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ABSTRACT

Existing video copy detection methods generally measure video
similarity based on spatial similarities between key frames, neglect-
ing the latent similarity in temporal dimension, so that the video
similarity is biased towards spatial information. There are meth-
ods modeling unified video similarity in an end-to-end way, but
losing detailed partial alignment information, which causes the
incapability of copy segments localization. To address the above
issues, we propose the Video Similarity and Alignment Learning
(VSAL) approach, which jointly models spatial similarity, temporal
similarity and partial alignment. To mitigate the spatial similarity
bias, we model the temporal similarity as the mask map predicted
from frame-level spatial similarity, where each element indicates
the probability of frame pair lying right on the partial alignments.
To further localize partial copies, the step map is learned from the
spatial similarity where the elements indicate extending directions
of the current partial alignments on the spatial-temporal similarity
map. Obtained from the mask map, the start points extend out into
partial optimal alignments following instructions of the step map.
With the similarity and alignment learning strategy, VSAL achieves
the state-of-the-art F;-score on VCDB core dataset. Furthermore, we
construct a new benchmark of partial video copy detection and lo-
calization by adding new segment-level annotations for FIVR-200k
dataset, where VSAL also achieves the best performance, verify-
ing its effectiveness in more challenging situations. Our project is
publicly available at https://pvcd-vsal.github.io/vsal/.
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Figure 1: The illustration of Video-level Copy Detection
(VCD) and Partial Video Copy Detection (PVCD). VCD aims
to discover copy videos and PVCD focuses on localize both
video-wise and segment-wise copies.

of the 29th ACM International Conference on Multimedia (MM °21), Octo-
ber 20-24, 2021, Virtual Event, China. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3474085.3475549

1 INTRODUCTION

In the past few decades, video applications such as video producing,
re-producing and distributing have become convenient and low-
cost. As a result, video copyright infringement has been extremely
common on social medias and video-sharing platforms, making
video copyright protection important and urgent. To solve these
problems, Video-level Copy Detection (VCD) aims to discover the
copies from a large scale of video database. In practical applica-
tion, it is necessary to know which part of the video is the copy.
Partial Video Copy Detection (PVCD) [11] is such paradigm to not
only discover the video-wise copies, but also localize the segment-
wise copy video clips for a specific query video. The difference
between VCD and PVCD is shown in Figure 1. Since some of those
copies have been edited extensively and transformed significantly
introducing huge spatial and temporal differences with the origins,
making partial video copy detection a very challenging task. An ef-
fective PVCD system is required to have two capabilities: similarity
measurement and partial alignment localization.

For similarity measurement, existing methods generally based
on frame-level representation, such as local descriptor based repre-
sentation [26], color correlation [6], DCT coefficients [7] and CNN
deep feature [1, 8, 11, 15, 18]. The above representations mainly
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focus on the spatial information and neglect the temporal informa-
tion, which causes that the video similarity is easily biased towards
spatial information of the key frames. To take the temporal in-
formation into consideration, a verification step called temporal
alignment is often adopted, such as Dynamic Programming [3, 17],
Temporal Networks [10, 21, 23] and Temporal Hough Voting [4, 11].
Temporal alignment filters out the falsely matched frame pairs,
and then the final video similarity is calculated by aggregating the
frame-level similarities of the matched frame pairs. However, it is
still dominated by the spatial information encoded in separated
representations, leaving the temporal similarity that hidden in the
temporal order of frame-level similarities still underestimated. Fac-
ing varies spatial and temporal copy transformations, relying on
any single dimension would lead to the lack of robustness. There-
fore it is crucial to take both spatial and temporal similarities into
consideration for video similarity measurement.

To explore the effect of spatial and temporal structure of the
visual similarity, some end-to-end similarity aggregation methods,
e.g. ViSiL [13], learn a single spatio-temporal similarity from the
frame-to-frame similarity matrix, but the black-box models dis-
card detailed sequence alignment information, which causes the
incapability of partial copy alignment localization. This is also the
common problem that the existing methods face to.

To effectively and simultaneously model similarity measurement
and partial alignment localization, this paper proposes the Video
Similarity and Alignment Learning (VSAL) approach. Its contribu-
tions can be summarized as follows:

e Mask-based temporal similarity measurement: We pro-
pose a novel representation of the temporal similarity called
mask map, which is learned from frame-to-frame spatial sim-
ilarity map. Each element of mask map indicates the prob-
ability of each possible frame pair lying right on a partial
alignment. In this way, information hidden in the temporal
order of frame-level similarities is modeled jointly with the
spatial similarity, generating spatio-temporal similarity to
reduce the spatial bias of video similarity measurement.
Step-based partial alignment: We further propose a pre-
diction of the step map based on frame-to-frame spatial
similarity map, which indicates partial alignments extending
directions, and makes a lead to complete the alignments as
long as the correct start points are provided. In this way,
the detailed alignment information for copy segments is
jointly modeled with spatio-temporal similarity to optimize
the video similarity measurement comprehensively.

Besides, extensive experiments on VCDB and FIVR-200k-PVCD
verify the effectiveness of the proposed VSAL approach, achieving
the best performances. Especially, we construct a new benchmark
of partial video copy detection, called FIVR-200k-PVCD, by adding
new segment-level annotations on FIVR-200k, which further eval-
uate the effectiveness of the proposed VSAL approach in more
challenging situations.

2 RELATED WORK

The relevant video copy detection tasks mainly include Near-Duplicate
Video Retrieval (NDVR)[9, 20, 25], Duplicate Scene Video Retrieval
(DSVR)[12, 13] and Partial Video Copy Detection (PVCD)[11].
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From the aspect of detection strategy, retrieval tasks NDVR and
DSVR are the so-called Video-level Copy Detection (VCD) that
require systems to rank copy videos ahead of the irrelevant ones.
For efficient video similarity measurement. Most retrieval methods
have a straightforward motivation aggregating the local frame-level
features into clip-level or even video-level representations, such as
global vectors[15, 25], hash codes[8, 9, 19], Bag-of-Words (BoW)[2,
14, 16], and video similarity is measured by distances of aggregated
representations. However, the aggregated representations are too
coarse to cover abundant fine-grained information and can’t be
used to partial segment localization. Therefore in this paper, we
adopt frame-level representation of SVRTN([8] to implement frame
encoding, keeping the fine-grained information for partial segment
localization.

From the aspect of video copy type, copy videos in NDVR dataset
like CC_WEB_VIDEO[25] and UQ_VIDEO[19] are near-duplicate
videos which are close to duplicate of each other but different in
terms of photometric and editing variations, encoding parame-
ters, file format, etc. Copies in DSVR and PVCD dataset like FIVR-
200k[12] and VCDB[11] are more complicated partial copies but
DSVR only evaluates video-level detection and only provides the
video pair annotations. Therefore in this paper, we construct a
new FIVR-200k-PVCD benchmark by adding copy segment annota-
tions to the DSVR subset of FIVR-200k[12] which contains more
challenging spatial and temporal transformed copy segments.

3 VIDEO SIMILARITY AND ALIGNMENT
LEARNING

In this section, we formulate the video similarity into the combi-
nation of three components: spatial similarity, temporal similarity
and partial alignment. Based on this similarity measurement, we
propose the Video Similarity and Alignment Learning (VSAL) ap-
proach to jointly model these three components, as shown in Figure
2. It consists of three modules: (1) Spatial similarity measurement
is based on frame-level representations to generate the spatial simi-
larity. (2) Mask-Step CNN aims to predict the mask map (MM) and
step map (SM) simultaneously, which represent temporal similarity
and an instruction map to complete partial alignments respectively.
(3) Spatio-temporal similarity and alignment is based on spatial
similarity, mask map and step map to calculate spatio-temporal
similarities and localize copy segments.

3.1 Problem Formulation

Given two input video sequences u, v containing M, N frames re-
spectively, there are three components of the similarity between u
and v which are spatial similarity (S), temporal similarity (T) and
partial alignment (P). Therefore, the video similarity (Sim) can be
formulated as:

Sim = F(S,T,P) 1)

The formal description of S, T and P are presented below.

3.1.1 Spatial Similarity Matrix.

Spatial similarity is calculated only based on individual frame con-
tent, denoted as a matrix S = (s; j) € RMXN where the elements
are frame-level similarities between frame pairs. Some examples of
S are visualized in Figure 3.
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Figure 2: Overview of proposed VSAL approach. Spatial similarity measurement encodes input frames into frame-level repre-
sentations and measure the spatial similarity. Learning from the spatial similarity, Mask-Step CNN predicts mask map and
step map. MM together with spatial similarity and SM produce spatio-temporal similarity and partial alignment. Modules

within the dashed box are jointly learning modules.

04
0.2
X 0.0

Figure 3: Examples of spatial similarity matrices. The upper
row shows the spatial similarity matrices of well-matched
video pairs and others are matrices of unmatched video
pairs. All the matrices are trimmed to 16x16.

3.1.2  Partial Alignment.

As illustrated in Figure 3, spatial similairty matrices of well-matched
videos often have one or more clear consecutive diagonal paths as
patterns of sequence alignments where frame-level similarities are
much greater than the off-path ones. The diagonal paths are com-
posed of consecutive pairwise matched frames, generally following
the temporal order, but partial alignments do not neccesarily follow
temporal order all the time and could begin or end at any position
in the spatial similairty matrices.We use a set Py to denote the k-th
partial alignment between u and v, where its elements are frame
pairs marked by the frame ids (i, j) € N2. In VASL, a step map is
learnt from S to model P and the detialed method is presented in
Section 3.3.

The effect of partial alignmen can be described from two per-
spectives: (1) It filters out false matched frames, which are not the
true copy frame pairs. (2) The length of Py indicates the confidence
of a detection proposal as a copy segment. Previous works gen-
erally drop the copy segment proposals which is shorter than a
threshold, called hard weight (HW) method. On the contrary, we
adopt a soft weight (SW) as confidence score weighted on the final
video similarity. Since proposals with longer time span should have
greater confidence, SW is formulated by an increasing function as
follows:

1

KT Tt ye 1Pl

@ ()
where || Pt || denotes the shorter length of two segments correspond-
ing to P and y is a temperature parameter. It is easy to notice that
ay increases as Py geting longer and it is approaching its upper
bound 1 when Py, is long enough.

3.1.3  Temporal Similarity Matrix.

Unlike spatial similarity is calculated only based on individual frame
content, temporal similarity mainly focuses on the strength of tem-
poral alignment, also denoted as a matrix T = (t;;) € RM*N Some
temporal arrangement information has been taken into account
when extracting Py.. However, the temporal arrangement informa-
tion is totally lost in the similarity calculation by simply collecting
the frame-level similarities located in P;. As a consequence, the
final similarity is usually biased towards spatial information in
frame-level representations. As the examples present in Figure 3,
despite of the various strengths of spatial similarity, we can also see
the different degrees of temporal alignment between well-matched
videos and unmatched videos. Therefore, the temporal similarity
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Table 1: Details of Mask-Step CNN architecture

Layer  Kernel size/ Output size Activation
Padding
Conv-1 3x3/1 MXN X8 ReLU
Conv-2 3x3/1 M X N x 16 ReLU
Conv-3 3% 3/1 M X N x 32 ReLU
Mask 3x3/1 M XN X2 Softmax
Step 2x2/0 (M-1)x(N-1)x3  Softmax

needs to be estimated and can also be learned from spatial similar-
ity matrix. A mask map is also learnt from S to model T and the
detialed method is presented in Section 3.3.

3.1.4 The Final Video Similarity.

As all three components are fully represented, we calculate the final
video similarity by jointly considering S, T and P. Similarity Simy
of the k-th partial alignment can be defined as:

. 4253
Simy = T Z Si,jtij ©)
i,j€Px
where | -| denotes the cardinality of a set. Based on this formulation,
we construct a model to jointly model above three components.

3.2 Spatial Similarity Measurement

In spatial similarity measurement, we first extract frame-level repre-
sentations from spatial encoders including a frame encoder (FE) and
a sequence encoder (SE), and then calculate the spatial similarity
based on these frame-level representations.

Specifically, we uniformly sample frames from u and v, and
features are extracted by a single pre-trained image feature encoder
individually forming two frame-level feature sequences U € RM*W,
V € RV*W \where W is the frame-level feature dimension. Then
a transformer([22] encoder layer fy is deployed as the sequence
encoder to enhance the frame-level representation via interaction
between those individual spatial information. Through sequence
encoding, sequence length and vector dimension remain identical
to the original U and V. Finally, spatial similarity S are measured
by matrix multiplication as follows:

S=f) ()T ©)

Since U and V have been L2 normalized along dimension W, each
element of S is a cosine distance of a frame-level feature pair with
corresponding timestamps.

3.3 Mask-Step CNN

Based on the spatial similarity, we propose a Mask-Step CNN to
simultaneously model the temporal similarity and partial alignment.

3.3.1 Architecture.

As shown in Table 3.3, Mask-Step CNN is a two branch model with
a mask branch and a step branch. The mask branch learns mask
map (MM) as representation of temporal similarity, and step branch
focuses on partial alignment by learning a step map (SM) which is
a direction instruction map to find the potential partial alignment.
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The backbone consists of 3 convolution layers followed by a
nonlinear activation respectively. When spatial similarity S passes
through the backbone, spatial size of output feature maps M and N
remain unchanged.

For the mask branch, a 2-channel convolution layer is used to
make a binary classification on each spatial position (i, j), indicating
the probability of corresponding position lying right on a partial
alignment. The positions with higher probability are more likely
the exact matched frame pairs. It is noted that the mask map can
also represent how well s; ; aligned along their temporal direction,
so mask map is a representation of the temporal similarity T.

For the step branch, we also use a similar convolution layer for
step predictor making a direction classification on each position,
and the categories indicate directions to step next from current
position to continue alignment path. Specifically, there are 3 op-
tions for each position stepping next which are corresponding to 3
category of classification: "stepping right-down", "stepping right"
and "stepping down". Following the instructions of predicted step
map with size of (M — 1) X (N — 1), we can easily walk through
either S or T as long as an M X N map starting from an arbitrary
position to build a path.

3.3.2  Training Data and Label Generation.

We train Mask-Step CNN and sequence encoder together in a self-
supervised manner and both the training data and label are gener-
ated through data augmentation. We first collect a large amount
of unlabeled videos from the Internet. Then, a data augmentation
including temporal and spatial transformations is implemented to
generate training data and label.

Four different temporal transformations including speed adjust-
ment, freezing, deletion and do-nothing are optional and chosen
randomly. The default frame rate of input sequences for training
is 1 fps. For convenience of speed adjustment, we sample raw se-
quences in a higher frame rate of 2 fps, so the raw sequences are
at 0.5X speed comparing to the default 1 fps sequence. For a target
speed higher than 0.5x%, frames in the raw sequences are randomly
removed to accomplish that speed. For example, if the target speed
is 1%, every 1 from 2 frames will be removed from raw sequence.
For the target speed of 1.5%, every 2 from 3 frames are removed.
The rest target speeds can be done in the same manner. For freezing
transformation, we randomly pick a frame and copy it several times.
As for deletion, some consecutive frames are randomly picked and
removed from original sequences. After temporal transformation,
three types of spatial transformations similar to [8] are considered:
photometric variation, geometric transformation and other editing
operations. Each training video is randomly transformed twice to a
pair of sequences namely anchor and positive.

After data augmentation, we generate training labels based on
these transformations. During temporal transformation, all output
frames are traced and each of them can be traced back to an original
frame. For the i-th frame in anchor or positive sequence, i’ denoting
the id of corresponding original frame, which are noted as the
clue to find the alignment path between anchor and positive. The
alignment path can be denoted as R = {(i, j) : i’ = j’}, which means
frames transformed from the same original frame are matched
frames. Therefore the mask label can be obtained from R. The label
of (i, j) in mask map is 1 when (i, j) € R else 0. An example of
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Figure 4: An example of mask label and step label. Mask la-
bel is above while step label is below.

mask label is shown in Figure 4 where yellow points indicate the
labels in those positions are 1 and else 0.

For step branch, three categories (0, 1, 2) are predicted as three
next step directions (right-down, right, down) respectively. How-
ever, the positions whose both above three directions’ near neigh-
bors are off the alignment path R are considered not responsible for
any direction prediction. Formally, only if (i+1, j+1) or (i+1, j) or
(i, j+ 1) in R, (i, j) is responsible for predicting the next stepping
direction. A set of the responsible (i, j)s and their target direction
categories [ are defined following as Q:

Q:{ {11 : (i, ) € RY1=0 ©
{(, 4, 1) : C1(i, j) € Rand Co(i, j) ¢ R}, else.

where C;(+) is the step function producing the next position ac-
cording to category id I. Category 0, whose target direction is
right-down, is the prior option. Categories of right and down are
optional only if Cy (i, j) ¢ R. According to Q, it is obvious that the
target probability of each position i, j and category I can be defined
as:

0,(i,j,1) ¢ Q
di ;=1 051>0and (i,j,1) € Qand (i,,2) € Q, (6)
1, else.

where superscripts [ denotes the category id. In case of that both
right and down are optional, we assign both categories a probability
of 0.5. Therefore, Y, df ;=L An example of step label is shown in
Figure 4 where the Cate’gory 0, 1 and 2 are represent by color yellow,
dark green and light green respectively. The rest positions in the
label map are not responsible positions and will not be involved in
loss calculation.

3.3.3  Multi-task Learning.
The overall loss is the combination of mask loss and step loss in
a multi-task manner:
L =Ly +AL )

where Ly, is mask loss, Ls is step loss, and A is utilized to balance
those two losses.
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Algorithm 1 Partial Alignment

Input: Spatial similarity S = (s; ) € RMXN Temporal similarity
T = (t;;) € RMXN: Step map D = (di,j) € NWM-Dx(N-1),
Threshold to find start points 7; Similarity threshold o.

Output: Partial alignments P.

1 ®={(ij): tij > th k=0.
2: while |®| > 0 do
3 k=k+1.

& SetPp=02;9=0.

5. Select (i, j) from ® with smallest i + j value.
6: whilei<Mandj<Nandg < 3do

7: st =sj jtij.

8: if st < o then

9: g=g+1.

10: else

11: Add (i, j) to Py.

12: end if

13: Remove (i, j) and its 8 neighborhoods from .
W () =Cy, (i)

15:  end while
16: end while
17: return P.

Mask loss is a Binary Cross-Entropy Loss that can be expressed
as follows:

__ 1 0 1
Lm = “MN Z log(y; ;) + Z log(y; ;) (8)
(i.j)€R (i.j)eR

where y is the mask branch output, superscripts 0/1 denote the
category id of background and foreground respectively, so the fore-
ground probability y! is regarded as the element of MM represent-
ing temporal similarity T.

Step loss is also a Cross-Entropy Loss which is formulated as
follows:

1
Ly=———— " log(z})d}; (9)

- 1
2iiheQdi; (iiheo

where z is the predicted direction probabilities. Final decision are
made by maxl(zgj) where we obtain the so called SM.

3.4 Spatio-Temporal Similarity and Alignment

From the spatial similarity measured by spatial representations,
predicted mask map and step map, we identify partial alignments
and then calculate a spatio-temporal similarity for every partial
alignment.

3.4.1 Partial Alignment.

Partial alignment is implemented as shown in Algorithm 1. We
specify start point candidates as (i, j)s where t; ; > 7, and then
starting from these points we keep stepping next following the
instruction of SM until the map boundaries are reached or three
consecutive s; jtj j < o occurred, where 7 and o are predefined
thresholds. Every time before stepping, the start point with the
smallest index i + j is chosen. To accelerate computation and avoid
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detecting an alignment repeatedly, start point candidates are re-
moved if an alignment steps through one of their 8 neighborhoods.
Moreover, only the matched frame pairs with spatio-temporal simi-
larities larger than o are adopted to Py. The alignment algorithm
ends when no start point candidate remains. After detecting all the
partial alignments, the start times and end times of corresponding
copy segment pairs are obtained as the minimum and maximum
timestamps of frame pairs in Py.

3.4.2 Spatio-Temporal Similarity.

At beginning, an element-wise multiplication between S and T is
conducted to merge the spatial and temporal similarities, so we
assign a spatio-temporal similarity to each frame pair. We collect
corresponding spatio-temporal similarities of all frame pairs in
Py and soft weight ;. are calculated as described in Equation (2).
Finally, we calculate a spatio-temporal similarity Simy for every
partial alignment Py, according to Equation (3).

4 EXPERIMENTS

4.1 Implementation details

For FE, we adopt the implementation of SVRTN[8] from which
we extract the float features and the feature dimension W of frame-
level representations including U,V,fp(U) and f3(V) are set to 512.
For SE, we use a 8-head transformer encoder layer with 1024 hidden
size and no positional embedding is added to the input features.
SE are trained together with Mask-Step CNN. All features are L2-
normalized along the feature dimension W before and after SE.

For training data and label generation, we first sample raw frames
from videos with a fixed rate of 2 fps. Four temporal transforma-
tions are randomly chosen with the same probability. For speed
adjustment, the target speeds are randomly chosen from the range
of 0.5x ~2.0X corresponding to frame rate of 2 fps ~0.5 fps. Before
the transformations except speed adjustment, the frame rate is low-
ered to the default 1fps. In freezing and deleting transformations,
at most 4 frames are repeated or removed. The output anchor and
positive sequences are trimmed or padded into a fix length of 16
and they are required to have at least 4 frames matched.

For training process, we set A = 1 meaning that mask loss and
step loss have the same weight. We adopt default SGD optimizer
where momentum and weight decay are fixed to 0.9 and 107>, The
model is trained for 8 epoch with learning rate of 5 x 10~* for the
former 4 epochs and 5 x 107> for the last 4 epochs.

For the similarity calculation and partial alignment, the temper-
ature parameter y in SW is set to 100. The start points threshold
7 on mask map is fixed to 0.3 and ¢ is set to 0.1 as threshold on
spatio-temporal similarity.

4.2 Datasets

VSAL is trained in a self-supervised manner, so a large number
of unlabelled raw videos are collected as our training data. For
evaluation, a benchmark dataset called VCDB and a new labelled
FIVR-200k are used. (1) Web Videos: For self-supervised training,
we collect videos about 3000 hours from video-sharing website.
Videos are transformed temporally and spatially during training
as explained in Section 3.3.2. (2) VCDB[11]: VCDB dataset is con-
structed for partial video copy detection, which contains real-world
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Table 2: Comparison of segment-level performance between
VSAL and other state-of-the-art methods on VCDB core
dataset.

Methods SP SR Fy-score
ATN[11] 0.7050  0.5220 0.5956
CNN[11] - - 0.6503
SNN[11] - - 0.6317
CNN+SNN[11] - - 0.6454
TH+CC+ORB([6] 0.5052  0.9294 0.6546
LAMVI[1] - - 0.6870
CNN-+SC[23] (1fps) - - 0.6995
CNN+SC[23] (all frames) - - 0.7038
BTA[26] 0.7600  0.7500 0.7549
Q-Learning[7] 0.8829  0.7355  0.8025
FPVCD[24] - - 0.8613

VSAL 0.8971 0.8462 0.8709

videos of 28 different queries (Beckham 70 yard goal, dove evo-
lution commercial, etc.) and 7 categories varying from speech to
surveillance. The VCDB core dataset are published with 528 videos
and annotations of over 9200 copy segment pairs both with start
time and end time. Most segments are easy to detect and spatial and
temporal transformations are relatively simple. (3) FIVR-200k-
PVCD: To evaluating performance on more complicated spatial
and temporal situations, we add annotation of the segment pairs for
DSVR subset of FIVR-200k[12] to construct the new partial video
copy detection benchmark, called FIVR-200k-PVCD. Original FIVR-
200k is a fine-grained instance video retrieval dataset consisting
of 225,960 videos and 100 queries, including three retrieval tasks
namely Duplicate Scene Video Retrieval (DSVR), Complementary
Scene Video Retrieval (CSVR) and Incident Scene Video Retrieval
(ISVR). Here we only focus on the annotations DSVR videos. Over-
all FIVR-200k-PVCD contains 10870 annotated copy segment pairs
involving 5935 different video pairs. Many partial copy segments
are more challenging with abundant temporal and spatial editing.

4.3 Evaluation Metrics

For VCDB evaluation, we follow the metrics in [1, 11], namely
segment-level precision (SP) and recall (SR) as well as the best F;-
score. As defined by VCDB benchmark, a segment pair both share
frames to a ground-truth pair are considered as a correct detection.

Similar to VCDB, we also use SP, SR and the best F;-score as
evaluation metrics for FIVR-200k-PVCD. Additionally, we report
them with different Intersection of Union (IoU) constrains to better
evaluate the precision of copy segments localization. As a prerequi-
site, a minimum IoU threshold is set for every proposed segment
with groundtruth segment. A segment pair is considered as a cor-
rect detection only if both IoUs with a groundtruth pair are above
the threshold.

4.4 Comparisons with State-of-the-art Methods

We compare the proposed VSAL approach with more than 10 state-
of-the-art methods in VCDB core dataset benchmark and SP, SR and
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Table 3: Ablation studies on VCDB core dataset.

Methods SP SR Fy-score
HV (baseline) 0.8513  0.6912  0.7629
HV+SE 0.8607  0.6936 0.7682
HV+SE+SW 0.7686  0.7887 0.7785
SM+SE+SW 0.8447  0.8047 0.8242

SM+SE+SW+MM | 0.8971 0.8462 0.8709

Fi-score are reported in Table 2. These methods are briefly intro-
duced below: ATN, CNN, SNN and CNN+SNN[11]: are reported
by VCDB benchmark. ATN uses local descriptor based frame rep-
resentations. CNN and SNN use deep features trained in different
strategies. All the methods are implemented with spatial geomet-
ric verification and the Temporal Network as temporal alignment.
TH+CC+ORB[6] uses two global representations TH and CC to-
gether with a local feature of ORB. The alignment is done with
proposed multilevel matching. LAMV[1] is proposed to compare
and align videos using temporal match kernels which finds tem-
poral alignment in the Fourier domain. CNN+SC[23] encodes key
frames separately and then compress and aggregate features into
a compact representation. Temporal Network is used for video
segment matching. BTA[26] is proposed to search boundaries for
partial copy segments with Binary Temporal Alignment method.
Q-Learning[7] is a learning based method for copy video and
segment decision which is adapted from a reinforcement learning
technique. FPVCD[24] is proposed to search with global feature
and localize segments with modified temporal network.

As we can see, VSAL achieves the best performance on SP, SR
and F;-score comparing to others. Above all, VSAL is the only
approach that takes the temporal similarity into similarity measure-
ment which models the temporal order of frame-level similarities.
Most methods introduce temporal information through alignment,
such as Hough Voting and Temporal Network, making temporal
information absence from similarity measurement. Other methods
such as Q-Learning model pixel variances as temporal informa-
tion, but such representations only encode the variances between
two frames next to each other ignoring the long-range temporal
relations. Moreover, VSAL utilizes a unified learning strategy that
models spatial similarity, temporal similarity and partial alignment
jointly via multitask learning, achieving better performance than
other learning based methods such as Q-Learning, which only con-
ducts learning on the decision stage. For partial alignment, step
map learning from vast number of unlabelled data is more robust to
deal with tricky temporal transformations than artificial rule-based
methods used by BTA, CNN+SC and FPVCD.

4.5 Ablation Study

To fully understand each module of VSAL, experiments are per-
formed with different settings. We first construct a baseline model
based on the spatial similarity calculated from frame encoder fea-
tures and the alignment method of Hough Voting (HV)[5, 11] with
default hard weight (HW). Then four modules in VSAL including
sequence encoder (SE), soft weight (SW), step map (SM) and mask
map (MM) are added into the baseline model one after another. Per-
formances are compared to verify the effectiveness of each module.
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Figure 5: Comparison of spatial similarity matrices with or
without sequence encoder. The spatial similarity matrices
without sequence encoder are shown on the top while at the
bottom row shows them with sequence encoder.

Figure 6: Visualization of Spatial Similarity and correspond-
ing predicted MM and SM. The first row shows the spatial
similarity and the two rows below shows the visualization
of MM and SM respectively. In the last row, yellow, green
and dark purple mean the different directions in SM: right-
down, down and right respectively.

Table 4: Parameter sensitivity of parameters y, 7 and o. F;-
scores are reported.

Parameters 0.1 0.2 0.3 0.4
T 0.8736  0.8723 0.8709 0.8699
o 0.8709 0.8649 0.8189 -

Parameters 10 100 500 1000
Y 0.8695 0.8709 0.8664 0.8650

4.5.1 Effectiveness of Sequence Encoder.

We first add the sequence encoder after the frame encoder and
compare its performance with baseline setting. As shown in the
first two rows of Table 3, we can observe that SE introduces a slight
improvement of about 0.5% F;-score.

To better explain the improvement, visualized examples of spatial
similarities calculated from FE and SE are presented in Figure 5. As
can be seen from the visualization, alignment paths become more
clear by adding SE after FE. As a result, the jointly trained sequence
encoder learns to enlarge the difference between frames as well
as suppress the similar representations. It is especially helpful for
finding partial alignments of motionless shots (as the first 3 columns
in the figure) because minor differences between similar frames are
easier to capture.
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Table 5: Performance comparison on FIVR-200k-PVCD.

Zhen Han, et al.

IoU>0 10U>0.3 1oU>0.5 ToU>0.7
Methods SP SR Fi-score SP SR Fi-score SP SR Fi-score SP SR Fi-score
HV(baseline) 0.4350  0.5911 0.5012 0.6069  0.3491 0.4433 0.5501 0.3142 0.4000 0.4778  0.2708 0.3457
HV+SE 0.4579  0.5936 0.5170 0.5827  0.3794 0.4596 0.5281 0.3439 0.4165 0.5164  0.2755 0.3593
HV+SE+SW 0.5730  0.5255 0.5483 0.5075  0.4563 0.4805 0.4541 0.4128 0.4325 0.3952  0.3553 0.3742
SM+SE+SW 0.8300 0.5916 0.6908 0.8151 0.5525 0.6586 0.7580 0.5014 0.6036 0.6485 0.4091 0.5017
SM+SE+SW+MM | 0.8575 0.6883 0.7636 | 0.8212 0.6556  0.7291 | 0.7738 0.5434 0.6384 | 0.7076 0.4281 0.5335
4.5.2  Effectiveness of Soft Weight. 4.7 Experiment on the New Benchmark

To demonstrate the effectiveness of soft weight (SW), we compare
it with the default choice hard weight (HW). In HW, detected seg-
ments with length less than 3 are dropped to avoid false positives.
In SW, in contrast, similarity is weighted by a confidence score
which is calculated according to Equation (2). As shown in the 2nd
and 3rd rows in Table 3, dealing with short segments in a soft way
performs better in the best Fi-score than simply dropping results
shorter than a certain length.

4.5.3  Effectiveness of Step Map.

For the alignment stage, we replace HV with proposed learning
based Step Map (SM) to evaluate its effectiveness. As shown in
the 3rd and 4th rows, both SR and SP increase mainly because SM
learning from vast number of unlabelled data is more robust facing
critical temporal transformations. The improvement on VCDB is
4.5% Fy-score. The effectiveness of step map will be further eval-
uated on FIVR-200k-PVCD in section 4.7 which contains more
challenging situations. For SM, a visualization is presented in Fig-
ure 6. As we can see, SM makes a decision of stepping direction for
every single position except the last row and column. If a correct
start points are selected, following the direction instructions we
always get the correct alignment.

4.5.4  Effectiveness of Temporal Similarity.

To demonstrate the improvement made by adding temporal sim-
ilarity, we further utilize the model with mask map (MM). Final
similarities are measured based on the spatio-temporal similarity
that combines spatial and temporal similarity. Performances are
shown in the 4th and 5th rows of Table 3. By adding MM, a great im-
provement (4.6% Fy-score) is achieved which proves that temporal
similarity plays an important role in video copy detection and pro-
posed MM is a good representation of the temporal similarity. As
can be seen from the visualization of MM in Figure 6, MM clearly
shown the distribution of alignments and temporal similarities
in some positions are very low despite of considerable high spa-
tial similarities, e.g. MM at the second column and fourth column.
It proves that temporal similarity represents hidden information
which spatial similarity ignores.

4.6 Parameter Sensitivity

We implement an experiment to exploit the sensitivities of parame-
ters y, 7 and o. Performances are reported in Table 4. When 7 drops
from 0.3 to 0.1, F;-score increases a little. However, the number
of start points chosen for partial alignments grows over 90.5%. To
balance the efficiency and effectiveness, 7 is set to 0.3. We set ¢ to
0.1 and y to 100 for the best performance.

FIVR-200k-PVCD

We further evaluate the performance of VSAL on FIVR-200k-PVCD,
which contains harder cases. As shown in Table 5, baseline model
only gets about 50% F;-score on FIVR-200k-PVCD comparing to
76% on VCDB, showing the difficulty of the new dataset.

Qualitatively, all the performance trends are the same as that on
VCDB, but the quantitative improvements are much more obvious
when replacing alignment method from HV to SM. As shown in
Table 5, under all IoU thresholds, SM alignment achieves higher
performance of over 10% F;-score. Comparing to HV alignment,
SM has two advantages: flexible path selection and seeing further
when making current decision. For every step, there are three op-
tional directions making it robust dealing with critical temporal
transformations. Moreover, as a benefit from CNN’s large receptive
fields, direction decisions are made referring to a large scale of
neighbours to avoid short-sighted choices.

5 CONCLUSION

In this paper, we propose the VSAL method to jointly learn the
spatial similarity, temporal similarity and partial alignment from
unlabelled videos. Its novelty can be described as follows: (1) A novel
representation of the temporal similarity is learned from the frame-
level spatial similarity. The temporal information hidden in the
order of spatial are well measured as so-called mask map, which can
be combined with spatial similarity to generate a spatio-temporal
similarity to balance the similarity measurement from both spatial
and temporal aspects. (2) We model the partial alignment as a
direction instruction map namely step map, which is also learned
from the frame-level spatial similarity. The alignment information
is jointly learned with spatio-temporal similarity which ensures the
high performance and the capability of finding partial alignments.
Experiments on VCDB and a more challenging new benchmark
based on FIVR-200k, verify the effective of VSAL approach which
achieves the best performance on both dataset.

The future works will be based on two aspect. Extreme tempo-
ral transformations like a recombined video of fine-divided shots
will be taken into consideration. The divide-and-conquer strategy
such as dividing long videos into pieces then merging the separate
similarities and alignments together will be explored.
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