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ABSTRACT
The goal of unsupervised domain adaptation is to learn a task
classifier that performs well for the unlabeled target domain by
borrowing rich knowledge from a well-labeled source domain. Al-
though remarkable breakthroughs have been achieved in learning
transferable representation across domains, two bottlenecks remain
to be further explored. First, many existing approaches focus pri-
marily on the adaptation of the entire image, ignoring the limitation
that not all features are transferable and informative for the ob-
ject classification task. Second, the features of the two domains
are typically aligned without considering the class labels; this can
lead the resulting representations to be domain-invariant but non-
discriminative to the category. To overcome the two issues, we
present a novel Informative Class-Conditioned Feature Alignment
(IC2FA) approach for UDA, which utilizes a twofold method: infor-
mative feature disentanglement and class-conditioned feature align-
ment, designed to address the above two challenges, respectively.
More specifically, to surmount the first drawback, we cooperatively
disentangle the two domains to obtain informative transferable fea-
tures; here, Variational Information Bottleneck (VIB) is employed
to encourage the learning of task-related semantic representations
and suppress task-unrelated information. With regard to the second
bottleneck, we optimize a new metric, termed Conditional Sliced
Wasserstein Distance (CSWD), which explicitly estimates the intra-
class discrepancy and the inter-class margin. The intra-class and
inter-class CSWDs are minimized and maximized, respectively, to
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yield the domain-invariant discriminative features. IC2FA equips
class-conditioned feature alignment with informative feature disen-
tanglement and causes the two procedures to work cooperatively,
which facilitates informative discriminative features adaptation. Ex-
tensive experimental results on three domain adaptation datasets
confirm the superiority of IC2FA.
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1 INTRODUCTION
DeepNeural Networks (DNNs) have ushered in significant advances
in various tasks, such as image classification [49], object detection
[32], image segmentation [15, 41], face recognition [56], and many
others. However, these impressive gains depend on the strict as-
sumption that large quantities of well-labeled data in the interested
domain are accessible for model learning. Manually labeling of-
ten turns out to be both costly and labor-intensive; in particular,
for data-sensitive domains such as medical imagery and industrial
inspection, labeled samples are even impossible to obtain.

A general strategy (e.g., transfer learning) operates by recycling
off-the-shelf learnt knowledge/models in an available related do-
main (dubbed source domain) for the domain of interest (dubbed
target domain) [42]. Unfortunately, this learning paradigm often re-
sults in significant performance degradation, a phenomenon known
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Figure 1: Comparison of existing methods and the pro-
posed method. (a) The feature distributions before adapta-
tion for the source and target domains.We can see some sam-
ples include informative and uninformative features; here,
the informative features related to the object classification
task are shared by these two domains, and the uninforma-
tive features are domain-specific. (b) Existing methods di-
rectly adapt the two domains with all features of each sam-
ple, where forcefully aligning the uninformative features
leads to the learned feature distribution discrete. Moreover,
discriminative feature adaptation is not considered, which
cause somemisclassifications. (c) The proposedmethod first
suppresses the uninformative features so that only the infor-
mative features are retained, after which, the informative
discriminative features are aligned.

as domain shift [58]: this refers to the difference in data distribu-
tions between the source and target domains. One practical tactic
to address this problem is Domain Adaptation (DA) [3, 4], which
bridges the distribution gap to generalize a target model.

In the paper, we focus on unsupervised domain adaptation (UDA),
where the source domain contains abundant labeled data while
the target domain is fully unlabeled. The main objective of UDA
is to learn domain-invariant features that are immune to the do-
main shift, enabling a classifier trained on the source domain to
perform well on target samples [9, 25, 61]. Inspired by this, pioneer-
ing works of this kind either explicitly minimize the distribution
discrepancy between the source and target domains with the met-
ric paradigm [16, 18, 19, 29, 33–36, 55, 66, 67] or implicitly align
the source and target domain distributions via domain adversarial
learning [13, 14, 28, 37, 44, 47, 51, 53, 59]. Despite the significant
success that has been achieved in this domain, a challenging prob-
lem has been neglected: namely, that some uninformative encoded
representations may be compulsorily learned and adapted. The
source and target domains essentially overlap in task-related infor-
mation, while the redundant information from the task-unrelated
factors (e.g., background, color and context) might be different in
nature, and forcefully aligning the uninformative features can im-
pair the adaptation performance. In addition, in some existing UDA
approaches, there is another bottleneck: namely, the class-level
distribution discrepancy is not fully exploited. Adapting the dis-
tribution discrepancy at the domain level only, without encoding
the difference of class-level information, will render the learned
features domain-invariant but indistinguishable for the category.

To address the two challenges outlined above, we propose a new
approach, named Informative Class-Conditioned Feature Align-
ment (IC2FA), which comprises two key components: informative
feature disentanglement and class-conditioned feature alignment,

designed to address each of the two bottlenecks, respectively. The
motivation of IC2FA is illustrated in Figure 1 1.

For the informative feature disentanglement paradigm, we at-
tempt to suppress the task-unrelated information, which may in-
clude certain domain-specific variations, while retaining the infor-
mative task-related information for both domains. Inspired by the
Information Bottleneck (IB) principle [57], which dictates that the
learned latent representation needs to be maximally informative
about the object classification task while being maximally com-
pressive about the original input, we directly apply an adversarial
excitation and inhibition mechanism in order to encourage the
disentanglement of the latent representations via Variational In-
formation Bottleneck (VIB) [1] to disentangle the labeled source
domain. The mutual information maximization of the learned rep-
resentation and the object classification task is excited, while the
mutual information maximization of the learned representation
and original input is inhibited. Accordingly, only the features of the
source domain that are most conducive to the down-stream classi-
fication task can pass through and be retained. Undoubtedly, VIB
belongs to the scope of supervised disentanglement; thus, how to
utilize VIB for the disentanglement of the unlabeled domain remains
a problem. With this goal in mind, we first apply spherical K-means
to cluster the source and target samples, then assign the pseudo
label to each target data. We next develop the task-related feature
disentanglement for the target data using the obtained pseudo label.

As for the class-conditioned feature alignment paradigm, our
goal is to search for a metric into which the label information can
be easily embedded to explicitly reduce the class-level distribution
discrepancy between source and the target domains. The classic
metric in UDA, i.e., Maximum Mean Distance [2] widely utilized
by some works [16, 18], is difficult to compute due to the presence
of kernel functions and their affiliated hyperparameters. Moreover,
it has been argued that MMD-based methods fail to adapt once no
significant overlap exists between the domain distributions [47, 63].
The sliced Wasserstein distance [48] slices the high-dimensional
data distribution via random projections into a one-dimensional
distribution, which achieves excellent performance in generative
models [12, 64] and has been further proven to be an efficient and
reliable discrepancymetric between probability distributions [5, 24].
Enlightened by the excellent properties of the sliced Wasserstein
distance (e.g., non-negativity, identity of indiscernible, symmetry,
and subadditivity) [12, 23], we extend the metric to our work and
propose Conditional Sliced Wasserstein Distance (CSWD), which is
defined with reference to the class-level information. We optimize
the CSWD between the projected one-dimensional distributions
of the two domains to obtain the domain-invariant discriminative
features. The optimization is conducted by minimizing the intra-
class CSWD and maximizing inter-class CSWD across domains.

The proposed IC2FA unifies the informative feature disentan-
glement and cross-domain adaptation with class-distinguishable
features preserved into one framework, enabling them to benefit
from each other and facilitating the adaptation process. The main
contributions of our work can be summarized as follows: (1) We
propose a novel approach named IC2FA, which addresses the in-
formative feature disentanglement and class-conditioned feature

1The depiction of uninformative features is inspired by the work [39].



alignment simultaneously to facilitate better domain adaptation.
To the best of our knowledge, this is the first work for combining
feature disentanglement with discriminative feature adaptation. (2)
By means of our ingenious design, the disentanglement of both do-
mains can be implemented to filter out the task-unrelated features
using VIB, an approach that has not been explored by existing UDA
works. (3) We embed the class-level information into the sliced
Wasserstein distance via the pseudo labels learned and construct a
newmetric, CSWD. (4) Comprehensive experiments on the Office31,
Office-Home and VisDA-C datasets are conducted to demonstrate
that the proposed method outperforms existing methods.

2 RELATEDWORK
Domain-level adaptation One classical approach directly mini-
mizes the distribution discrepancy of domains via the metric par-
adigm. Representative metric methods include Maximum Mean
Discrepancy (MMD) [34, 36], CORrelation (CORAL) alignment [55],
optimal transport distance [10, 29] and Central Moment Discrep-
ancy (CMD) [67]. In [34] and [36], the distribution discrepancy is
minimized via Multi-Kernel MMD (MK-MMD) and Joint Maximum
Mean Discrepancy (JMMD), respectively. Another popular branch
of UDA is based on adversarial learning, inspired by the Genera-
tive Adversarial Network (GAN) [20]. DANN [14] and Conditional
Domain Adversarial Network (CDAN) [37] both utilize a domain
discriminator to represent the domain discrepancy; however, the
domain discriminator is confused in a two-player minimax game.
Wasserstein Distance Guided Representation Learning (WDGRL)
[53] and Re-weighted Adversarial Adaptation Network (RAAN)
[47] estimate the distribution distance between the source and tar-
get samples in a domain-critical network and optimize the feature
extractor network in an adversarial manner. Maximum Classifier
Discrepancy (MCD) [51] utilizes task-specific classifiers as discrimi-
nators and is used to align the target and source distributions using
adversarial learning. Sliced Wasserstein Discrepancy (SWD) [28]
adopts the Wasserstein metric by minimizing the cost of moving
the marginal distributions between task-specific classifiers.

Class-level adaptation Moving Semantic Transfer Network
(MSTN) [65] aligns the labeled source centroid and the pseudo-
labeled target centroid to learn domain-invariant semantic repre-
sentations. SimNet [46] and Transferable Prototypical Networks
(TPN) [43] learn categorical prototype representations by comput-
ing the similarity between prototype representations of each cate-
gory. Contrastive Adaptation Network (CAN) [16] explicitly models
the intra-class and inter-class domain discrepancies based on the
MMD metric. Jiang et al. [21] present a sampling-based implicit
alignment approach to promote the class-conditioned adaptation.
Progressive Feature Alignment Network (PFAN) [8] adapts the dis-
criminative features progressively, via exploiting the intra-class
variation in the target domain.

Feature disentanglement-based methods Domain Separa-
tion Network (DSN) [6] proposes separating the feature into shared
and private features. These two features are encouraged to be or-
thogonal, while can also be decoded back to images. The Transfer-
able Attention for Domain Adaptation (TADA) [62] and CADA [26]
propose to apply the attention mechanism for UDA, which present
transferable attention, focusing the adaptation model on transfer-
able regions but not all regions of an image. Domain-Specific Batch

Normalization (DSBN) [7] is proposed to separate domain-specific
information for UDA using two branches of batch normalization,
each of which is exclusively in charge of a single domain. The
goal of these four works is to develop a framework in which the
domain-specific variations can be filtered out, consistent with our
proposed informative feature disentanglement. The difference is
that our proposed disentanglement does not add network module
and introduce extra trained parameters.

3 PROPOSED METHODOLOGY
In this section, we first present the UDA problem formulation,
then introduce the proposed IC2FA approach, with a focus on dis-
entangling informative features and the adaptation of the class-
conditioned feature via VIB and sliced Wasserstein distance. The
overall framework of IC2FA is illustrated in Figure 2.

3.1 Problem Formulation and Pseudo-label
Definition

Our objective is to predict the labels of samples drawn from a
target domain as accurately as possible, given 𝑁𝑠 labeled sam-
ples

{
x𝑠
𝑖
, 𝑦𝑠
𝑖

}𝑁𝑠

𝑖=1 drawn from a source domain and 𝑁𝑡 unlabeled
samples

{
x𝑡
𝑖

}𝑁𝑡

𝑖=1 sampled from the target domain, and we have
𝑦𝑠
𝑖
∈ 1, 2, ..., 𝐾 . We define the feature extractor as 𝑓 with parameters

𝜃 and the embedding classifier as 𝑔 with parameters 𝜙 . We denote
the entire network as ℎ = 𝑓 ◦ 𝑔.

In the following discussion, we need to use pseudo labels of the
target domain for disentanglement and adaption. Thus, we first
present the formulation of pseudo label, which is implemented in
the first stage of our proposed approach. The feature extractor is
utilized to obtain the features of the source and target domains. We
then employ spherical K-means to cluster the source features; this
will enable us to find the centroids that are as the initial centroids of
the target domain. Finally, we revisit spherical K-means to cluster
target features and attach corresponding pseudo labels

{
𝑦𝑡
𝑖

}𝑁𝑡

𝑖=1.

3.2 Informative Feature Disentanglement
To extract the general high-level features for UDA, we choose the
Variational Information Bottleneck (VIB), built upon recently de-
veloped information theories for deep learning [1], to disentangle
the source and target domains, respectively.

To facilitate this discussion, we denote 𝑋𝑠 as the input images
from the source domain. Let 𝑌 𝑠 denote the corresponding output
variables (e.g., desired label), the information of which we want to
preserve.We regard the internal representation of certain intermedi-
ate layer as a stochastic encoding𝑍𝑠 of the input images𝑋𝑠 , defined
by the parametric encoder 𝑝𝜽 (z𝑠 |x𝑠 ). For clarity, we denote x𝑠 , y𝑠
and z𝑠 as the instances of 𝑋𝑠 , 𝑌 𝑠 and 𝑍𝑠 , respectively. Our goal is
to learn an encoding that is maximally informative regarding our
output variables 𝑌 𝑠 , measured by the mutual information between
our encoding 𝑍𝑠 and the output variables 𝐼 (𝑍𝑠 , 𝑌𝑠 ;𝜽 ), while the
mutual information 𝐼 (𝑋𝑠 , 𝑍𝑠 ;𝜽 ) between the input images 𝑋𝑠 and
the encoding 𝑍𝑠 is minimized. We therefore assume the following
Markov chain constraint introduced in the Information Bottleneck
(IB) theory [57]: 𝑌 𝑠 ↔ 𝑋𝑠 ↔ 𝑍𝑠 ; moreover, the objective function
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Figure 2: The training and inference stages of the proposed IC2FA. The training of IC2FA includes two stages, which work al-
ternately. At the first training stage, all source images and target images are applied to calculate the target pseudo labels. The
second stage comprises two main components, i.e., informative feature disentanglement and discriminative features align-
ment, both of which are integrated into a single framework and work cooperatively. Notably, the colors of blocks and lines
represent their corresponding data flows.

that is maximized is defined as follows:

𝐼 (𝑍𝑠 , 𝑌𝑠 ;𝜽 ) − 𝛽𝑠 𝐼 (𝑋𝑠 , 𝑍𝑠 ;𝜽 ), (1)

𝐼 (𝑍 𝑡 , 𝑌 𝑡 ;𝜽 ) − 𝛽𝑡 𝐼 (𝑋 𝑡 , 𝑍 𝑡 ;𝜽 ), (2)

where 𝛽𝑠 denotes the Lagrangemultiplier. The first term 𝐼 (𝑍𝑠 , 𝑌𝑠 ;𝜽 ) =∫
𝑑z𝑠𝑑y𝑠𝑝𝜽 (z𝑠 , y𝑠 )𝑙𝑜𝑔

𝑝𝜽 (z𝑠 ,y𝑠 )
𝑝𝜽 (z𝑠 )𝑝𝜽 (y𝑠 ) encourages 𝑍

𝑠 to be predictive

of𝑌 𝑠 . The second term 𝐼 (𝑋𝑠 , 𝑍𝑠 ;𝜽 ) =
∫
𝑑z𝑠𝑑x𝑠𝑝𝜽 (z𝑠 , x𝑠 )𝑙𝑜𝑔

𝑝𝜽 (z𝑠 |x𝑠 )
𝑝𝜽 (z𝑠 )

encourages 𝑍𝑠 to inhibit as many details of 𝑋𝑠 as possible.
However, it is computationally challenging to compute mutual

information. We write the first term out in full; this becomes:

𝐼 (𝑍𝑠 , 𝑌𝑠 ;𝜽 ) =
∫

𝑑z𝑠𝑑y𝑠𝑝𝜽 (z𝑠 , y𝑠 )𝑙𝑜𝑔
𝑝𝜽 (z𝑠 , y𝑠 )

𝑝𝜽 (z𝑠 )𝑝𝜽 (y𝑠 )

=

∫
𝑑z𝑠𝑑y𝑠𝑝𝜽 (z𝑠 , y𝑠 )𝑙𝑜𝑔

𝑝𝜽 (y𝑠 |z𝑠 )
𝑝𝜽 (y𝑠 )

.

(3)

Since 𝑝𝜽 (y𝑠 |z𝑠 ) is intractable, we apply 𝑞𝝓 (y𝑠 |z𝑠 ) to be a varia-
tional approximation to 𝑝𝜽 (y𝑠 |z𝑠 ). The 𝑞𝝓 (y𝑠 |z𝑠 ) is the defined
decoder of VIB, which we will take as the classification block 𝑔
with its own set of parameters 𝝓. According to the Kullback Leibler
divergence 𝐾𝐿[𝑝𝜃 (𝑌 𝑠 |𝑍𝑠 ), 𝑞𝜙 (𝑌 𝑠 |𝑍𝑠 )] ⩾ 0, we have the following
inequality:

∫
𝑑y𝑠 𝑙𝑜𝑔𝑝𝜽 (y𝑠 |z𝑠 ) ⩾

∫
𝑑y𝑠 𝑙𝑜𝑔𝑞𝝓 (y𝑠 |z𝑠 ). Thus, Equa-

tion 3 can be rewritten as follows:

𝐼 (𝑍𝑠 , 𝑌𝑠 ;𝜽 , 𝝓) ⩾
∫

𝑑z𝑠𝑑y𝑠𝑝𝜽 (z𝑠 , y𝑠 )𝑙𝑜𝑔
𝑞𝝓 (y𝑠 |z𝑠 )
𝑝𝜽 (y𝑠 )

=

∫
𝑑z𝑠𝑑y𝑠𝑝𝜽 (z𝑠 , y𝑠 )𝑙𝑜𝑔𝑞𝝓 (y𝑠 |z𝑠 ) + 𝐻 (𝑌 𝑠 ),

(4)

where 𝐻 (𝑌 𝑠 ) is the entropy of our labels, which is independent of
the optimization procedure and can thus be ignored. 𝐼 (𝑍𝑠 , 𝑌𝑠 ;𝜽 )

can obtain a new lower bound:

𝐼 (𝑍𝑠 , 𝑌𝑠 ;𝜽 , 𝝓) ⩾
∫
𝑑x𝑠𝑑z𝑠𝑑y𝑠𝑝𝜽 (x𝑠 )𝑝𝜽 (y𝑠 |x𝑠 )𝑝𝜽 (z𝑠 |x𝑠 )𝑙𝑜𝑔𝑞𝝓 (y𝑠 |z𝑠 ).

(5)
We now consider the second term 𝐼 (𝑋𝑠 , 𝑍𝑠 ;𝜽 ) of Equation 2. 𝐼 (𝑋𝑠 , 𝑍𝑠 ;𝜽 )
can be further computed as follows:

𝐼 (𝑋𝑠 , 𝑍𝑠 ;𝜽 ) =
∫
𝑑x𝑠𝑑z𝑠𝑝𝜽 (z𝑠 , x𝑠 )𝑙𝑜𝑔𝑝𝜽 (z𝑠 |x𝑠 ) −

∫
𝑑z𝑠𝑝𝜽 (z𝑠 )𝑙𝑜𝑔𝑝𝜽 (z𝑠 ).

(6)
However, it may be intractable to directly compute the marginal
distribution of the z𝑠 , since 𝑝𝜽 (z𝑠 ) =

∫
𝑑x𝑠𝑝𝜽 (x𝑠 )𝑙𝑜𝑔𝑝𝜽 (z𝑠 |x𝑠 ) re-

quires integral to be solved over latent feature space. We apply
an alternative way 𝑟 (z𝑠 ), to represent the variational approxima-
tion of the 𝑝𝜽 (z𝑠 ). The 𝑟 (z𝑠 ) denotes the prior distribution of the
latent features z𝑠 . We choose 𝑟 (z𝑠 ) as a standard Gaussian distri-
bution N(0, 𝐼 ). Since 𝐾𝐿[𝑝𝜃 (z𝑠 ), 𝑟 (z𝑠 )] ⩾ 0, we can obtain the fol-
lowing inequality:

∫
𝑑z𝑠𝑝𝜃 (z𝑠 )𝑙𝑜𝑔𝑝𝜃 (z𝑠 ) ⩾

∫
𝑑z𝑠𝑝𝜃 (z𝑠 )𝑙𝑜𝑔𝑟 (z𝑠 ).

Thus, the 𝐼 (𝑋𝑠 , 𝑍𝑠 ;𝜽 ) can get the following upper bound:

𝐼 (𝑋𝑠 , 𝑍𝑠 ;𝜽 ) ⩽
∫

𝑑x𝑠𝑑z𝑠𝑝𝜃 (x𝑠 )𝑝𝜃 (z𝑠 |x𝑠 )
𝑙𝑜𝑔𝑝𝜃 (z𝑠 |x𝑠 )

𝑟 (z𝑠 ) . (7)

Combining 𝐼 (𝑍𝑠 , 𝑌𝑠 ;𝜽 , 𝝓) and 𝐼 (𝑋𝑠 , 𝑍𝑠 ;𝜽 ), we can obtain the re-
sulting evidence lower bound (ELBO):

𝐼 (𝑍𝑠 , 𝑌𝑠 ;𝜽 , 𝝓) − 𝛽𝑠 𝐼 (𝑋𝑠 , 𝑍𝑠 ;𝜽 ) ⩾∫
𝑑x𝑠𝑑z𝑠𝑑y𝑠𝑝𝜽 (x𝑠 )𝑝𝜽 (y𝑠 |x𝑠 )𝑝𝜽 (z𝑠 |x𝑠 )𝑙𝑜𝑔𝑞𝝓 (y𝑠 |z𝑠 )

− 𝛽𝑠
∫

𝑑x𝑠𝑑z𝑠𝑝𝜃 (x𝑠 )𝑝𝜃 (z𝑠 |x𝑠 )
𝑙𝑜𝑔𝑝𝜃 (z𝑠 |x𝑠 )

𝑟 (z𝑠 )

(8)

Following the VAE [1], we determine that the 𝑝𝜃 (z𝑠 |x𝑠 ) is real-
ized as a Gaussian distribution 𝑝𝜃 (z𝑠 |x𝑠 ) = N(z𝑠 |𝑓 𝜇 (x𝑠 ), 𝑓 𝜎 (x𝑠 )),
where 𝑓 outputs the mean 𝜇 and the variance 𝜎 of the latent fea-
tures z𝑠 . We can then use the reparameterization trick outlined in
[22] to write 𝑝𝜃 (z𝑠 |x𝑠 )𝑑𝑧 = 𝑝𝜃 (𝜖)𝑑𝜖 , where z𝑠 = 𝑓 (x𝑠 , 𝜖) denotes



the deterministic function of x𝑠 and the Gaussian random variable
𝜖 . We can therefore obtain the following loss function:

L𝑠 = 1
𝑁𝑠

𝑁𝑠∑
𝑖=1
E𝜖∼𝑝𝜃 (𝜖) [−𝑙𝑜𝑔𝑞𝜙 (y

𝑠
𝑖 |𝑓 (x

𝑠
𝑖 , 𝜖))]

+ 𝛽𝑠𝐾𝐿[𝑝𝜃 (z𝑠 |x𝑠𝑖 ), 𝑟 (z
𝑠 )],

(9)

where the first term is a form of the classification loss of the source
domain, while the second denotes the information bottleneck loss,
which is minimized to filter out the irrelevant part of 𝑋𝑠 .

Since the disentanglement carried out by VIB operates only under
the supervised condition, we use pseudo labels of target domain
as supervised information to forcefully disentangle. Similarly, the
disentanglement loss function of the target domain is written as:

L𝑡 = 1
𝑁𝑡

𝑁𝑡∑
𝑖=1
E𝜖∼𝑝𝜃 (𝜖) [−𝑙𝑜𝑔𝑞𝜙 (ŷ

𝑡
𝑖 |𝑓 (x

𝑡
𝑖 , 𝜖))]

+ 𝛽𝑡𝐾𝐿[𝑝𝜃 (z𝑡 |x𝑡𝑖 ), 𝑟 (z
𝑡 )],

(10)

where the first term acts as the classification of the target domain
to capture the informative features. We utilize the assignments
obtained by the clustering as supervision for updating the network
weights and capturing the informative features. Similar to the dis-
entanglement of the source domain, the second term indicates that
we try to filter out task-unrelated information of the target domain.

3.3 Class-Conditioned Feature Alignment
We take class-level information into account to explicitly mea-
sure the distribution discrepancy, which is defined using sliced
Wasserstein distance. To develop our framework, we first review
the preliminary formulations of sliced Wasserstein distance.

3.3.1 Sliced Wasserstein distance revisit. The Wasserstein distance
is induced by the optimal transport theory [52]. Formally, the
Wasserstein distance is defined by

𝑊𝑝 (𝜌, 𝜈) = ( 𝑖𝑛𝑓
𝛾 ∈Π (𝜌,𝜈)

∫
𝑋×𝑋 ′

𝐶𝑝 (x, x’)𝑑𝛾 (x, x’))
1
𝑝 , (11)

where 𝜌 and 𝜈 are two probability measures defined on 𝑋,𝑋 ′ ⊆ Ω,
and x, x’ are random variables. 𝛾 ∈ Π(𝜌, 𝜈) denotes the set of all
joint distributions 𝛾 (x, x’), whose marginal distributions are 𝜌 and
𝜈 respectively. 𝐶 is a metric, and 𝑝 > 0; thus, the Equation 11 is
called the 𝑝-Wasserstein distance. Due to the computational burden
of the Wasserstein distance for high-dimensional distributions, the
sliced Wasserstein distance is as a potential alternative [5].

The conceptual underpinning of sliced Wasserstein distance
involves first factorizing the higher-dimensional probability distri-
bution into a set of one-dimensional distributions via linear pro-
jections. The distance between the two distributions is calculated
in the form of the Wasserstein distance of one-dimensional distri-
bution. In this way, the computation of distance can be translated
into the solving of several one-dimensional optimal transport prob-
lems, which have closed-form solutions. More formally, the Sliced
𝑝-Wasserstein distance between distributions can be defined as:

𝑆𝑊𝑝 (𝜌, 𝜈) =
(∫
𝜔 ∈Ω

𝑊
𝑝
𝑝 (𝜌𝜔 , 𝜈𝜔 )𝑑𝜔

) 1
𝑝

, (12)

where 𝜌𝜔 and 𝜈𝜔 denote the linear projections of 𝜌 and 𝜈 onto the
direction𝜔 , while Ω is the unit sphere. Following [12], we set 𝑝 to 2;
moreover, the quadratic Wasserstein distance can be approximated
using the samples x ∈ D and x’ ∈ D ′:

𝑊 2
2 (D,D

′) = 1
D ′

|D |∑
𝑖=1




D𝜔
𝜎D(𝑖 ) − D ′𝜔

𝜎D′ (𝑖 )




2
2
, (13)

here, this assumes |D| = |D ′ | for simplicity, which is not a strict
restriction. 𝜎D(𝑖) and 𝜎D′ (𝑖) denote the permutations such that:

D𝜔
𝜎D(𝑖 ) ⩽ D𝜔

𝜎D(𝑖+1) , ∀𝑖 ∈ {1 ⩽ 𝑖 < |D|} ,

D ′𝜔
𝜎D′ (𝑖 ) ⩽ D ′𝜔

𝜎D′ (𝑖+1) , ∀𝑖 ∈
{
1 ⩽ 𝑖 <

��D ′��} . (14)

In combination with Equation 13, Equation 12 can be rewritten as:

𝑆𝑊2 (D,D ′) = 1
𝑀

1
|D|

𝑀∑
𝑚=1

|D |∑
𝑖=1




D𝜔𝑚
𝜎D(𝑖 ) − D ′𝜔𝑚

𝜎D′ (𝑖 )




2
2
, (15)

where 𝑀 is the number of one-dimensional random projection
directions 𝜔𝑚 .

3.3.2 Conditional sliced Wasserstein distance. First, we introduce
the sliced 2-Wasserstein distance into our UDA formulation:

𝑆𝑊2 (𝑋𝑠 , 𝑋 𝑡 ) =
1
𝑀

1
𝑁𝑠

1
𝑁𝑡

𝑀∑
𝑚=1

𝑁𝑠∑
𝑖=1

𝑁𝑡∑
𝑗=1





(p𝑠 )𝜔𝑚

𝜎p𝑠 (𝑖)
− (p𝑡 )𝜔𝑚

𝜎p𝑡 ( 𝑗)





2
2
,

(16)
where 𝑋𝑠 and 𝑋 𝑡 are the input images sampled from the source
and target domains, respectively. p𝑠 = ℎ(x𝑠 ) and p𝑡 = ℎ(x𝑡 ) are
the classifier outputs. Directly employing Equation 16 to align the
distributions of the two domains only achieves domain-level adapta-
tion, but does not guarantee semantic consistency. We integrate the
class-level information into Equation 16 and accordingly propose
Conditional Sliced Wasserstein Distance (CSWD). For notational

simplicity, we denote 𝐶𝜔𝑚 (p𝑠
𝑖
, p𝑡
𝑗
) =





(p𝑠 )𝜔𝑚

𝜎p𝑠 (𝑖)
− (p𝑡 )𝜔𝑚

𝜎p𝑡 ( 𝑗)





2
2
,

and the intra-class CSWD can be given:

𝐶𝑆𝑊 𝑖𝑛𝑡𝑟𝑎
2 (𝑋𝑠 , 𝑋 𝑡 ) = 1

𝑀

1
𝐾

𝑀∑
𝑚=1

𝐾∑
𝑘=1

( 1
𝑁𝑘𝑠

1
𝑁𝑘𝑡

𝑁𝑘
𝑠∑

𝑖=1

𝑁𝑘
𝑡∑

𝑗=1
1𝑦𝑠

𝑖
=𝑦̂𝑡

𝑗
=𝑘𝐶

𝜔𝑚 (p𝑠𝑖 , p
𝑡
𝑗 )),

(17)

where 𝑦𝑠
𝑖
denotes the true label of source sample 𝑥𝑠

𝑖
, and 𝑦𝑡

𝑖
refers

to the pseudo label computed via spherical K-means for the target
sample 𝑥𝑡

𝑖
. 𝑁𝑘𝑠 and 𝑁𝑘𝑡 represent the total number of source and

target images that have the same label 𝑘 , respectively. 1𝑦𝑠
𝑖
=𝑦̂𝑡

𝑗
=𝑘 is

defined as: 1𝑦𝑠
𝑖
=𝑦̂𝑡

𝑗
=𝑘 =

{
1 𝑖 𝑓 𝑦𝑠

𝑖
= 𝑦𝑡

𝑗
= 𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. The intra-class CSWD



is minimized while we maximize the inter-class CSWD:

𝐶𝑆𝑊 𝑖𝑛𝑡𝑒𝑟
2 (𝑋𝑠 , 𝑋 𝑡 ) = 1

𝑀

1
𝐾 (𝐾 − 1)

𝑀∑
𝑚=1

𝐾∑
𝑘=1

𝐾∑
𝑘′=1,𝑘≠𝑘′

( 1
𝑁𝑘𝑠

1
𝑁𝑘

′
𝑡

𝑁𝑘
𝑠∑

𝑖=1

𝑁𝑘′
𝑡∑
𝑗=1

1𝑦𝑠
𝑖
=𝑘,𝑦̂𝑡

𝑗
=𝑘′𝐶

𝜔𝑚 (p𝑠𝑖 , p
𝑡
𝑗 )),

(18)

where 1𝑦𝑠
𝑖
=𝑘,𝑦̂𝑡

𝑗
=𝑘′ =

{
1 𝑖 𝑓 𝑦𝑠

𝑖
= 𝑘,𝑦𝑡

𝑗
= 𝑘 ′

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. By combining Equa-

tions 17 and 18, we try to minimize

𝐶𝑆𝑊2 (𝑋𝑠 , 𝑋 𝑡 ) = 𝐶𝑆𝑊 𝑖𝑛𝑡𝑟𝑎
2 (𝑋𝑠 , 𝑋 𝑡 ) − 𝜆0𝐶𝑆𝑊 𝑖𝑛𝑡𝑒𝑟

2 (𝑋𝑠 , 𝑋 𝑡 ), (19)

where 𝜆0 is utilized to balance the two terms. To fully adapt the
discriminative features, we minimize L𝑎𝑑𝑎 over all multiple FC
layers of the classifier block 𝑔; thus, the adaptation objective is:

L𝑎𝑑𝑎 =

𝐿∑
𝑙=1

𝐶𝑆𝑊 𝑙
2 (𝑋

𝑠 , 𝑋 𝑡 ), (20)

where 𝐿 denotes the number of FC layers in the classifier block 𝑔.
In our work, the proposed IC2FA unifies the informative feature

disentanglement and CSWD into a single framework in which
these two components work cooperatively. The overall objective is
formulated as

L = L𝑠 + 𝛽L𝑡 + 𝜆L𝑎𝑑𝑎, (21)
where 𝛽 and 𝜆 are applied to regularize the loss function.

4 EXPERIMENTS
4.1 Datasets
We evaluate our proposed IC2FA on three UDA datasets: Office31
[50], Office-Home [60] and VisDA-C [45].

Office-31 which is a standard dataset used to evaluate differ-
ent DA methods for object recognition, comprises three different
domains: Amazon (A), Dslr (D), and Webcam (W), and includes
4,652 images in 31 classes. Amazon images are collected from
𝑎𝑚𝑎𝑧𝑜𝑛.𝑐𝑜𝑚, while Webcam and Dslr images are taken using a
webcam and a high-quality camera, respectively.

Office-Home is a large dataset containing approximately 15,500
images divided into 65 classes. The dataset comprises four domains:
Artistic (Ar), Clip Art (Cl), Product (Pr) and Real-World (Rw).

VisDA-C is a highly challenging dataset featuring domain shift
from synthetic data to real imagery. It has two domains and 12
classes in common: the Synthetic one, consisting of 152,397 syn-
thetic 2D renderings of 3D objects, and the Real one, consisting of
55,388 real images cropped from the MS-COCO [31] dataset.
4.2 Implementation Details
We applied ResNet-50 and ResNet-101 [17], pretrained on ImageNet
[11], as the feature extractor branch, and replaced the last FC layer
with the task-specific FC layer.

The network was trained using the mini-batch stochastic gradi-
ent descent (SGD) optimizer with a momentum of 0.9. The learning
rate annealing strategy is based on the cosine function [38]. For the
Office-31 and Office-Home datasets, the initial learning rate is 1e-3
for the convolutional layers and 1e-2 for the task-specific FC layer.

For VisDA-C, the initial learning rate is 3e-5 for the convolutional
layers and 3e-4 for the task-specific FC layer. We selected the hy-
perparameters following the importance-weighted cross-validation
(IWCV) [54]. 𝜆 and 𝜆0 are set to 3.0 and 0.5, respectively. 𝛽 can be
selected from (0.01,0.1). 𝛽𝑠 and 𝛽𝑡 are set to 1e-5.𝑀 is set to 32 in
our experiments

IC FA2IC FA2

IC FA (w/o ifd)2

IC FA2

IC FA (w/o ifd)2

(a) D→A

IC FA2IC FA2

IC FA (w/o ifd)2

IC FA2

IC FA (w/o ifd)2

(b) W→A

Figure 3: (a)-(b) Accuracy curves of IC2FA and IC2FA (w/o ifd)
on the task D→A and W→A.

More specifically, for the target domain, we concentrated only
on data with high reliability; i.e., we filtered out ambiguous data
points located far away from the corresponding cluster centroid.
Similar to CAN [16], the point-to-centroid threshold is defined as
0.05 for Office-31 tasks A→W, D→W, W→ D and A→ D. For
other tasks, this threshold is defined as 1.

We compare the proposed IC2FA model with several state-of-
the-art domain adaptation methods, some of which related to our
work are focused on: (1) ResNet-50 [17] acts as the lower bound;
(2) DAN [34] minimizes the MMD distance of two domains; (3)
CDAN [37] develops a conditional alignment network based on
adversarial learning; (4) MCD [51] adapts distributions utilizing
the task-specific decision boundaries in an adversarial manner; (5)
DeepJDOT [10] adapts optimal transport distance in the deep net-
work; (6) SWD [28] applies the Wasserstein distance in adversarial
task-classifier learning; (7) SimNet [46] learns the similarity be-
tween prototype representations of each category; (8) ETD [29]
builds an attention-aware optimal transport distance to measure
the domain discrepancy; (9) TADA [62] and (10) CADA [26] uti-
lizes the attention mechanism to learn domain-shared features; (11)
MDD [21] presents sampling-based implicit domain alignment to
address within-domain class imbalance and between-domain class
distribution shift; (12) DCAN [30] explore the domain-wise convo-
lutional channel activation; (13) CAN [16] optimizes the intra-class
and inter-class MMD distances to obtain the class-level adaptation.
4.3 Comparison Results
The unsupervised adaptation results on Office-31 are reported in Ta-
ble 1. To facilitate fair comparison, the results for most comparison
methods are quoted from their original papers. Through this com-
parison of results, we can observe that our proposed method defeats
the state-of-the-art method CAN [16] on the whole, which strongly
confirms the effectiveness of IC2FA. Although the improvement is
slight, IC2FA does performwith more efficiency owing to the simple
nature of the computation required for one-dimensional distribu-
tions. Moreover, on the complex task W→A, IC2FA outperforms
many methods by a large margin.
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Figure 4: (a)-(e) The t-SNE visualization of the embedded features generated by ResNet-50, DAN, CDAN+E, CAN and IC2FA on
the task A→W, respectively. The “*” and “o” represent the source and target domain, respectively. In the first row, different
colors represent different domains; in the second row, different colors represent different classes.

Table 1: Classification accuracies (%) on the Office31 dataset for UDA. All models utilize ResNet-50 as the base architecture.
The bold numbers denote the best results for each column.

A→W D→W W→D A→D D→A W→A Average
ResNet-50 [17] 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
DAN [34] 80.5±0.4 97.1±0.2 99.6±0.1 78.6±0.2 63.6±0.3 62.8±0.2 80.4
DeepJDOT [10] 88.9±0.3 88.2±0.1 98.5±0.1 99.6±0.2 72.1±0.4 70.1±0.4 86.2
SimNet [46] 88.6±0.5 98.2±0.2 99.7±0.2 85.3±0.3 73.4±0.8 71.8±0.6 86.2
ETD [29] 92.1 100.0 100.0 88.0 71.0 67.8 86.2
CDAN+E [37] 94.1±0.1 98.6±0.1 100.0±0.0 92.9±0.2 71.0±0.3 69.3±0.3 87.7
TADA [62] 94.3±0.3 98.7±0.1 99.8±0.2 91.6±0.3 72.9±0.2 73.0±0.3 88.4
MDD [21] 90.3±0.2 98.7±0.1 99.8±.0 92.1±0.5 75.3±0.2 74.9±0.3 88.8
CADA [26] 97.0±0.2 99.3±0.1 100.0±0.0 95.6±0.1 71.5±0.2 73.1±0.3 89.5
DCAN [30] 95.0 97.5 100.0 92.6 77.2 74.9 89.5
CAN [16] 94.5±0.3 99.1±0.2 99.8±0.2 95.0±0.3 78.0±0.3 77.0±0.3 90.6
IC2FA 94.6 ±0.2 99.2 ±0.2 100.0±0.0 95.4 ±0.3 77.3 ±0.3 77.6 ±0.2 90.7

Table 2: Classification results (%) on the Office-Home dataset for UDA. All models utilize ResNet-50 as the base architecture.
The bold numbers denote the best results for each column.

Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Ave.
ResNet-50 [17] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN [34] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DeepJDOT [10] 48.2 69.2 74.5 58.5 69.1 71.1 56.3 46.0 76.5 68.0 52.7 80.9 64.3
CDAN+E [37] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
ETD [29] 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3
TADA [62] 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
MDD [21] 56.2 77.9 79.2 64.4 73.1 74.4 64.2 54.2 79.9 71.2 58.1 83.1 69.5
CADA [26] 56.9 76.4 80.7 61.3 75.2 75.2 63.2 54.5 80.7 73.9 61.5 84.1 70.2
IC2FA 56.7 78.6 81.0 64.8 73.7 74.9 65.5 53.9 81.7 74.1 59.8 84.5 70.8

Table 2 illustrates the classification accuracies of experimental
methods on the Office-Home dataset. As we can observe, as desired,
IC2FA dramatically outperform all comparison methods on most
tasks. Notably, moreover, the best and second best performances are
obtained by IC2FA and CADA [26], respectively, which verifies that

focusing on task-related feature adaptation without considering
domain-specific variations truly improves the performance.

The results on VisDA-C are presented in Table 3. Due to the
large domain shift between the source and target distributions, the
comparison methods achieve poor performance in some classes.



Table 3: Classification accuracy (%) of each category on VisDA-C dataset for UDA. All models utilize ResNet-101 as base archi-
tecture, except for SimNet [46] which uses ResNet-152. The bold numbers denote the best results for each column.

plane bcycl bus car horse knife mcycl person plant sktbrd train truck Average
ResNet-50 [17] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

DAN [34] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1
MCD [51] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
SimNet [46] 94.3 82.3 73.5 47.2 87.9 49.2 75.1 79.7 85.3 68.5 81.1 50.3 72.9
SWD [28] 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
IC2FA 89.7 70.6 79.8 84.3 96.5 72.1 90.4 65.3 92.7 63.3 86.5 36.0 77.3

Table 4: Ablation experiments on Office31 and Office-Home dataset. Bold numbers denote the best results for each column.
A→W D→W W→D A→D D→A W→A Ave.

IC2FA (w/o ifd) 93.2±0.3 99.1±0.1 99.9±0.1 92.4±0.2 76.7±0.3 76.6±0.2 89.7
IC2FA 94.6 ±0.2 99.2 ±0.2 100.0±0.0 95.4 ±0.3 77.3 ±0.3 77.6 ±0.2 90.7

Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Ave.
IC2FA (w/o ifd) 56.5 76.8 79.4 63.6 72.4 72.0 64.6 51.9 80.5 73.9 59.4 84.0 69.6

IC2FA 56.7 78.6 81.0 64.8 73.7 74.9 65.5 53.9 81.7 74.1 59.8 84.5 70.8

ResNet-50

DAN

CDAN-E

CAN

IC FA2IC FA2

Figure 5: Empirical analysis: Proxy A-Distance of different
features on A→W and A→D.

The IC2FA achieves a performance boost overall, demonstrating
that our IC2FA is efficient for the large-gap adaptation task.

4.4 Ablation Studies
We conducted ablation experiments on the Office-31 and Office-
Home datasets to determine the effects of the informative feature
disentanglement in our IC2FA. We first eliminated the disentangle-
ment component; the resulting method is denoted as IC2FA (w/o
ifd). Table 4 presents the results of our ablation studies. IC2FA out-
performs IC2FA (w/o ifd); this demonstrates that the informative
feature disentanglement plays an essential role in adapting the
discriminative features across domains.

To further explore the functionality of informative feature disen-
tanglement, we depict the accuracy curves on the D→A and W→A
tasks in the Figure 3. We can observe that IC2FA achieves optimal
performance more quickly compared to IC2FA (w/o ifd) on these
two tasks, verifying that informative feature disentanglement can
accelerate the training process.

4.5 Further Remarks
Feature Visualization A popular method of visualizing high di-
mensional data in 2D is t-SNE [27]. We visualize embedded features
from ResNet-50, DAN, CDAN+E, CAN and IC2FA on the source
and target domains for the adaptation task A→W and illustrate
the results in Figure 4. From the figure, we can observe that the
feature distributions of ResNet-50 are disordered. DAN can allevi-
ate this problem to a certain extent; however, there are still large
discrepancies between the distributions of the two domains. Al-
though CDAN+E can improve the marginal distribution adaptation,
a mismatch of category-level features occurs. CAN yields fine class-
level distribution alignment; however, compared to our proposed
IC2FA, the marginal distribution is somewhat more discrete. IC2FA
achieves the best adaptation results; that is the class-level distribu-
tions are better aligned and more compact.

Discrepancy Distance The theory of DA [3, 40] denotes the
A-distance as a measure of the cross-domain discrepancy, which
will bound the target risk together with the source risk. The way
in which the proxy A-distance (PAD) is estimated can be defined
as 𝑑A = 2(1 − 2𝜖), where 𝜖 is the generalization error of a binary
classifier of a discriminating source and target. We applied a kernel
SVM to estimate the A-distance. Figure 5 illustrates PADs on tasks
A→W and A→D with features of ResNet-50, DAN, CDAN+E, CAN
and IC2FA. We observe that the PAD of IC2FA is much smaller than
comparison methods on the two tasks; this demonstrates that our
features can reduce the cross-domain gap more effectively.

5 CONCLUSION
In this paper, we develop a new approach, named IC2FA, to ad-
dress the problem of UDA. It incorporates two main components—
specifically, disentangling the informative features and adapting
the class-level features— which they work cooperatively. The VIB
is delicately applied to disentangle these two domains. The sliced
Wasserstein distance is extended into a new metric, CSWD, which
is employed to explicitly measure the class-level discrepancy. We
equip the discriminative features alignment with the informative



feature disentanglement, facilitating the adaption process and eas-
ing the adaptation process. Extensive experimental evaluations
clearly demonstrate the effectiveness of IC2FA.

ACKNOWLEDGMENTS
This work was partially supported by the Academy of Finland under
grant 331883, and the National Natural Science Foundation of China
under Grant 61872379, 62022091 and 71701205.

REFERENCES
[1] Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. 2017. Deep

variational information bottleneck. (2017).
[2] Gretton Arthur, Borgwardt Karsten, Rasch Malte, Schoelkopf Bernhard, and

Smola Alex. 2012. A Kernel Two-Sample Test. Journal of Machine Learning
Research 13 (2012), 723–773.

[3] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and
Jennifer Wortman Vaughan. 2010. A theory of learning from different domains.
Machine learning 79, 1-2 (2010), 151–175.

[4] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. 2007. Anal-
ysis of representations for domain adaptation. In NIPS. 137–144.

[5] Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. 2015. Sliced
and Radon Wasserstein Barycenters of Measures. J. Math. Imaging Vis. 51, 1
(2015), 22–45.

[6] Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan,
and Dumitru Erhan. 2016. Domain separation networks. In NIPS. 343–351.

[7] Woong Gi Chang, Tackgeun You, Seonguk Seo, Suha Kwak, and Bohyung Han.
2019. Domain-Specific Batch Normalization for Unsupervised Domain Adapta-
tion. In CVPR. 7354–7362.

[8] Chaoqi Chen, Weiping Xie, Wenbing Huang, Yu Rong, Xinghao Ding, Yue Huang,
Tingyang Xu, and Junzhou Huang. 2019. Progressive Feature Alignment for
Unsupervised Domain Adaptation. In CVPR. 627–636.

[9] Gabriela Csurka. 2017. A Comprehensive Survey on Domain Adaptation for
Visual Applications. In Domain Adaptation in Computer Vision Applications.
Springer, 1–35.

[10] Bharath Bhushan Damodaran, Benjamin Kellenberger, Rémi Flamary, Devis Tuia,
and Nicolas Courty. 2018. DeepJDOT: Deep Joint Distribution Optimal Transport
for Unsupervised Domain Adaptation. In ECCV, Vol. 11208. Springer, 467–483.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. 2009. Ima-
geNet: A large-scale hierarchical image database. In CVPR. 248–255.

[12] Ishan Deshpande, Ziyu Zhang, and Alexander G. Schwing. 2018. Generative
Modeling Using the Sliced Wasserstein Distance. In 2018 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA,
June 18-22, 2018. 3483–3491.

[13] Yaroslav Ganin and Victor Lempitsky. 2014. Unsupervised domain adaptation by
backpropagation. In ICML.

[14] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. 2016.
Domain-adversarial training of neural networks. JMLR 17, 1 (2016), 2096–2030.

[15] Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-
Martinez, Pablo Martinez-Gonzalez, and Jose Garcia-Rodriguez. 2018. A survey
on deep learning techniques for image and video semantic segmentation. Applied
Soft Computing 70 (2018), 41–65.

[16] Kang Guoliang, Jiang Lu, Yang Yi, and Hauptmann Alexander, G. 2019. Con-
trastive Adaptation Network for Unsupervised Domain Adaptation. In CVPR.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR. 770–778.

[18] Yan Hongliang, Ding Yukang, Li Peihua, Wang Qilong, Xu Yong, and Zuo Wang-
meng. 2017. Mind the Class Weight Bias: Weighted Maximum Mean Discrepancy
for Unsupervised Domain Adaptation. In CVPR. 2272–2281.

[19] Yan Hongliang, Li Zhetao, Wang Qilong, Li Peihua, Xu Yong, and ZuoWangmeng.
2019. Weighted and Class-specificMaximumMean Discrepancy for Unsupervised
Domain Adaptation. IEEE Transactions on Multimedia (2019).

[20] Goodfellow Ian, Pouget-Abadie Jean, Mirza Mehdi, Xu Bing, Warde-Farley David,
Ozair Sherjil, Courville Aaron, and Bengio Yoshua. 2014. Generative Adversarial
Nets. In NeurIPS. 2672–2680.

[21] Xiang Jiang, Qicheng Lao, Stan Matwin, and Mohammad Havaei. 2020. Implicit
Class-Conditioned Domain Alignment for Unsupervised Domain Adaptation. In
ICML (Proceedings of Machine Learning Research, Vol. 119). PMLR, 4816–4827.

[22] Diederik P Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes.
(2014).

[23] Soheil Kolouri, Se Rim Park, and Gustavo K. Rohde. 2016. The Radon Cumulative
Distribution Transform and Its Application to Image Classification. IEEE Trans.
Image Process. 25, 2 (2016), 920–934.

[24] Soheil Kolouri, Phillip E. Pope, Charles E. Martin, and Gustavo K. Rohde. 2019.
Sliced Wasserstein Auto-Encoders. In ICLR.

[25] Wouter M Kouw and Marco Loog. 2020. A review of domain adaptation without
target labels. IEEE Transactions on pattern analysis and machine intelligence
(2020).

[26] Vinod Kumar Kurmi, Shanu Kumar, and Vinay P. Namboodiri. 2019. Attending
to Discriminative Certainty for Domain Adaptation. In CVPR. Computer Vision
Foundation / IEEE, 491–500.

[27] Van Der Maaten Laurens and Geoffrey Hinton. 2008. Visualizing Data Using
t-SNE. JMLR 9 (2008), 2579–2605.

[28] Chen-Yu Lee, Tanmay Batra, Mohammad Haris Baig, and Daniel Ulbricht. 2019.
Sliced wasserstein discrepancy for unsupervised domain adaptation. In CVPR.
10285–10295.

[29] Mengxue Li, Yiming Zhai, You-Wei Luo, Pengfei Ge, and Chuan-Xian Ren. 2020.
Enhanced Transport Distance for Unsupervised Domain Adaptation. In CVPR.
IEEE, 13933–13941.

[30] Shuang Li, Chi Harold Liu, Qiuxia Lin, Binhui Xie, Zhengming Ding, Gao Huang,
and Jian Tang. 2020. Domain Conditioned Adaptation Network. In AAAI. AAAI
Press, 11386–11393.

[31] Tsung Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,
James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár.
2014. Microsoft COCO: Common Objects in Context. In ECCV. 740–755.

[32] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu, and
Matti Pietikäinen. 2020. Deep learning for generic object detection: A survey.
International Jornal of Computer Vision 128, 2 (2020), 261–318.

[33] Mingsheng Long, Yue Cao, Zhangjie Cao, Jianmin Wang, and Michael I Jordan.
2018. Transferable representation learning with deep adaptation networks. IEEE
transactions on pattern analysis and machine intelligence (2018).

[34] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I Jordan. 2015. Learning
transferable features with deep adaptation networks. In ICML.

[35] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. 2016. Unsuper-
vised domain adaptation with residual transfer networks. In NIPS. 136–144.

[36] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. 2017. Deep
transfer learning with joint adaptation networks. In ICML, Vol. 70. JMLR, 2208–
2217.

[37] Mingsheng Long†, Zhangjie Cao†, Jianmin Wang†, and Michael I. Jordan. 2017.
Conditional Adversarial Domain Adaptation. NIPS (2017).

[38] Ilya Loshchilov and Frank Hutter. 2017. SGDR: Stochastic Gradient Descent with
Warm Restarts. In ICLR.

[39] Yawei Luo, Ping Liu, Tao Guan, Junqing Yu, and Yi Yang. 2019. Significance-
Aware Information Bottleneck for Domain Adaptive Semantic Segmentation. In
ICCV. IEEE, 6777–6786.

[40] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. 2009. Domain
Adaptation: Learning Bounds and Algorithms. In COLT.

[41] Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz,
and Demetri Terzopoulos. 2020. Image Segmentation Using Deep Learning: A
Survey. arXiv preprint arXiv:1702.05374 (2020).

[42] Sinno Jialin Pan and Qiang Yang. 2010. A Survey on Transfer Learning. IEEE
Trans. Knowl. Data Eng. 22, 10 (2010), 1345–1359.

[43] Yingwei Pan, Ting Yao, Yehao Li, Yu Wang, Chong Wah Ngo, and Tao Mei. 2019.
Transferrable Prototypical Networks for Unsupervised Domain Adaptation. In
CVPR. 2239–2247.

[44] Zhongyi Pei, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. 2018. Multi-
adversarial domain adaptation. In AAAI.

[45] Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman, Dequan Wang, and
Kate Saenko. 2017. VisDA: The Visual Domain Adaptation Challenge. arXiv
preprint arXiv:1710.06924 (2017).

[46] Pedro O Pinheiro. 2018. Unsupervised Domain Adaptation with Similarity Learn-
ing. In CVPR. 8004–8013.

[47] Chen Qingchao, Liu Yang, Wang Zhaowen, Wassell Ian, and Chetty Kevin. 2018.
Re-Weighted Adversarial Adaptation Network for Unsupervised Domain Adap-
tation. In CVPR. 7976–7985.

[48] Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. 2011. Wasserstein
Barycenter and Its Application to Texture Mixing. In Scale Space and Variational
Methods in Computer Vision - Third International Conference, SSVM, Vol. 6667.
Springer, 435–446.

[49] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, and Michael Bernstein.
[n.d.]. ImageNet Large Scale Visual Recognition Challenge. International Journal
of Computer Vision 115, 3 ([n. d.]), 211–252.

[50] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. 2010. Adapting visual
category models to new domains. In ECCV. 213–226.

[51] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. 2018.
Maximum classifier discrepancy for unsupervised domain adaptation. In CVPR.
3723–3732.

[52] F. Santambrogio. 2015. Optimal Transport for Applied Mathematicians. Optimal
Transport for Applied Mathematicians.



[53] Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. 2018. Wasserstein distance
guided representation learning for domain adaptation. In AAAI.

[54] Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert Müller. 2007. Covariate
Shift Adaptation by Importance Weighted Cross Validation. J. Mach. Learn. Res.
8 (2007), 985–1005.

[55] Baochen Sun and Kate Saenko. 2016. Deep coral: Correlation alignment for deep
domain adaptation. In ECCV. Springer, 443–450.

[56] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. 2014. Deepface:
Closing the gap to human-level performance in face verification. In CVPR. 1701–
1708.

[57] Naftali Tishby, Fernando C Pereira, and William Bialek. 2000. The information
bottleneck method. (2000), 368–377.

[58] Antonio Torralba and Alexei A. Efros. 2011. Unbiased look at dataset bias. In
Computer Vision Pattern Recognition.

[59] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. 2017. Adversarial
discriminative domain adaptation. In CVPR. 7167–7176.

[60] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman
Panchanathan. 2017. Deep hashing network for unsupervised domain adaptation.
In CVPR. 5018–5027.

[61] Mei Wang and Weihong Deng. 2018. Deep visual domain adaptation: A survey.
Neurocomputing 312 (2018), 135–153.

[62] Ximei Wang, Liang Li, Weirui Ye, Mingsheng Long, and Jianmin Wang. 2019.
Transferable attention for domain adaptation. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, Vol. 33. 5345–5352.

[63] Hanrui Wu, Yuguang Yan, Michael K. Ng, and Qingyao Wu. 2020. Domain-
attention Conditional Wasserstein Distance for Multi-source Domain Adaptation.
ACM Trans. Intell. Syst. Technol. 11, 4 (2020), 44:1–44:19.

[64] Jiqing Wu, Zhiwu Huang, Dinesh Acharya, Wen Li, Janine Thoma, Danda Pani
Paudel, and Luc Van Gool. 2019. Sliced Wasserstein Generative Models. In CVPR.
3713–3722.

[65] Shaoan Xie, Zibin Zheng, Liang Chen, and Chuan Chen. 2018. Learning semantic
representations for unsupervised domain adaptation. In ICML. 5423–5432.

[66] Renjun Xu, Pelen Liu, Liyan Wang, Chao Chen, and Jindong Wang. 2020. Reliable
Weighted Optimal Transport for Unsupervised Domain Adaptation. In CVPR.
IEEE, 4393–4402.

[67] Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas Natschläger,
and Susanne Saminger-Platz. 2017. Central Moment Discrepancy (CMD) for
Domain-Invariant Representation Learning. (2017).


	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Methodology
	3.1 Problem Formulation and Pseudo-label Definition
	3.2 Informative Feature Disentanglement
	3.3 Class-Conditioned Feature Alignment

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.3 Comparison Results
	4.4 Ablation Studies
	4.5 Further Remarks

	5 Conclusion
	Acknowledgments
	References

