combination of the losses from each separate view. However, in
these models, the exponents of different views’ losses are still the
same, which means while smaller exponents alleviate the negative
impact of the corrupt views, the influence of the reliable views are
also weakened. Meanwhile, in the optimizing process, these meth-
ods still need to firstly transform their models into the traditional
linear weighting forms.

Different from the existing linear-weighting MVC methods, we
propose non-linear fusion for self-paced multi-view clustering (NS-
MVC) to directly grant different exponents to different views based
on their qualities. By this way, our method can alleviate the negative
influence from the corrupt views in a non-linear manner, which is
similar with the way of dealing with corrupt instances by ℓ2,1-norm.
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Except for the challenge of effective view integration, most con-
ventional MVCmethods also face the non-convex problem and thus
usually stuck into suboptimal local solutions. To alleviate the non-
convex issue, we further introduce the self-paced learning (SPL)
mechanism [18] to our model. Imitating the learning process of
human-beings, self-paced learning firstly trains the MVC model
with the samples that have smaller losses, and as the iteration for-
wards, the samples with higher losses will gradually take part in the
training process. In this way, the noisy samples and ourliners will
not join the training in the early iteration times, thus the robustness
of MVC model can be significantly enhanced. Meanwhile, to fit the
non-linear MVC model, a novel regularizer-free self-paced learning
modality is also developed in this work. Through this SPL modality,
the objective function of each view is completely constituted with
the clustering losses of the selected instances and thus can avoid
the influence from the value of the additional SPL regularizer.

Overall, we propose NSMVC to promote the clustering perfor-
mance of MVC method in both view level and instance level. In the
view level, a novel learning paradigm based on non-linear fusion
is developed to plenarily exploit the complementary information
in different views. Moreover, to address the non-convex issue, we
design a regularizer-free self-paced learning scenario to progres-
sively train the MVC model from simplicity to complexity in the
instance level. Through this approach, the robustness of the MVC
model can be significantly enhanced.

The main contributions of the paper are summarized as follows:
• To the best of our knowledge, this is the first attempt to
develop a view-level non-linear fusion method in the multi-
view clustering task.

• A novel regularizer-free self-paced learning paradigm is de-
signed to fit the non-linear model as well as alleviate the non-
convex issue of conventional multi-view clustering method.

• An effective optimizing approach to solve the proposed NS-
MVC model is derived, and experimental results on multiple
real-world data sets demonstrate the effectiveness of the
proposed method.

The rest of this paper is organized as follows. We give a brief
review of the literature of multi-view clustering and self-paced
learning in Section 2. The details of the proposed DSMVC as well
as its convergence and computational complexity analyses are pre-
sented in Section 3. The experimental results and conclusion are
respectively described in Sections 4 and 5.

2 RELATEDWORK
2.1 Multi-View Clustering
While in most real-world clustering tasks, objects can be described
from multiple respects, the conventional clustering methods only
can deal with single-view data. To make full use of the complemen-
tary information from different views and obtain better clustering
result, a great number of multi-view clustering methods have been
proposed in the past decade. In co-training approach for multi-view
spectral clustering (co-train) [16] and co-regularized multi-view
spectral clustering (co-reg) [17], Kumar et al. firstly put forward
the fundamental assumption of MVC algorithms that among dif-
ferent views, the assignment of samples should be consistent. Due
to the diversity of the inherent characteristics of different views,

it is important for MVC methods to find an appropriate integrat-
ing approach for each separate view. To this end, a great number
of relative MVC methods have been proposed in past few years.
Based on the kernel learning, Tzortzis and Likas [28] proposed
multi-view kernel k-means clustering (MVKKM), in which each
view is assigned with a weight according to its quality. Xu et al
[35] proposed the weighted multi-view clustering with feature se-
lection (WMCFS), which weights different views based on their
clustering performance and utilizes feature selection to promote
the efficiency and effectiveness of the MVC model. In multi-view
clustering with multi-view capped-norm k-means (CAMVC) [8],
Huang et al. assign weights for different views and implement the
capped-norm loss in the objective function to achieve more stable
clustering results with different initializations.

However, for most conventional linear-weighting methods, as
they need somemeasurements to determine the weights of different
views, it is inevitable to introduce additional hyper-parameters in
their models. According to the parameter-free principle, a series of
auto-weighted MVC models have been proposed recently and have
shown superior performance comparing with the conventional
linear ones.

To decrease the number of parameters in MVC model, Nie et al.
[21, 23] proposed an auto-weighted approach to assign weights to
different views according to their losses. Huang et al. [7] further
applied this idea into the deep matrix decomposition based MVC
model and achieve remarkable results on various real-world data
sets. In [24], Ren et al. not only use the auto-weighted approach to
address the view quality issue, but also apply ℓ2,1-norm to tackle
the noisy issue. Since the weight of each view is generated by their
loss, these models are actually represented in the non-linear forms
and the negative impact from less reliable views is significantly
alleviated.

Different from the existing methods that use the auto-weighting
strategy for non-linear multi-view clustering, we directly assign
different exponents to each view according to their qualities.

2.2 Self-Paced Learning
For most machine learning tasks, the non-convex issue is one of the
most crucial factors that makes the models stuck into suboptimal
solutions easily. To tackle this issue, taking advantage of self-paced
learning (SPL) [18] and curriculum learning [2] can be an ideal
solution.

Imitating the mechanism of human-learning, SPL firstly trains
the model with easy samples and gradually select more complex
samples in the following training steps. In [11], Jiang et al. theo-
retically proved that applying SPL is beneficial in alleviating non-
convex issue. The general form of self-paced learning can be written
as follows:

min
𝑣𝑖 ,𝑤

𝑛∑︁
𝑖=1

𝑣𝑖 𝑓 (𝑥𝑖 , 𝑦𝑖 ,𝑤) − 𝜆

𝑛∑︁
𝑖=1

𝑣𝑖

𝑠 .𝑡 . 𝑣𝑖 ∈ {0, 1}.
(1)

From Eq. (1), only the samples with the loss smaller than 𝜆 will
take part in the training process. As the iteration times increases,
SPL gradually increases the value of 𝜆 to let more samples join



the training, thus the model will be trained from simplicity to
complexity.

Due to the effectiveness of SPL, in these years, a series of MVC
methods that utilizes SPL to promote the clustering performance
have been proposed. Xu et al. [32] were the first to use SPL in the
multi-view clustering and reveal the applicability of SPL in solving
MVC problem. In [9], Huang et al. extended the idea of self-paced
learning to feature learning and proposed a novel MVC method
which alternatively performs sample learning and feature selection
in a self-paced manner.

In this study, self-paced learning is not merely applied to tackle
the non-convex issue, but also plays an important role in guiding
the non-linear learning process.

3 NON-LINEAR FUSION FOR SELF-PACED
MULTI-VIEW CLUSTERING

3.1 Problem Definition
Assuming that we are given a dataset with 𝑛 instances in𝑚 views
{𝑋 𝑣}𝑚𝑣=1, where𝑋 𝑣 = {𝑥𝑣1 , 𝑥

𝑣
2 , . . . , 𝑥

𝑣
𝑛} ∈ 𝑅𝑑

𝑣×𝑛 , 𝑑𝑣 is the dimension
of the feature vector in the 𝑣-th view. Our target is to partition 𝑛

instances into 𝑘 clusters by making use of the complementary
information from multiple views. Specifically, in this work, we aim
to obtain better clustering results by utilizing the virtues of the
non-linear fusion and self-paced learning.

3.2 Proposed Model
Inspired by the auto-weighted algorithms and non-linear learning’s
effectiveness in instance learning, in this paper, we develop a novel
MVC model approach which is totally different from the conven-
tional linear-combination form. The model of our method can be
written as:

𝑚∑︁
𝑣=1

𝜙 (𝑣)𝜂 (𝑣)

𝑠 .𝑡 . 𝜙 (𝑣) ≥ 0, 𝜂 (𝑣) ∈ (0, 1],
(2)

where 𝜙 (𝑣) and 𝜂 (𝑣) respectively represent the loss of the 𝑣𝑡ℎ view
and its exponent.

In Eq. (2), the corrupt views are expected to be assigned with the
smaller 𝜂 (𝑣) values. By this way, such views will be less influential
during the optimizing process. Considering the extreme circum-
stance, when the value of 𝜂 (𝑣) approaches 0, the contribution of
the 𝑣𝑡ℎ view towards Eq. (2) will be close to the constant 1, thus the
𝑣𝑡ℎ view has no impact on the final clustering result. By contrast,
by granting more reliable views with higher 𝜂 (𝑣) values, the MVC
model will be more sensitive to the variations of the corresponded
𝜙 (𝑣) values and these views will play more important roles during
the training process. Therefore, our proposed non-linear model
in Eq. (2) could significantly alleviate the negative influence from
the corrupt views while maintain the availability of more reliable
views.

To further address non-convex issue as well as fit the non-linear
model shown in Eq. (2), we design a novel regularizer-free SPL

Figure 1: Illustration of the relation between 𝜙𝑖 (𝑣) and 𝑙𝑣
𝑖
.

paradigm. Concretely, we define 𝜙 (𝑣) as:

𝜙 (𝑣) =
𝑛∑︁
𝑖=1

𝜙𝑖 (𝑣) =
𝑛∑︁
𝑖=1

⌈𝑚𝑎𝑥 (1 − 𝑙𝑣𝑖 /𝜆
𝑣, 0)⌉ × 𝑙𝑣𝑖 . (3)

Here, 𝜙𝑖 (𝑣) ≥ 0 denotes the 𝑖𝑡ℎ sample’s contribution to 𝜙 (𝑣).
𝜆𝑣 ≥ 0 represents the control parameter of the self-paced learning
in the 𝑣𝑡ℎ view and ⌈·⌉ means the rounding up operation, while
𝑙𝑣
𝑖
≥ 0 and 𝑛 denote the loss of the 𝑖𝑡ℎ instance in the 𝑣𝑡ℎ view and

the total number of samples respectively. The relationship of 𝜙𝑖 (𝑣)
and 𝑙𝑣

𝑖
can be described by Figure. 1. Specifically, the value of 𝑙𝑣

𝑖
is

computed by:

𝑙𝑣𝑖 = | |𝑥𝑣𝑖 −𝐶𝑣𝑏𝑖 | |22 . (4)
𝐶𝑣 = {𝑐𝑣1, 𝑐

𝑣
2, . . . , 𝑐

𝑣
𝑘
} ∈ 𝑅𝑑

𝑣×𝑘 represents the centers of clusters
in the 𝑣𝑡ℎ view, and 𝑘 denotes the predefined number of clusters.
𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑛} ∈ 𝑅𝑘×𝑛 reflects the clustering assignment of
each data point and is shared by all the views. Concretely, if the 𝑗𝑡ℎ

sample is assigned to the 𝑖𝑡ℎ cluster then 𝑏𝑖 𝑗 = 1, otherwise 𝑏𝑖 𝑗 = 0.
Therefore, the value of 𝑙𝑣

𝑖
physically means the squared Euclidean

distance between the instance and the center of its belonging cluster.
With Figure. 1, Eq. (3) can be written in another form:

𝜙 (𝑣) = | | (𝑋 𝑣 −𝐶𝑣𝐵)𝑑𝑖𝑎𝑔(𝑤𝑣) | |2𝐹 , (5)

where 𝑤𝑣 = [𝑤𝑣
1 ,𝑤

𝑣
2 , . . . ,𝑤

𝑣
𝑛], 𝑤𝑣

𝑖
∈ {0, 1}, and𝑤𝑣

𝑖
= 1 only when

𝑙𝑣
𝑖
≤ 𝜆𝑣 .
From Eq. (5), we can find out that Eq. (3) actually has the same

selection result as the following formula in the conventional self-
paced learning manner [18] like Eq. (1):

min
𝑤𝑣

𝑛∑︁
𝑖=1

𝑤𝑣
𝑖 𝑙

𝑣
𝑖 −𝑤𝑣

𝑖 𝜆
𝑣

𝑠 .𝑡 . 𝑤𝑣
𝑖 ∈ {0, 1}.

(6)

When all the 𝜂 (𝑣) values are equal to 1, solving Eq. (6) is equiv-
alent to minimizing Eq. (5). However, with the existance of an
additional regularizer, the value of Eq. (6) is absolutely less than
or equal to 0. Due to this characteristic, such conventional SPL
paradigm is not suitable for the non-linear model in Eq. (2) that con-
strains 𝜂 (𝑣) ∈ (0, 1]. For instance, if 𝜂 (𝑣) is 0.5, then the non-linear
model works only when 𝜙 (𝑣) ≥ 0, which is impracticable to the
SPL paradigm in Eq. (6). Instead, in Eq. (3), the novel SPL paradigm



abandons the regularizer term. By this way, the objective function
is totally constituted with the clustering loss of the selected samples
and thus ensures the non-negativity of 𝜙 (𝑣).

During the iterative optimizing process, our method gradually
increases the value of 𝜆𝑣 until all the samples have joined the
training, thus the MVC model will be trained from simplicity to
complexity.

Another point that deserves our attention is that since 𝜆𝑣 reg-
ulates the participation of samples in the 𝑣𝑡ℎ view, itself can be
an evidence of the quality of the corresponded view. Generally
speaking, a more reliable view has a smaller 𝜆(𝑣) and vice versa.
With the constraint that 𝜂 (𝑣) ∈ (0, 1], the value of 𝜂 (𝑣) is:

𝜂 (𝑣) =
min
𝑢

𝜆𝑢

𝜆𝑣
. (7)

Integrating Eq. (2) to (7), the objective of NSMVC becomes:

min
𝐶𝑣 ,𝐵,𝑤𝑣

𝑚∑︁
𝑣=1

| | (𝑋 𝑣 −𝐶𝑣𝐵)𝑑𝑖𝑎𝑔(𝑤𝑣) | |
2min

𝑢
𝜆𝑢/𝜆𝑣

𝐹
. (8)

3.3 Optimization
To start the optimizing process, our method firstly initializes the
cluster centers 𝐶𝑣 and assignment matrix 𝐵 randomly. After that,
the objective function Eq. (8) is optimized by iteratively updating
each variable while others are fixed.

3.3.1 Step1: Fix 𝐶𝑣 , 𝐵, update 𝜆𝑣 ,𝑤𝑣 , and 𝜂 (𝑣).
To take the advantage of self-paced learning and enhance the

robustness of the MVC model, our method should firstly determine
the participation of samples in the beginning of each iteration. As-
suming that the whole SPL process needs𝑇 iterations, the updating
rule of 𝜆𝑣 in the 𝑡𝑡ℎ iteration is:

𝜆𝑣 =𝑚𝑖𝑛(𝑙𝑣𝑖 ) + (𝛼 + (𝑡 − 1) × 𝛽) × (𝑚𝑎𝑥 (𝑙𝑣𝑖 ) −𝑚𝑖𝑛(𝑙𝑣𝑖 )) (9)

In Eq. (9), the value of 𝛽 is computed by:

𝛽 =
1 − 𝛼

𝑇 − 1
𝑠 .𝑡 . 𝛼 ∈ [0, 1] .

(10)

By this way, we could control the starting point of the self-paced
learning process as well as finish it in the promised iteration times
𝑇 . For instance, when we set the start point 𝛼 as 0.5 and𝑇 as 6, from
Eq. (9), the value of 𝛽 will become 0.1. Then, in the first iteration,
only the samples with losses smaller than the mean value of the
𝑚𝑎𝑥 (𝑙𝑣

𝑖
) and the𝑚𝑖𝑛(𝑙𝑣

𝑖
) will be selected. In the final (6𝑡ℎ) iteration,

the value of 𝜆𝑣 will be just large enough to let all the samples join
the training.

After deciding the value of 𝜆𝑣 for 𝑣𝑡ℎ view, the values in𝑤𝑣 can
be obtained naturally. When all 𝜆𝑣 are acquired, the value of each
𝜂 (𝑣) will be calculated by Eq. (7).

3.3.2 Step2: Fix 𝜆𝑣 , 𝜂 (𝑣), and𝑤𝑣 , update 𝐶𝑣 and 𝐵 alternately.
(a) Fix 𝐵, update 𝐶𝑣 :
When 𝜂 (𝑣),𝑤𝑣 , and 𝐵 are fixed, optimizing Eq. (8) is equivalent

to solving the following problem for each view:

min
𝐶𝑣

𝑚∑︁
𝑣=1

| | (𝑋 𝑣 −𝐶𝑣𝐵)𝑑𝑖𝑎𝑔(𝑤𝑣) | |2𝐹
𝜂 (𝑣)

. (11)

Algorithm 1 The NSMVC Algorithm.
Input: Data set 𝑋 𝑣 , 𝑣 = 1, 2, . . . ,𝑚; Cluster number 𝑘 ; SPL start point 𝛼

and iteration times𝑇 .
Output: The final cluster center matrix 𝐶𝑣 , assignment matrix 𝐵, 𝑣 =

1, 2, . . . ,𝑚.
1: Initialize𝐶𝑣 and 𝐵 randomly.
2: repeat
3: for each view 𝑣 do
4: According to Eq. (9) update𝜆𝑣 to let more samples join the training.

5: for each sample 𝑖 do
6: Update 𝑤𝑣

𝑖
= 1 if 𝑙𝑣

𝑖
<= 𝜆𝑣 , otherwise 𝑤𝑣

𝑖
= 0.

7: end for
8: end for
9: Update 𝜂 (𝑣) for each view according to Eq. (7).
10: repeat
11: for each view 𝑣 do
12: Fix 𝜂 (𝑣), 𝑤𝑣 and 𝐵, update𝐶𝑣 according to Eq. (15).
13: end for
14: Fix 𝜂 (𝑣),𝐶𝑣 and 𝑤𝑣 , update 𝐵 according to Eqs. (16) and (17).
15: until convergence or exceed the maximal number of iterations
16: until all data points are selected
17: return𝐶𝑣 and 𝐵, 𝑣 = 1, 2, . . . ,𝑚.

From Eq. (11), the optimal 𝐶𝑣 of each view can be separately
obtained by finding the solution of:

min
𝐶𝑣

| | (𝑋 𝑣 −𝐶𝑣𝐵)𝑑𝑖𝑎𝑔(𝑤𝑣) | |2𝐹 . (12)

Then, Eq. (12) can be transformed into the form of matrix’s trace:

min
𝐶𝑣

𝑇𝑟
(
(𝑋 𝑣 −𝐶𝑣𝐵)𝑑𝑖𝑎𝑔2 (𝑤𝑣) (𝑋 𝑣 −𝐶𝑣𝐵)𝑇

)
. (13)

Regarding Eq. (13) as a function 𝐽 (𝐶𝑣) and its gradient is:
𝜕𝐽

𝜕𝐶𝑣
= 2𝑋 𝑣𝑑𝑖𝑎𝑔2 (𝑤𝑣)𝐵𝑇 − 2𝐶𝑣𝐵𝑑𝑖𝑎𝑔2 (𝑤𝑣)𝐵𝑇 . (14)

Setting this gradient to 0, then the updating rule of 𝐶𝑣 is:

𝐶𝑣 = 𝑋 𝑣𝑑𝑖𝑎𝑔2 (𝑤𝑣)𝐵𝑇 (𝐵𝑑𝑖𝑎𝑔2 (𝑤𝑣)𝐵𝑇 )−1 . (15)

(b) Fix 𝐶𝑣 , update 𝐵:
As for assignment matrix 𝐵, due to the non-linearity of our

model, it cannot be solved by the conventional route that divides
the loss function in the instance level and finds the optimal 𝑏𝑖 for
each sample separately. To address this issue, we design a simple
and effective solving approach, which guarantees to decrease the
value of objective function with the time complexity 𝑂 (𝑛).

Concretely, we sequentially update 𝑏𝑖 for each sample one by
one. When updating 𝑏𝑖 , we define 𝜃𝑖 (𝑣) for the 𝑖𝑡ℎ sample in the
𝑣𝑡ℎ view as:

𝜃𝑖 (𝑣) = 𝜙 (𝑣) − 𝑙𝑣𝑖 . (16)
Substituting Eq. (16) in Eq. (11), 𝑏𝑖 can be obtained by solving:

argmin
𝑏𝑖

𝑚∑︁
𝑣=1

(𝜃𝑖 (𝑣) + | | (𝑥𝑣𝑖 −𝐶𝑣𝑏𝑖 )𝑤𝑣
𝑖 | |

2
2)
𝜂 (𝑣)

. (17)

Since the possible alternatives’ number of 𝑏𝑖 is the predefined clus-
ter number 𝑘 , Eq. (17) can be easily addressed by exhaustive search.
When the optimal 𝑏𝑖 is obtained according to Eq. (17), the 𝜙 (𝑣)
value in Eq. (16) for each view can be updated and will be used to



find the optimal 𝑏 (𝑖+1) for the (𝑖 + 1)𝑡ℎ sample. As we usually have
the fact that 𝑘 << 𝑛, this step only needs 𝑂 (𝑛) operations.

In Step2, 𝐶𝑣 and 𝐵 are alternatively updated until convergence
or exceed the maximal iteration times.

The above three steps correspond to an entire iteration of the
optimization. Our method keeps the optimization process running
until all the samples have taken part in the training process. When
the whole training process is finish, the final cluster center matrices
𝐶1,𝐶2, . . . ,𝐶𝑚 and assignment matrix 𝐵 reflect the clustering result.

The entire procedure of NSMVC is summarized in Algorithm 1.

3.4 Convergence Analysis
As the NSMVC finishes in a fixed number of iterations and Step
1 only plays an instance selection role for the next step, thus we
only need to focus on the convergence trend in the alternatively
updating process of Step 2. In Part (a) of Step 2, 𝐶𝑣 is updated by
finding the optimal solution of Eq. (11), so that the value of Eq. (8) is
guaranteed to decrease. In Part (b) of Step 2, as we find the optimal
𝑏𝑖 for each instance sequentially, the value of Eq. (8) decreases
monotonously. With the non-negativity of 𝜙 (𝑣) and the monotone
bounded convergence theorem, NSMVC is guaranteed to converge
to a local minimum.

3.5 Computational Complexity Analysis
Let 𝐷 and 𝑃 denote the maximal feature dimensionality and the
maximal number of iterations for alternatively updating 𝐶𝑣 and 𝐵.
For Step 1, as the 𝜆𝑣 of each view is generated the from the mini-
mal and maximal clustering loss of all the samples, obtaining 𝜆𝑣

needs 𝑂 (𝑛𝐷) operations. Thus, updating all the 𝜆𝑣 (𝑣 = 1, 2, . . . ,𝑚)
needs𝑂 (𝑛𝑚𝐷) operations. After that, the values of𝑤𝑣 and 𝜂 (𝑣) can
be naturally computed with 𝑂 (𝑛) and𝑚 operations respectively.
Therefore, the time complexity of Step 1 is 𝑂 (𝑛𝐷). For Step 2, since
𝑑𝑖𝑎𝑔(𝑤𝑣) is diagonal, the time complexity of updating𝐶𝑣 by Eq. (15)
is 𝑂 (𝑛𝐷𝑘). Therefore, updating all the 𝐶𝑣 (𝑣 = 1, 2, . . . ,𝑚) needs
𝑂 (𝑛𝑚𝐷𝑘) operations. Then, as discussed in the Part (b) of 3.3.1,
updating 𝐵 needs 𝑂 (𝑛) operations, thus the total time complexity
of Step 2 is𝑂 (𝑃𝑛𝑚𝐷𝑘). Since the entire self-paced learning process
needs 𝑇 iteration times, the overall computational complexity of
NSMVC is 𝑂 (𝑃𝑇𝑛𝑚𝐷𝑘). With the fact that 𝑇 ≪ 𝑛 usually holds
and applying 𝑘-means individually on𝑚 views needs 𝑂 (𝑃𝑚𝑛𝐷𝑘)
operations. In summary, the proposed NSMVC shares similar com-
putational complexity with the traditional 𝑘-means method, which
is linear to the data size 𝑛.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
Data sets: Handwritten Numerals1 data set is chosen from UCI
machine learning repository, which contains 2000 points in 10
classes corresponded to numerals (0-9). Each instance is described
by the following six views: 216 profile correlations, 76 Fourier
coefficients of the character shapes, 64 Karhunen-Love coefficients,
6 morphological features, 240 pixel averages in 2 × 3 windows, and
47 Zernike moments.

1https://archive.ics.uci.edu/ml/datasets.php

MSRCv12 is an image data set that constituted with 210 images
over seven classes including tree, building, airplane, cow, face, car,
and bicycle, each providing 30 images. For each image, it is described
from 5 aspects: 24 Color Moments, 576 HOG features, 512 features,
256 LBP features, and 254 Centrist features.

The rest four data sets originate from the universities in Cornell,
Texas, Washington and Wisconsin3. For each data set, there are
two views, i.e., the content view and the citation view. According
to the ground truth, these samples can be grouped into five classes:
student, project, course, staff, and faculty.

The detailed characteristics of data sets is shown in Table 1. The
image samples of Handwritten Numerals and MSRCv1 data sets
are presented in Figure 2.

Comparing Methods: To demonstrate the effectiveness of the
proposed NSMVC model, we compare it with eight existing state-
of-the-art multi-view clustering methods:

• Co-train: A co-training based approach for multi-view spec-
tral clustering [16].

• Co-reg: A centroid based co-regularized multi-view spectral
clustering method [17].

• MVKKM: The multi-view kernel 𝑘-means clustering method
proposed by [28].

• AMGL: An auto-weighted multiple graph learning method
for multi-view clustering [23].

• CAMVC: The robust capped-norm multi-view clustering
method proposed by [8].

• MSPL: A multi-view self-paced learning method for multi-
view clustering [32].

• SAMVC: A self-paced and auto-weighted multi-view cluster-
ing method [24].

• DMVC: An auto-weighted multi-view clustering method
based on deep matrix decomposition [7].

In the above algorithms, MVKKM and CAMVC adopt the con-
ventional linear combination strategy, AMGL, SAMVC, and DMVC
apply the auto-weighting method for each view, and MSPL and
SAMVC incorporate the self-paced learning strategy into multi-
view clustering regimes to improve clustering results.

To make a comprehensive comparison, we also employ 𝑘-means
clustering on each single view (e.g., KM(1) means applying KM on
the first view). Moreover, we concatenate the features of each view,
and use 𝑘-means clustering on the joint view representation of the
data, denoted as KM(All).

Implementation andEvaluationMetrics: For the KMmethod,
we use the kmeans function in Matlab to form the clusters. For the
MSPL, we follow the original paper to reproduce it. For the rest,
we directly use the source codes from the authors and follow the
suggesting parameter settings by corresponding publications. For
all the methods, the number of clusters is always set to the number
of ground truth classes. For the proposed method, the hyperparam-
eters 𝛼 and 𝑇 are selected in the ranges of {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}
and {3, 4, 5, 6, 7, 8}, respectively.

In order to measure the quality of clustering results, we adopt
three widely used evaluation metrics: accuracy (ACC), Purity, and
normalized mutual information (NMI). The higher value of each

2https://www.microsoft.com/en-us/research/project/image-understandin
3http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/



Table 1: Summary of the data sets used in the experiments.

View Handwritten Numerals MSRCv1 Cornell Texas Washington Wisconsin
1 Profile correlations (216) Color Moments (24) Citation (195) Citation (187) Citation (230) Citation (265)
2 Fourier coefficients (76) HOG (576) Content (1703) Content (1398) Content (2000) Content (1703)
3 Karhunen coefficients (64) GIST (512) - - - -
4 Morphological (6) LBP (256) - - - -
5 Pixel averages (240) Centrist (254) - - - -
6 Zernike moments (47) - - - - -

# Samples 2000 210 195 187 230 265
# Classes 10 7 5 5 5 5

* Numbers in parentheses are the number of features in each view.

(a) Handwritten (b) MSRCv1

Figure 2: An example of two image data sets. Each row represents ten image samples from a single class.

Table 2: Results on Handwritten Numerals.

Methods ACC(%) Purity(%) NMI(%)
KM(1) 57.71±4.98 63.71±3.69 60.27±2.41
KM(2) 62.99±6.72 65.38±5.03 64.38±2.76
KM(3) 70.53±7.27 73.38±5.84 70.93±3.59
KM(4) 38.09±1.55 43.80±0.97 47.76±0.24
KM(5) 70.05±6.89 72.56±6.36 70.38±3.99
KM(6) 52.10±2.93 55.95±2.33 50.01±1.82
KM(All) 50.72±4.17 56.01±2.44 57.37±1.64
Co-train 73.28±5.87 74.92±3.89 71.04±2.15
Co-reg 78.09±6.89 80.63±5.36 75.50±2.91
MVKKM 62.18±3.34 65.56±2.40 65.80±1.19
AMGL 81.22±6.53 84.24±4.99 86.89±2.66
CAMVC 74.98±7.96 78.84±6.90 78.07±4.25
MSPL 80.26±3.93 83.60±3.22 82.80±2.25
SAMVC 75.37±12.71 79.74±11.91 82.62±12.49
DMVC 79.91±8.56 83.77±6.72 85.18±4.01
NSMVC 88.52±6.40 90.53±4.63 89.10±2.25

metric indicates the better performance. Each experiment was re-
peated for 30 times, and the mean and standard deviation of each
metric in each data set were reported.

Table 3: Results on MSRCv1.

Methods ACC(%) Purity(%) NMI(%)
KM(1) 35.76±2.38 37.88±2.45 24.25±2.50
KM(2) 62.69±6.60 64.60±5.59 54.16±4.45
KM(3) 62.00±5.52 64.90±4.17 57.03±3.74
KM(4) 47.29±1.55 49.55±0.97 41.38±0.24
KM(5) 54.64±6.79 55.55±5.25 45.18±3.19
KM(All) 46.29±3.10 46.29±3.03 42.07±2.18
Co-train 66.55±5.77 69.33±4.46 58.18±3.46
Co-reg 41.52±4.31 44.21±3.89 35.36±3.61
MVKKM 70.19±3.73 70.95±3.31 61.61±3.07
AMGL 69.74±7.04 71.81±5.01 68.35±3.24
CAMVC 67.88±5.18 71.14±3.49 62.86±2.73
MSPL 50.19±6.01 52.29±4.94 43.30±2.66
SAMVC 65.31±8.82 68.19±8.01 61.57±6.28
DMVC 62.57±10.49 63.67±10.48 58.75±8.67
NSMVC 74.65±5.62 77.14±4.44 66.65±5.00

4.2 Clustering Results
Tables 2-7 show the clustering performance of all the comparison
methods on each data set in terms of ACC, Purity, and NMI. In each



Figure 3: Clustering performance w.r.t. different parameter settings on Handwritten Numerals.

Figure 4: Clustering performance w.r.t. different parameter settings on on MSRCv1.

Figure 5: Convergence curves of NSMVC on all data sets.

column, the best results and the comparable results under the 𝑡-test
with 5% significance level are highlighted in boldface. From these
results, we have the following observations. First, the proposed
NSMVC method almost always outperform the baseline methods
on all data sets. This is mainly because our method adaptively
assigns different exponents to different views according to their
qualities. Therefore, the proposed NSMVC reduces the negative
impact of the corrupt views as well as maintains the influences of
the more reliable views. Moreover, it can be found that NSMVC
always perform better than the conventional auto-weighted MVC
methods like AMGL, DMVC, and SAMVC in which the exponents
are consistent among all the views, which empirically confirm the

effectiveness of the novel non-linear fusion technique. Further, by
taking advantage of the self-paced learning to alleviate the non-
convex issue, the proposed NSMVC also performs smaller standard
deviations comparing with other methods, which indicates the
better robustness of our method.

4.3 Convergence Study
This section analyses the convergence of our method. Figure 5
shows the convergence curves on six data sets in the first SPL
process. In these curves, the abscissa means the iteration number
while the ordinate denotes the objective value of Eq. (8). From
this figure, we can see that the proposed optimization algorithm



Table 4: Results on Cornell.

Methods ACC(%) Purity(%) NMI(%)
KM(1) 42.70±2.14 44.96±1.00 8.60±3.36
KM(2) 45.56±5.87 48.56±3.58 12.34±5.42
KM(All) 47.47±6.42 49.69±5.01 13.54±6.96
Co-train 40.62±1.27 46.41±0.88 14.48±1.40
Co-reg 42.39±1.09 44.10±0.36 5.65±2.45
MVKKM 41.64±3.72 44.72±1.03 7.27±1.83
AMGL 42.68±0.40 43.81±0.26 3.74±0.37
CAMVC 44.10±2.74 49.16±2.12 9.81±4.95
MSPL 44.09±3.18 46.19±2.65 8.78±4.62
SAMVC 43.43±0.82 44.69±0.50 6.82±3.11
DMVC 44.30±2.74 46.72±2.82 12.42±3.99
NSMVC 50.62±6.45 60.21±2.76 26.56±3.94

Table 5: Results on Texas.

Methods ACC(%) Purity(%) NMI(%)
KM(1) 55.51±1.63 57.18±1.25 7.90±4.50
KM(2) 55.56±6.07 60.04±4.61 16.18±10.90
KM(All) 56.63±5.84 60.41±5.04 14.63±10.38
Co-train 48.13±2.75 58.00±0.89 14.22±1.78
Co-reg 53.37±2.67 56.04±0.22 4.57±1.89
MVKKM 52.84±5.63 56.84±0.89 7.70±3.71
AMGL 56.13±0.43 56.84±0.25 5.43±0.51
CAMVC 59.23±4.49 60.71±4.42 14.92±9.54
MSPL 56.68±3.85 58.97±2.94 11.30±6.30
SAMVC 56.81±1.38 57.68±1.35 8.54±4.54
DMVC 56.90±4.29 59.84±3.24 16.32±7.15
NSMVC 57.81±4.93 67.17±1.45 25.23±2.60

Table 6: Results on Washington.

Methods ACC(%) Purity(%) NMI(%)
KM(1) 49.80±6.84 51.46±6.86 8.44±7.84
KM(2) 57.54±9.77 61.39±9.64 25.36±14.50
KM(All) 58.75±9.40 66.29±8.68 26.23±12.89
Co-train 53.99±2.25 62.93±1.22 19.30±1.78
Co-reg 55.97±2.95 58.64±4.19 16.68±3.63
MVKKM 48.39±1.85 49.49±1.83 8.65±4.53
AMGL 47.26±0.20 48.26±0.00 3.58±0.32
CAMVC 58.97±10.57 60.81±10.62 22.53±14.99
MSPL 52.67±7.99 54.16±7.95 13.75±11.15
SAMVC 52.93±7.95 53.70±8.12 11.39±9.43
DMVC 58.45±6.96 62.44±7.54 22.09±9.38
NSMVC 57.96±5.82 71.13±3.20 36.20±3.79

converges quickly in the vicinity of the minimum, i.e., only around
15 iterations. At the same time, it is clear that even in the beginning
of the training process, NSMVC converges quickly. As the training
forwards, NSMVC learns more available knowledge for clustering
and converges faster.

Table 7: Results on Wisconsin.

Methods ACC(%) Purity(%) NMI(%)
KM(1) 46.44±2.18 48.67±1.82 5.69±2.30
KM(2) 59.81±7.92 62.60±8.70 28.97±12.41
KM(All) 58.57±6.93 60.33±7.68 25.95±11.35
Co-train 42.58±1.89 52.57±1.10 8.28±0.83
Co-reg 47.35±0.24 47.76±0.21 4.06±0.37
MVKKM 45.62±2.88 48.03±1.34 6.29±2.22
AMGL 47.09±0.16 47.55±0.00 4.03±0.31
CAMVC 56.49±7.30 59.58±7.88 21.57±9.36
MSPL 55.50±6.85 57.66±6.79 21.87±9.27
SAMVC 49.93±3.13 48.93±3.15 7.04±4.69
DMVC 53.01±6.93 58.73±7.24 19.68±10.17
NSMVC 60.30±4.89 73.70±1.73 40.48±1.85

4.4 Parameter Sensitivity
In our NSMVC, there are two parameters for self-paced learning in
Eq. (10), i.e., the starting point 𝛼 and the total iteration number 𝑇 .
Taking Handwritten Numerals and MSRCv1 data sets as examples,
we examine the influence of these parameters to the clustering
performance. Figures 3 and 4 show the variation of ACC, Purity and
NMI over different 𝛼 and 𝑇 on two data sets. We can observe that
the clustering performance of the proposed NSMVC is relatively
stable in a wide range of 𝛼 and𝑇 values, which may provide a good
guidance for the parameter setting.

5 CONCLUSION
In this paper, a self-paced learning-based non-linear fusion method
(NSMVC) is proposed to enhance the clustering performance of
conventional multi-view clustering methods in both view level and
instance level. In the view level, a novel and effective non-linear
fusion paradigm for multi-view clustering is proposed to exploit the
complementary information from different views. Meanwhile, to
fit the non-linear model, we further design a novel modality of self-
paced learning without the regularizer term. By training the MVC
model from simplicity to complexity progressively in the instance
level, the non-convex issue is significantly alleviated and the robust-
ness of the MVC model is further enhanced. Extensive experiments
on various multi-view data sets demonstrate the effectiveness of
the proposed NSMVC.

REFERENCES
[1] Banfield, Adrián, and Adrian E. Raftery. 1993. Model-Based Gaussian and Non-

Gaussian Clustering. Biometrics 49 (1993), 803–821.
[2] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and JasonWeston. 2009. Cur-

riculum learning. In Proceedings of the 26th International Conference on Machine
Learning. 41–48.

[3] Xiao Cai, Feiping Nie, and Heng Huang. 2013. Multi-View K-Means Clustering on
Big Data. In Proceedings of International Joint Conference on Artificial Intelligence.
2598–2604.

[4] Dorin Comaniciu and Peter Meer. 2002. Mean shift: a robust approach toward fea-
ture space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence
24, 5 (2002), 603–619.

[5] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-
based algorithm for discovering clusters in large spatial databases with noise. In
Proceedings of the 2nd International Conference on Knowledge Discovery and Data
Mining. 226–231.

[6] John A. Hartigan. 1975. Clustering algorithms. John Wiley & Sons, Inc.



[7] Shudong Huang, Zhao Kang, and Zenglin Xu. 2020. Auto-weighted multi-view
clustering via deep matrix decomposition. Pattern Recognition 97 (2020), 107015.

[8] Shudong Huang, Yazhou Ren, and Zenglin Xu. 2018. Robust multi-view data
clustering with multi-view capped-norm K-means. Neurocomputing 311 (2018),
197–208.

[9] Zongmo Huang, Yazhou Ren, Xiaorong Pu, Lili Pan, Dezhong Yao, and Guoxian
Yu. 2021. Dual self-paced multi-view clustering. Neural Networks 140 (2021),
184–192.

[10] A. K. Jain, M. N. Murty, and P. J. Flynn. 1999. Data Clustering: A Review. Comput.
Surveys 31, 3 (September 1999), 264–323.

[11] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G. Hauptmann.
2015. Self-Paced Curriculum Learning. In Proceedings of the 29th AAAI Conference
on Artificial Intelligence. 2694–2900.

[12] Yangbangyan Jiang, Qianqian Xu, Zhiyong Yang, and Xiaochun Cao. 2019. Duet
Robust Deep Subspace Clustering. In Proceedings of the 27th ACM International
Conference on Multimedia. 1596–1604.

[13] Wen Jie, Zheng Zhang, Zhao Zhang, Zhihao Wu, Lunke Fei, Yong xu, and Bob
Zhang. 2020. DIMC-net: Deep Incomplete Multi-view Clustering Network. In
Proceedings of the 28th ACM International Conference on Multimedia. 3753–3761.

[14] Zhao Kang, Xinjia Zhao, Chong Peng, Hongyuan Zhu, Joey Tianyi Zhou, Xi
Peng, Wenyu Chen, and Zenglin Xu. 2020. Partition level multiview subspace
clustering. Neural Networks 122 (2020), 279 – 288.

[15] Deguang Kong, Chris Ding, and Heng Huang. 2011. Robust Nonnegative Ma-
trix Factorization using L21-norm. In Proceedings of the 20th ACM International
Conference on Information and Knowledge Management. 673–682.

[16] Abhishek Kumar and Hal Daumé. 2011. A Co-training Approach for Multi-
view Spectral Clustering. In Proceedings of International Conference on Machine
Learning. 393–400.

[17] Abhishek Kumar, Piyush Rai, and Hal Daumé, III. 2011. Co-regularized Multi-
view Spectral Clustering. In Advances in Neural Information Processing Systems
(Granada, Spain). 1413–1421.

[18] M. Pawan Kumar, Benjamin Packer, and Daphne Koller. 2010. Self-paced learning
for latent variable models. In Advances in Neural Information Processing Systems.
1189–1197.

[19] Daniel D. Lee and Hyunjune Sebastian Seung. 2001. Algorithms for non-negative
matrix factorization. In 14th Annual Neural Information Processing Systems Con-
ference. 556–562.

[20] J. MacQueen. 1967. Some Methods for Classification and Analysis of Multivariate
Observations. In Proceedings of the 5th Berkeley Symposium on Mathematical
Statistics and Probability. 281–297.

[21] F. Nie, G. Cai, J. Li, and X. Li. 2018. Auto-Weighted Multi-View Learning for
Image Clustering and Semi-Supervised Classification. IEEE Transactions on Image
Processing 27, 3 (2018), 1501–1511.

[22] Feiping Nie, Heng Huang, Xiao Cai, and Chris Ding. 2010. Efficient and Ro-
bust Feature Selection via Joint l2,1-Norms Minimization. In Advances in Neural

Information Processing Systems. 1813–1821.
[23] Feiping Nie, Jing Li, and Xuelong Li. 2016. Parameter-free Auto-weightedMultiple

Graph Learning: A Framework for Multiview Clustering and Semi-supervised
Classification. In Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence (New York, New York, USA). 1881–1887.

[24] Yazhou Ren, Shudong Huang, Peng Zhao, Minghao Han, and Zenglin Xu. 2020.
Self-paced and auto-weighted multi-view clustering. Neurocomputing 383 (2020),
248 – 256.

[25] Shaojun Shi, Feiping Nie, Rong Wang, and Xuelong Li. 2020. Auto-weighted
multi-view clustering via spectral embedding. Neurocomputing 399 (2020), 369–
379.

[26] Alexander Strehl and Joydeep Ghosh. 2002. Cluster Ensembles - A Knowledge
Reuse Framework for CombiningMultiple Partitions. Journal of Machine Learning
Research 3 (2002), 583–617.

[27] Chang Tang, Xinwang Liu, Xinzhong Zhu, En Zhu, Zhigang Luo, Lizhe Wang,
andWen Gao. 2020. CGD: Multi-View Clustering via Cross-View Graph Diffusion.
In Proceedings of the AAAI Conference on Artificial Intelligence. 5924–5931.

[28] Grigorios Tzortzis and Aristidis Likas. 2012. Kernel-Based Weighted Multi-view
Clustering. 2012 IEEE 12th International Conference on Data Mining (2012), 675–
684.

[29] Hongxing Wang, ChaoqunWeng, and Junsong Yuan. 2014. Multi-feature spectral
clustering with minimax optimization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 4106–4113.

[30] Hao Wang, Yan Yang, Bing Liu, and Hamido Fujita. 2019. A study of graph-
based system for multi-view clustering. Knowledge-Based Systems 163 (2019),
1009–1019.

[31] Yang Wang and Lin Wu. 2018. Beyond Low-Rank Representations: Orthogonal
clustering basis reconstruction with optimized graph structure for multi-view
spectral clustering. Neural Networks 103 (2018), 1 – 8.

[32] Chang Xu, Dacheng Tao, and Chao Xu. 2015. Multi-view self-paced learning for
clustering. In Proceedings of the 24th International Joint Conference on Artificial
Intelligence. 3974–3980.

[33] Jinglin Xu, Junwei Han, and Feiping Nie. 2016. Discriminatively embedded
k-means for multi-view clustering. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 5356–5364.

[34] NanXu, YanqingGuo, Xin Zheng, QianyuWang, andXiangyang Luo. 2018. Partial
Multi-view Subspace Clustering. In Proceedings of the 26th ACM international
conference on Multimedia. 1794–1801.

[35] Yu-Meng Xu, Chang-DongWang, and Jian-Huang Lai. 2016. WeightedMulti-view
Clustering with Feature Selection. Pattern Recognition 53 (2016), 25–35.

[36] Guang-Yu Zhang, Chang-Dong Wang, Dong Huang, and Wei-Shi Zheng. 2017.
Multi-view collaborative locally adaptive clustering with Minkowski metric.
Expert Systems with Applications 86 (2017), 307–320.

[37] Linlin Zong, Xianchao Zhang, Long Zhao, Hong Yu, and Qianli Zhao. 2017. Multi-
view clustering via multi-manifold regularized non-negative matrix factorization.
Neural Networks 88 (2017), 74 – 89.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Multi-View Clustering
	2.2 Self-Paced Learning

	3 Non-Linear Fusion for Self-Paced Multi-View Clustering
	3.1 Problem Definition
	3.2 Proposed Model
	3.3 Optimization
	3.4 Convergence Analysis
	3.5 Computational Complexity Analysis

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Clustering Results
	4.3 Convergence Study
	4.4 Parameter Sensitivity

	5 Conclusion
	References

