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ABSTRACT
Salient object detection is the pixel-level dense prediction task
which can highlight the prominent object in the scene. Recently
U-Net framework is widely used, and continuous convolution and
pooling operations generate multi-level features which are com-
plementary with each other. In view of the more contribution of
high-level features for the performance, we propose a triplet trans-
former embedding module to enhance them by learning long-range
dependencies across layers. It is the first to use three transformer
encoders with shared weights to enhance multi-level features. By
further designing scale adjustment module to process the input,
devising three-stream decoder to process the output and attaching
depth features to color features for the multi-modal fusion, the
proposed triplet transformer embedding network (TriTransNet)
achieves the state-of-the-art performance in RGB-D salient object
detection, and pushes the performance to a new level. Experimental
results demonstrate the effectiveness of the proposed modules and
the competition of TriTransNet.1
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1 INTRODUCTION
Salient object detection (SOD) simulates the visual attention mech-
anism to capture the prominent object in the scene. It has been
widely applied in the computer vision tasks, such as image segmen-
tation [18], tracking [30, 47, 83], retrieval [25], compression [32],
edit [65] and quality assessment [34].

As a pixel-level dense prediction task, salient object detection
usually uses CNN based U-Net framework[58] (Fig. 1(a)) to encode
images from low-level to high-level, and then decode back to the
full spatial resolution. Research[74] points out that the performance
tends to saturate quickly when gradually aggregating features from
high-level to low-level. In other words, high-level features con-
tribute more to the performance. Therefore, we propose a triplet
transformer embedding module (TTEM) to enhance the feature
representation of high three layers.

As we all known, Transformer[62] has recently attracted a lot
of attention in computer vision domain, but it is also encounter-
ing high computational cost problem. PVT[66] adopts a spatial-
reduction attention (SRA) layer to reduce the resource cost to learn
high-resolution feature maps. CvT[72] introduces convolutional
into the Vision Transformer architecture to concurrently main-
tain a high degree of computational and memory efficiency. Swin
Transformer[44] uses the shifted windows calculation method to
propose a hierarchical Transformer, which has the flexibility of
modelling at various scales and has linear computational complex-
ity relative to the image size. Multi-Scale Vision Longformer[82]
proposes multi-scale coding structure, and further improves its
attention mechanism to reduce the computational and memory
cost.

Unlike these profound designs, we introduce Transformer into
U-Net framework to enhance the features of high three layers,
which can be easily integrated into existing U-Net framework for
significant improvement with less cost. The features of high three
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layers show the different attributions but the same in nature, which
are the different aspects of the same input image. The proposed
triplet transformer embedding module (TTEM) is composed of
three standard transformer encoders[62] with shared weights. It
is beneficial to find the common information which is hidden in
the multi-level features and achieve the better fusion by learning
long-range dependencies across levels.

(a) U-Net framework

(b) visual-transformer-FPN (VT-FPN)

(c) Our proposed triplet transformer embedding network

Figure 1: Comparison between U-Net framework, VT-FPN
and our proposed network.

Taking TTME as the core, we further propose the triplet trans-
former embedding network (TriTransNet). At first, multi-level fea-
tures are adjusted to the same size by a transition layer and pro-
gressively upsampling fusion module. Second, features are fed into
TTME to be enhanced. Last, the output features of TTME and the
features of low two layers are effectively fused by a three-stream
decoder.

Our proposed TriTransNet is the first attempt to use three stan-
dard transformer encoders with shared weights to enhance the
feature representation. Different from visual-transformer-FPN (VT-
FPN)[71] in Fig. 1(b) which merges visual tokens from feature map
of each layer with one transformer, our TriTransNet in Fig. 1(c)
adopts weight sharing strategy to make visual tokens extracted
from multi-level features more abundant enough to express the
original information, and meanwhile high-layer semantic informa-
tion and middle-layer texture or shape information are both better
excavated by parallel self-attention mechanism.

In addition, depth information is proved to supply the useful
cues and boost the performance for saliency detection [51], es-
pecially in some challenging and complex scenarios, e.g. the low
color contrasts between salient objects and background, the clut-
tered background interferences. But depth image with poor quality,
which likes a noise, brings some negative influences [22]. Following
depth guided manners [11, 12, 23, 52, 57, 60, 79, 89, 93] we design
depth purification module, which uses depth information to purify
the color features.

Our main contributions can be summarized as follows:

• A triplet transformer embedding module is proposed and
embedded into CNN based U-Net framework to enhance the
feature representation. It is composed of three standard trans-
former encoders with shared weights, learning the common
information from multi-level features.

• Based on the proposed triplet transformer embedding mod-
ule, triplet transformer embedding network is designed to
detect the salient objects in RGB-D image. Multi-level fea-
tures from encoder need to be adjusted to the same size by a
transition layer and progressively upsampling fusion mod-
ule, and then fed into triplet transformer embedding module.
Then the output of triplet transformer embedding module
need to be combined with the features of low two layers by
three-stream decoder to achieve the decoding process.

• Depth image is viewed as the supplement to color feature,
and attached to color feature to enhance the feature repre-
sentation by depth purification module which introduces
spatial attention and channel attention.

• Due to the advantage of the proposed triplet transformer
embedding module, the proposed model pushes the perfor-
mance of RGB-D salient object detection to a new level and
shows the state-of-the-art performance on several public
datasets.

2 RELATEDWORK
2.1 RGB-D saliency detection
In RGB-D image, color image provides appearance and texture infor-
mation, and depth image contains 3D layout and spatial structure.
The fusion of color feature and depth feature is always an important
issue in RGB-D saliency detection. References[10, 45, 85, 90] use
early fusion or input fusion, references[7, 11, 38, 39, 41] employ
two-stream subnetwork to achieve the middle fusion, references[53,
57, 73, 89, 93] apply depth guided fusion and references [14, 46, 64]
adopt late fusion.

Although depth information can supply the useful cues for
saliency detection [51], depth image with poor quality can bring
some negative influences too [22]. In order to solve the filtering
issue of low-quality depth map, D3Net [22] uses gate mechanism to
filter the poor depth map, EF-Net [9] enhances the depth maps by
color hint map, DQSD [5] integrates a depth quality aware subnet-
work into the classic bi-stream structure, assigning the weight of
depth feature before conducting the fusion. In addition, CoNet[33],
DASNet [88], SSDP[68] and MobileSal [73] introduce depth estima-
tion, learning to detect the salient object simultaneously.



In the paper, we adopt depth guided manner. Depth information
is viewed as the supplement to the color feature. It enhances the
color feature by attention mechanism.

2.2 Transformer
Transformer is first proposed by[62] to replace recurrent neural
networks (RNN), e.g.long short-term memory (LSTM) and gated
recurrent unit(GRU) for machine translation tasks. It can over-
come intrinsic shortages of RNN and has dominated nature lan-
guage processing (NLP) field and are becoming increasingly pop-
ular in computer vision tasks, e.g. image classification[19], object
detection[4], semantic segmentation[? ], line segment[77], person
re-identification[94], action detection[87], image completion[91],
3D point cloud processing[26, 86], pose estimation[59], facial ex-
pression recognition[48], object tracking[49] etc. DETR[4] takes
the lead in applying Transformer to the field of object detection
and achieves the better performance. The successful use of ViT[19]
in image classification tasks has made the research on visual Trans-
former a hot topics. SETR[92] deploys a pure Transformer as the
encoder, combined with a simple decoder, to achieve a powerful
semantic segmentation model. Besides, TransUNet[8] uses the pre-
trained ViT[19] as a powerful backbone of the U-Net[58] network
structure, and performs well in the field of medical image segmen-
tation.

However, pure transformer has great limitations. As a result,
many improved visual transformers have emerged. The Conditional
Position encodings Visual Transformer (CPVT)[17] replaces the
fixed position encoding in ViT[19] with the proposed conditional
position encoding (CPE), whichmakes it possible for Transformer to
process inputs of arbitrary sizes. Tokens-to-Token (T2T)[78] adopts
a novel progressive tetanization mechanism, which models local
structural information by aggregating adjacent tokens into one
token, while reducing the length of the token. LocalViT[42] adds lo-
cality to vision transformers by introducing depth-wise convolution
into the feed-forward network, improving a locality mechanism
for information exchange within a local region. Considering that
most visual Transformers ignore the inherent structural informa-
tion inside the sequence of patches, Transformer-iN-Transformer
(TNT)[27] proposes to use outer Transformer block and inner Trans-
former block to model patch-level and pixel-level representations,
respectively. Co-Scale Conv-Attentional Image Transformers[76]
designs a conv-attention module to realize relative position embed-
ding and enhance computation efficiency, and further proposes a
co-scale mechanism to introduce cross-scale attention to enrich
multi-scale feature.

On the other hand, CNN has the advantages of extracting low
level features and strengthening locality, while Transformer has
the advantages in establishing long-range dependencies. Some re-
search makes full use of both advantages. TransFuse[84] uses a
dual-branch structure, which uses Transformer to capture global
dependencies, while low-level spatial details are extracted by CNN
branches. Similarly, CoTr[75] uses the CNN backbone to extract fea-
ture representations and proposes to use deformable Transformer
(DeTrans) to model long-range dependencies, effectively bridging
the convolutional neural network and Transformer. ICT[63] uses
transformer to recover pluralistic coherent structures together with

some coarse textures, and uses CNN to enhances local texture de-
tails of coarse priors, so as to achieve excellent results on the image
completion task. TransT[13] uses Siamese-based CNN network for
feature extraction, and designs the self-attention-based ego-context
augment (ECA) and cross-attention-based cross-feature augment
(CFA) modules for feature fusion. Compact Transformers[28] elim-
inates the requirement for class token and position embedding
through a novel sequence pooling strategy and the use of convolu-
tions, so as to perform head-to-head with state-of-the-art CNNs on
small datasets.

Follow this strategy, we present triplet transformer embedding
module which is embedded into a U-Net framework to improve
the performance of RGB-D saliency detection. Combining both
advantages, our model achieves the state-of-the-art performance.

3 PROPOSED METHOD
3.1 Overview
The overall framework of the proposed triplet transformer embed-
ding network is depicted in Fig.2(a), which consists of multi-modal
fusion encoder, feature enhancement module and three-stream de-
coder. The details can be seen in the following sections.

3.2 Multi-modal fusion encoder
Color and depth image in RGB-D image are two expressions for
different modalities of the same scene. Color image provides ap-
pearance cue and depth image shows three dimension spatial in-
formation. Due to existence of poor quality depth map induced by
the imaging devices or conditions, we propose multi-modal fusion
encoder, in which depth features are first purified by multi-modal
features using attention mechanism, and then served as supple-
ment to the color feature by the residual connection[29]. Residual
part is designed as depth purification module (DPM), and shortcut
connection part is used to preserve more original color information.

In DPMwhich is shown in Fig. 2(b), depth feature is concatenated
with color feature, and fed into a channel attention module to get
attentive channel mask, which is used to purify the depth feature in
a channel manner. Next, purified depth feature is fed into a spatial
attention module again to generate attentive spatial mask, which is
used to purify the depth feature in a spatial manner. The process
can be described as:

𝐹𝑟𝑖 = 𝑓 𝑑𝑖 × 𝑆𝐴(𝑓 𝑑𝑖 ×𝐶𝐴(𝐶𝑎𝑡 (𝑓 𝑑𝑖 , 𝑓 𝑟𝑖 ))) + 𝑓 𝑟𝑖 (1)

where 𝑓 𝑟
𝑖
and 𝑓 𝑑

𝑖
represent color and depth features extracted by

backbone network respectively in which 𝑖 = 1, · · · , 5, 𝐶𝑎𝑡 (·) de-
notes concatenation and following convolution operation, 𝐶𝐴(·)
and 𝑆𝐴(·) are channel and spatial attention operation which is pro-
posed by CBAM[70], “×" is element-wise multiplication operation,
“+" is element-wise addition operation.

Thus, the depth feature with poor quality can be purified, and
then attached to color feature to generate more accuracy feature
representation 𝐹𝑟

𝑖
(𝑖 = 1, · · · , 5).

3.3 Feature enhancement module
In this module, we first adjust the features of high three layers
to the same size, and then use the triplet transformer embedding



Figure 2: Our proposed triplet transformer embedding network for RGB-D salient object detection.

module to enhance the feature representation by learning long-
range dependency across levels, and last concatenate the input and
output of triplet transformer embedding module to preserve more
original information.

3.3.1 Scale adjustment module. The triplet transformer embedding
module is composed of three standard transformer encoders with
shared weights. Its input should be the features with the same size.
But the sizes of the multi-level features 𝐹𝑟

𝑖
from multi-modal fusion

encoder are the different. Therefore, the first important task is to
adjust the sizes of multi-level features.

At first, a transition layer which contains a 3×3 convolution
and a ReLU activation function is applied on 𝐹𝑟

𝑖
. It can adjust the

number of channels of multi-level features to the same size. It can
be described as:

𝐹 ′𝑟𝑖 = 𝜎 (𝐶𝑜𝑛𝑣 (𝐹𝑟𝑖 )) 𝑖 = 3, · · · , 5 (2)

where 𝐶𝑜𝑛𝑣 (·) is 3×3 convolution operation, and 𝜎 (·) is ReLU acti-
vation function.

Then, we design a progressively upsampling fusion module
which is used to adjust the resolution of the features in the high
three layers to the same size. Since the direct upsampling with 2×
or 4× ratio will bring some noises, the features are progressively
upsampled and fused. The fusion process can be described as:

𝐹5 = 𝑈𝐹𝑀 (𝑈𝐹𝑀 (𝐹 ′𝑟5 , 𝐹 ′𝑟4 ), 𝐹 ′𝑟3 )
𝐹4 = 𝑈𝐹𝑀 (𝐹 ′𝑟4 , 𝐹 ′𝑟3 )
𝐹3 = 𝐹 ′𝑟3

(3)

where𝑈𝐹𝑀 (·) is shown in Fig.2(d). The detail can be described as:

𝑈𝐹𝑀 (𝐹ℎ𝑖𝑔ℎ, 𝐹𝑙𝑜𝑤) = 𝐶𝑎𝑡 (𝐶𝑜𝑛𝑣 (𝑈𝑝 (𝐹ℎ𝑖𝑔ℎ)), 𝐹𝑙𝑜𝑤) (4)
where 𝐹ℎ𝑖𝑔ℎ and 𝐹𝑙𝑜𝑤 denote the feature from the higher layer
with low resolution and the feature from the lower layer with
high resolution, respectively, and 𝑈𝑝 (·) denotes 2×upsampling
operation.

Compared with direct 2×, 4×upsampling on 𝐹 ′𝑟4 and 𝐹 ′𝑟5 , progres-
sively upsampling fusion module can not only adjust the features



to the same resolution but also increase the spatial detail of feature
in the high layer by progressive fusion process.

Thus, the features 𝐹𝑖 (𝑖 = 3, · · · , 5) with the same scales will be
served as the input and fed into next triplet transformer embedding
module.

3.3.2 Triplet Transformer Embedding Module (TTEM). The fea-
tures are first converted into the sequences of feature embedding,
and then fed to three standard transformer encoders with shared
weights to model the long-range relationship among different levels,
and last reshaped to the original size of features.

Specifically, each input feature 𝐹𝑖 (𝑖 = 3, · · · , 5) are first flattened
into a 1D sequence {𝐹𝑝

𝑖
|𝑝 = 1, · · · , 𝑁 }, where 𝑁 is the number of

patches. Each patch 𝐹
𝑝

𝑖
is then mapped into a latent 𝐷-dimensional

embedding space by a trainable linear projection layer. Furthermore,
we learn specific position embedding which are added to the patch
embedding to retain positional information. The process can be
described as:

𝑍0
𝑖 = [𝐹1𝑖 + 𝑃𝐸1; 𝐹2𝑖 + 𝑃𝐸2; · · · , ; 𝐹𝑁𝑖 + 𝑃𝐸𝑁 ] (5)

where 𝑃𝐸 = {𝑃𝐸𝑝 |𝑝 = 1, · · · , 𝑁 } is a 1D learnable positional em-
bedding.

The remaining architecture essentially follows the standard
transformer encoder[62] which stacks 𝐿 transformer layer. It is
shown in Fig.2(c). Each transformer layer contains multi-headed
self-attention (MSA) and multi-layer perceptron (MLP) sublayer.
Layer normalization (LN)[2] are inserted before these two sublayers,
and the residual connection is performed after these two sublayers.
The process can be described as:

𝑍 𝑙
𝑖

′
= 𝑀𝑆𝐴

(
𝐿𝑁

(
𝑍 𝑙−1
𝑖

))
+ 𝑍 𝑙−1

𝑖

𝑍 𝑙
𝑖
= 𝑀𝐿𝑃

(
𝐿𝑁

(
𝑍 𝑙
𝑖

′)) + 𝑍 𝑙
𝑖

′ 𝑙 = 1, · · · 𝐿 (6)

where 𝐿 denotes the number of transformer layers in the standard
transformer encoder.

3.3.3 Feature concatenation module. The outputs of three weights
shared transformer encoders 𝑍𝐿

𝑖
(𝑖 = 3, · · · , 5) fuses the informa-

tion of three layers by Transformer mechanism, so as to enhance
the original feature representation. In order to preserve the more
original information, we further cascade these outputs with original
features to generate the enhanced features of high three layers. The
process can be described as:

𝐹 ′𝑖 = 𝐶𝑎𝑡 (𝑍𝐿
𝑖 , 𝐹𝑖 ) 𝑖 = 3, · · · 5 (7)

3.4 Three-stream decoder
After the features of high three layers are enhanced by the proposed
triplet transformer embedding module, we will combine them with
the features of low two layers to achieve the decoding process. There
are two decoding methods. One is single-stream decoding and the
other is three-stream decoding. The single-stream decoding first
fuses three output results of feature enhancement module, and then
combine it with two features in the low layers. The three-stream
decoding first combines each output result of feature enhancement
module with two features in the low layers, and then fuses three-
stream results. We conduct two decoding processes, and find three-
stream decoding is better than single-stream decoding. Next, we

use formula to show three-stream decoder as follow:
𝐹 ′′𝑖 = 𝐶𝑎𝑡 (𝐶𝑎𝑡 (𝑈𝑝 (𝐹 ′𝑖 ), 𝐹

2
𝑟 ), 𝐹1𝑟 ) 𝑖 = 3, · · · 5 (8)

The above three features are performed upsampling, convolution
operation and sigmoid function to generate the saliencymaps 𝑆𝑖 (𝑖 =
1, · · · , 3) which are supervised by the ground truth maps.

𝑆𝑖 = 𝑠𝑖𝑔(𝐶𝑜𝑛𝑣 (𝑈𝑝 (𝐶𝑜𝑛𝑣 (𝑈𝑝 (𝐹 ′′𝑖 ))))) (9)
where 𝑠𝑖𝑔(·) denotes sigmoid function.

At last, we also fuse all the features above to generate the final
saliency map.

𝑆𝑓 𝑖𝑛𝑎𝑙 = 𝑠𝑖𝑔(
5∑︁

𝑖=3

𝐶𝑜𝑛𝑣 (𝑈𝑝 (𝐶𝑜𝑛𝑣 (𝑈𝑝 (𝐹 ′′𝑖 ))))) (10)

Pixel position aware loss 𝐿𝑠𝑝𝑝𝑎 [69] is adopted for end-to-end
training. The whole loss is defined as:

𝐿 = 𝐿𝑠𝑝𝑝𝑎 (𝑆𝑓 𝑖𝑛𝑎𝑙 ,𝐺) +
5∑︁

𝑖=3

𝐿𝑠𝑝𝑝𝑎 (𝑆𝑖 ,𝐺) (11)

where 𝐺 is ground truth saliency map.

4 EXPERIMENTS
4.1 Datasets and evaluation metrics
4.1.1 Datasets. We evaluate the proposed method on six challeng-
ing RGB-D SOD datasets. NLPR [54] includes 1000 images with
single or multiple salient objects. NJU2K [36] consists of 2003 stereo
image pairs and ground-truth maps with different objects, com-
plex and challenging scenes. STERE [50] incorporates 1000 pairs
of binocular images downloaded from the Internet. DES [15] has
135 indoor images collected by Microsoft Kinect. SIP [22] contains
1000 high-resolution images of multiple salient persons. DUT [56]
contains 1200 images captured by Lytro camera in real life scenes.

For the sake of fair comparison, we use the same training dataset
as in [11, 22], which consists of 1,485 images from the NJU2K dataset
and 700 images from the NLPR dataset. The remaining images in the
NJU2K and NLPR datasets and the whole datasets of STERE, DES
and SIP are used for testing. In addition, on the DUT dataset, we
follow the same protocols as in [33, 39, 56, 57, 90] to add additional
800 pairs from DUT for training and test on the remaining 400 pairs.
In summary, our training set contains 2,185 paired RGB and depth
images, but when testing is conducted on DUT, our training set
contains 2,985 paired ones.

4.1.2 Evaluation Metrics. We adopt five widely used metrics to
evaluate the performance of our model and other state-of-the-art
RGB-D SOD models, including the precision-recal(PR) curve [3],
E-measure [21], S-measure [20], F-measure [1] and mean absolute
error (MAE) [55]. Specifically, the PR curve plots precision and
recall values by setting a series of thresholds on the saliencymaps to
get the binary masks and further comparing them with the ground
truthmaps. The E-measure simultaneously captures global statistics
and local pixel matching information. The S-measure can evaluate
both region-aware and object-aware structural similarity between
saliency map and ground truth. The F-measure is the weighted
harmonic mean of precision and recall, which can evaluate the
overall performance. The MAE measures the average of the per-
pixel absolute difference between the saliency maps and the ground



truth maps. In our experiment, E-measure and F-measure adopts
adaptive values.

4.2 Implementation details
During the training and testing phase, the input RGB and depth
images are resized to 256×256. Multiple enhancement strategies
are used for all training images, i.e. random flipping, rotating and
border clipping. Parameters of the backbone network are initialized
with the pretrained parameters of ResNet-50 network [29]. The
hyper-parameters in transformer encoder are set as: 𝐿 = 12,𝐷 =

768,𝑁 = 1024. The rest of parameters are initialized to PyTorch
default settings. We employ the Adam optimizer [37] to train our
network with a batch size of 3 and an initial learning rate 1e-5, and
the learning rate will be divided by 10 every 60 epochs. Our model
is trained on a machine with a single NVIDIA GTX 3090 GPU. The
model converges within 150 epochs, which takes nearly 15 hours.

4.3 Comparisons with the state-of-the-art
Ourmodel is compared with 16 state-of-the-art RGB-D SODmodels,
including D3Net [22], ICNet [41], DCMF [6], DRLF [67], SSF [81],
SSMA [43], A2dele [57], UCNet [80], CoNet [33], DANet [90], JLDCF[24],
EBFSP[31],CDNet[35], HAINet[40], RD3D[10] and DSA2F[61]. To
ensure the fairness of the comparison results, the saliency maps of
the evaluation are provided by the authors or generated by running
source codes.

4.3.1 Quantitative Evaluation. Figure.3 shows the comparison re-
sults on PR curve. Table.1 shows the quantitative comparison results
of four evaluation metrics. As can be clearly observed from figure
that our curves are very short, which means that our recall is very
high. Furthermore, from the table, we can see that all the evalua-
tion metrics are nearly the best on six datasets, so as to verify the
effectiveness and advantages of our proposed method. Only two
S-measure values in NLPR and STERE datasets are inferior to the
best, but they are also the second best. Combined with the results of
figure and table, our method achieves the impressive performance.

4.3.2 Qualitative Evaluation. To make the qualitative comparisons,
we show some visual examples in Figure.4. It can be observed that
our method has better detection results than other methods in
some challenging cases: similar foreground and background(1𝑠𝑡 -
2𝑛𝑑 rows), complex scene(3𝑟𝑑 -4𝑡ℎ rows), low quality depthmap(5𝑡ℎ-
6𝑡ℎ rows), small object(7𝑡ℎ-8𝑡ℎ rows) and multiple objects(9𝑡ℎ-10𝑡ℎ
rows). These indicate that our approach can better locate salient
objects and produce more accurate saliency maps. In addition, our
approach can produce more fine-grained details as highlighted in
the salient region(11𝑡ℎ-12𝑡ℎ rows). This is also the proof of the
effectiveness of our method.

4.4 Ablation studies
We conduct ablation studies on NLPR, NJU2K, SIP and STERE
datasets to investigate the contributions of different modules in the
proposed method.

4.4.1 The effectiveness of triplet transformer embedding module
(TTEM). The baseline model used here removes TTEM. Its perfor-
mance is shown in the variant No.1 of Table. 2. Further, we replace

TTEM with gated recurrent unit (GRU) [16], whose result is shown
in the variant No.2 of Table. 2. The variant No.3 of Table. 2 is the
result of siamese transformer applied in the high two layers. The
variant No.4 of Table. 2 is the result of quadruplet transformer ap-
plied in the high four layers. The variant No.5 of Table. 2 is our
result of triplet transformer applied in the high three layers.

It can be clearly observed that compared with No.1, the result of
our TriTransNet is improved 0.016 in the S-measure metric, 0.021
in the F-measure metric, 0.008 in the E-measure metric and 0.007
in the MAEmetric on average. Meanwhile, compared with No.2, the
result of our TriTransNet is improved 0.012 in the S-measuremetric,
0.014 in the F-measure metric, 0.006 in the E-measure metric and
0.005 in the MAE metric on average. TTEM plays an important
role in the performance improvement.

In addition, we compare No.3, No.4 and No.5 and find that Triplet
win Siamese in S-measure, F-measure, E-measure, and MAE about
0.009,0.016,0.006 and 0.005 on average, and outperform Quadruplet
about 0.010,0.009,0.005 and 0.004 on average. Our TriTransNet en-
hances long-range dependency of semantic information by using
the features in the high three layers, and further combines with
three-stream usampling decoding in the low two layers to perfectly
depict the detailed boundary, so as to achieve the best performance.

4.4.2 The effectiveness of three-stream decoder. we further conduct
the ablation study by replacing three stream decoder with single-
stream decoder to check the effectiveness of the designed three-
stream decoder. Table. 3 No.1 denotes the model which adopts
single-stream decoder and No.2 means our three-stream decoder.
From Table. 3, we can see that the use of three-stream decoder
obviously improves the detection performance. It benefits from the
full integration of multi-layer features.

4.4.3 The effectiveness of depth purification module (DPM). The
baseline model used here removes depth purificationmodule (DPM).
It attaches the depth feature to color feature by element-wise ad-
dition operation in the encoder. Its performance is illustrated in
the variant No.1 of Table. 4. Further, we discuss the similar depth-
enhanced module (DEM) proposed in BBS[23] whose result is
shown in the variant No.2 of Table. 4. The variant No.3 of Table. 4
denotes the model which adopts DPM instead of element-wise
addition operation based on the baseline.

Compared with No.1, the performance of the variant No.3 is
significantly improved. Meanwhile, compared with No.2 which
using DEM, our detection effect is also better than that of No.2. It
verified that the effectiveness of DPM.

5 CONCLUSIONS
In the paper, we introduce transformer into U-Net framework to
detect salient object in RGB-D image. Different from existing com-
bination method of transformer and convolutional neural networks,
we propose a triplet transformer embedding module which can be
embedded into existing U-Net models for the better feature rep-
resentation by learning long-range dependency among different
levels with less cost. Furthermore, we use depth information to
enhance RGB features by depth purification module. Experimental
results show our method pushes the performance to a new level,
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Figure 3: P-R curves comparisons of different models on six datasets.

Table 1: S-measure, adaptive F-measure, adaptive E-measure, MAE comparisons with different models. The best result is in
bold.

DatasetsMetric D3Net ICNetDCMFDRLF SSF SSMA A2dele UCNet CoNet DANet JLDCF EBFSP CDNetHAINet RD3D DSA2F TriTransNet
TNNLS20TIP20 TIP20 TIP20CVPR20CVPR20CVPR20CVPR20ECCV20ECCV20CVPR20TMM21 TIP21 TIP21 AAAI21CVPR21 Ours

NLPR
S↑ .912 .923 .900 .903 .914 .915 .896 .920 .908 .920 .925 .915 .902 .924 .930 .918 .928

F𝛽 ↑ .861 .870 .839 .843 .875 .853 .878 .890 .846 .875 .878 .897 .848 .897 .892 .892 .909
𝐸𝜉 ↑ .944 .944 .933 .936 .949 .938 .945 .953 .934 .951 .953 .952 .935 .957 .958 .950 .960
MAE↓ .030 .028 .035 .032 .026 .030 .028 .025 .031 .027 .022 .026 .032 .024 .022 .024 .020

NJU2K
S↑ .901 .894 .889 .886 .899 .894 .869 .897 .895 .899 .902 .903 .885 .912 .916 .904 .920
F𝛽 ↑ .865 .868 .859 .849 .886 .865 .874 .889 .872 .871 .885 .894 .866 .900 .901 .898 .919
𝐸𝜉 ↑ .914 .905 .897 .901 .913 .896 .897 .903 .912 .908 .913 .907 .911 .922 .918 .922 .925
MAE↓ .046 .052 .052 .055 .043 .053 .051 .043 .046 .045 .041 .039 .048 .038 .036 .039 .030

STERE
S↑ .899 .903 .883 .888 .887 .890 .878 .903 .905 .901 .903 .900 .896 .907 .911 .897 .908
F𝛽 ↑ .859 .865 .841 .845 .867 .855 .874 .885 .884 .868 .869 .870 .873 .885 .886 .893 .893
𝐸𝜉 ↑ .920 .915 .904 .915 .921 .907 .915 .922 .927 921 .919 .912 .922 .925 .927 .927 .927
MAE↓ .046 .045 .054 .050 .046 .051 .044 .039 .037 .043 .040 .045 .042 .040 .037 .039 .033

DES
S↑ .898 .920 .877 .895 .905 .941 .885 .933 .911 .924 .931 .937 .875 .935 .935 .916 .943
F𝛽 ↑ .870 .889 .820 .868 .876 .906 .865 .917 .861 .899 .900 .913 .839 .924 .917 .901 .936
𝐸𝜉 ↑ .951 .959 .923 .954 .948 .974 .922 .974 .945 .968 .969 .974 .921 .974 .975 .955 .981
MAE↓ .031 .027 .040 .030 .025 .021 .028 .018 .027 .023 .020 .018 .034 .018 .019 .023 .014

SIP
S↑ .860 .854 .859 .850 .868 .872 .826 .875 .858 .875 .880 .885 .823 .880 .885 .862 .886
F𝛽 ↑ .835 .836 .819 .813 .851 .854 .825 .868 .842 .855 .873 .869 .805 .875 .874 .865 .892
𝐸𝜉 ↑ .902 .899 .898 .891 .911 .911 .892 .913 .909 .914 .921 .917 .880 .919 .920 .908 .924
MAE↓ .063 .069 .068 .071 .056 .057 .070 .051 .063 .054 .049 .049 .076 .053 .048 .057 .043

DUT
S↑ .775 .852 .798 .826 .916 .903 .886 .864 .919 .899 .906 .858 .880 .910 .931 .921 .933
F𝛽 ↑ .756 .830 .750 .803 .914 .866 .890 .856 .909 .888 .882 .842 .874 .906 .924 .926 .938
𝐸𝜉 ↑ .847 .897 .848 .870 946 .921 .924 .903 .948 .934 .931 .890 .918 .938 .949 .950 .957
MAE↓ .097 .072 .104 .080 .034 .044 .043 .056 .033 .043 .043 .067 .048 .038 .031 .030 .025

and ablation studies also verify the effectiveness of each module. In
the future, we will achieve the same task by a pure transformer, and
further discuss their respective advantages to achieve the better
combination.
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Figure 4: Visual comparison results with other the state-of-the-art models.

Table 2: Ablation experiment of triplet transformer embedding module (TTEM). The best result is in bold.

Variant
Candidate NLPR NJUD2K SIP STERE

Baseline GRU Siamese Quadruplet Triplet S↑ F𝛽 ↑ 𝐸𝜉 ↑ MAE↓ S↑ F𝛽 ↑ 𝐸𝜉 ↑ MAE↓ S↑ F𝛽 ↑ 𝐸𝜉 ↑ MAE↓ S↑ F𝛽 ↑ 𝐸𝜉 ↑ MAE↓
No.1 ✓ .910 .882 .952 .026 .904 .897 .917 .038 .876 .877 .918 .049 .888 .873 .916 .042
No.2 ✓ ✓ .914 .891 .953 .024 .905 .901 .919 .037 .879 .882 .919 .047 .895 .883 .920 .038
No.3 ✓ ✓ .917 .888 .956 .024 .910 .903 .915 .035 .882 .885 .926 .046 .896 .872 .917 .040
No.4 ✓ ✓ .922 .903 .958 .022 .911 .908 .922 .034 .875 .886 .913 .048 .895 .881 .922 .038
No.5 ✓ ✓ .928 .909 .960 .020 .920 .919 .925 .030 .886 .892 .924 .043 .908 .893 .927 .033

Table 3: Ablation experiment of three-stream decoder. The best result is in bold.

Variant
Candidate NLPR NJUD2K SIP STERE

single-stream three-stream S↑ F𝛽 ↑ 𝐸𝜉 ↑ MAE↓ S↑ F𝛽 ↑ 𝐸𝜉 ↑ MAE↓ S↑ F𝛽 ↑ 𝐸𝜉 ↑ MAE↓ S↑ F𝛽 ↑ 𝐸𝜉 ↑ MAE↓
No.1 ✓ .923 .892 .958 .022 .916 .904 .919 .035 .884 .886 .920 .045 .903 .879 .920 .037
No.2 ✓ .928 .909 .960 .020 .920 .919 .925 .030 .886 .892 .924 .043 .908 .893 .927 .033

Table 4: Ablation experiment of depth purification module (DPM). The best result is in bold.

Variant
Candidate NLPR NJUD2K SIP STERE

Baseline DEM DPM S↑ F𝛽 ↑ 𝐸𝜉 ↑ MAE↓ S↑ F𝛽 ↑ 𝐸𝜉 ↑ MAE↓ S↑ F𝛽 ↑ 𝐸𝜉 ↑ MAE↓ S↑ F𝛽 ↑ 𝐸𝜉 ↑ MAE↓
No.1 ✓ .917 .897 .956 .023 .909 .904 .920 .035 .883 .887 .921 .044 .894 .875 .918 .039
No.2 ✓ ✓ .923 .901 .958 .021 .914 .910 .922 .033 .884 .889 .923 .044 .905 .889 .925 .035
No.3 ✓ ✓ .928 .909 .960 .020 .920 .919 .925 .030 .886 .892 .924 .043 .908 .893 .927 .033
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