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ABSTRACT

Occluded person re-identification (ReID) aims to match person im-

ages with occlusion. It is fundamentally challenging because of the

serious occlusion which aggravates the misalignment problem be-

tween images. At the cost of incorporating a pose estimator, many

works introduce pose information to alleviate the misalignment in

both training and testing. To achieve high accuracy while preserv-

ing low inference complexity, we propose a network named Pose-

Guided Feature Learning with Knowledge Distillation (PGFL-KD),

where the pose information is exploited to regularize the learning

of semantics aligned features but is discarded in testing. PGFL-KD

consists of a main branch (MB), and two pose-guided branches, i.e.,

a foreground-enhanced branch (FEB), and a body part semantics

aligned branch (SAB). The FEB intends to emphasise the features of

visible body parts while excluding the interference of obstructions

and background (i.e., foreground feature alignment). The SAB en-

courages different channel groups to focus on different body parts

to have body part semantics aligned representation. To get rid of

the dependency on pose information when testing, we regularize

the MB to learn the merits of the FEB and SAB through knowledge

distillation and interaction-based training. Extensive experiments

on occluded, partial, and holistic ReID tasks show the effectiveness

of our proposed network.
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1 INTRODUCTION

Person re-identification (ReID) [4, 47, 48, 50, 51, 54] aims to match

images of a person across cameras, which has many applications

such as person tracking in a retail store, finding lost child, etc. In

recent years, many methods have been proposed for person ReID

[12, 16, 19, 21, 22, 27, 39, 41–43, 52, 54, 55]. However, most of them

focus on holistic person images and only very few works investi-

gate themore challenging occluded person ReID [2, 8, 11, 26, 28, 38,

This work was done when Kecheng was an intern at MSRA.
Corresponding authors: Cuiling Lan, Zheng-Jun Zha.
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Figure 1: Examplesof (a) occluded/partialperson images and

(b) the feature responses of Baseline. In (b), for the regions

with objects occluding persons (i.e., obstructions), the net-

works usually mistakenly generate high responses by re-

garding them as discriminative person regions.

40, 45, 60, 61], even though the occluded person images are very

common in practical scenarios. As shown in Figure 1, a person is

usually occluded by some objects (e.g. tree, car, board, bucket) or

walks out of the camera field, leading to occluded or partial person

images.

Occluded/partial person ReID is challenging, where there are

both occluded/partial person images and holistic person images for

matching 1. First, the spatialmisalignment between an occluded/partial

person image and a holistic person image or between two occluded/partial

person image is in general more severe than that between two

holistic person images. Second, as examples shown in Figure 1 (b),

for the regions with objects occluding persons (i.e., obstructions),

the networks usually mistakenly generate high responses by re-

garding them as discriminative person regions, resulting in inter-

ference to the person feature representation.

Recently, some occluded/partial person ReID methods are pro-

posed [2, 8, 11, 26, 28, 38, 40, 60, 61]. Many works alleviate the mis-

alignment by learning both global and local body part features [2,

28, 40] for matching. Matching based on local body part (e.g., head,

arm, leg, etc.) features facilitates thematching between two regions

of the same semantics, alleviating the matching difficulty from spa-

tial misalignment. Besides, such decoupling of body parts could

confine the interference caused by the missing of some body parts

into the local features rather than distributed to the global scope

1Note that, actually, the partial person image can be also considered as the occluded
person image in a broad sense where the “occluded" region is not presented in the
image.

http://arxiv.org/abs/2108.00139v2
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feature. On the other hand, a local body part feature may not be

capable of capturing some attributes which require a more global

observation (e.g., a person is wearing the clothes of the same color

for upper body and lower body).Thus, both global information

and local information are vital especially for occluded per-

son ReID. However, in general, to extract local body part fea-

tures, an external pose estimator is utilized in both training

and testing. This increases the complexity of the model (i.e.,

model size, computational cost) in testing/inference and is

not friendly in deployment.

In this work, we aim to preserve themerits of the global features

and local body part features for occluded person re-identification,

while eliminating the requirement of a pose estimator in testing

for low complexity. To this end, we propose a Pose-Guided Fea-

ture Learning with Knowledge Distillation (PGFL-KD) network,

where the pose information is exploited to regularize the learning

of global features and the pose estimator is discarded in testing.

PGFL-KD consists of a main branch (MB), and two pose-guided

branches: a foreground-enhanced branch (FEB), and a body part

semantics aligned branch (SAB). First, we explicitly alleviate the

interference from the obstructions (see Figure 1 (b)) by learning

foreground-enhanced feature in the FEB, where we define the fore-

ground as the regions around detected visible body joints based on

pose. Second, based on pose, we enable different channel groups

to represent features of the different body parts to have seman-

tics aligned representation in the SAB. To get rid of the depen-

dency on pose information when testing, the MB is “taught" to ig-

nore the interference from obstructions and background through

knowledge distillation, and to learn semantics aligned representa-

tions through our interaction-based training, where the latter is

promoted by our multi-part contrastive loss and interaction-based

training.

The main contributions of this paper are summarized as follows:

• We propose a Pose-Guided Feature Learning with Knowledge

Distillation (PGFL-KD) network for effective occluded person

re-identification. Through pose-guided interaction learning (i.e.,

knowledge distillation and interaction-based training), we en-

able the discarding of dependency on pose estimator while pre-

serving high performance in testing.

• We introduce two pose-guided branches in the training in order

to possess two merits for teaching the MB: 1) exclusion of the

interference from the obstructions and background (by the FEB);

2) semantics aligned feature representation (by the SAB).

To the best of our knowledge, this is the first work that distills

the robust feature representations based on pose in training but

does not need pose in testing for occluded person ReID. Extensive

experiments on occluded, partial, and holistic ReID tasks show the

effectiveness of our proposed network and validate the superiority

of PGFL-KD over various state-of-the-art methods.

2 RELATED WORKS

Occluded/Partial Person Re-identification. Occluded person

ReID [60] aims to match person images of both occluded/partial

person and holistic person. Zheng et al. [56] propose a global-to-

local matching model to capture the spatial layout information.

He et al. [8] reconstruct the feature map of a partial query from

the holistic pedestrian, and further improve it with a foreground-

background mask to reduce the influence of background clutter in

[11]. Iodice et al. [14] align partial views by using human pose in-

formation and hallucinate themissing partswith aCycle-Consistent

Adversarial Networks [58]. Sun et al. propose a Visibility-aware

Part Model (VPM) in [38], which learns to perceive the visibility

of regions by self-supervised learning. Zhuo et al. [60] propose

occluded/non-occluded binary classification (OBC) loss to regular-

ize the feature learning. Luo et al. [26] propose a spatial transform

module to transform the holistic image to align with the partial

ones, and further calculate the distance of the aligned pairs. Fan

et al. [1] propose a spatial-channel parallelism network (SCPNet)

that encodes spatial body part features into specific channels and

fuses the holistic and part features to obtain discriminative fea-

tures. However, the spatial parts are obtained by dividing the fea-

ture map into several spatial horizontal stripes which cannot as-

sure the alignment of body part semantics. Recently, many works

introduce a pose estimator [37, 46] to obtain semantics aligned lo-

cal body part features, and global feature for matching [2, 28, 40].

Miao et al. [28] propose a pose guided feature alignment method,

which extracts the local body part features based on pose and al-

leviates the influence of occluded body regions in matching. HOR-

eID [40] adopts high-order relation and human-topology informa-

tion for feature learning and alignment. PVPM [2] utilizes the char-

acteristic of part correspondence to estimate whether a part suffers

from the occlusion or not. However, these methods extract local

body part features based on pose information and a pose estimator

is needed in testing, which increases the complexity of inference

model.

In this paper, we aim to exploit the local body part semantics

aligned feature representations for high performance while dis-

carding the dependency on a pose estimator in testing for low com-

plexity.

KnowledgeDistillation.Knowledge distillation is one of themost

popular techniques in model compression and acceleration [5]. It

in general transfers knowledge from one model (i.e., a teacher) to

another (i.e., a student), usually from a larger model to a smaller

one. In this work, we aim to transfer the knowledge from the pose-

guided branches to the main branch during the training, which

enables the discarding of pose-based branches while maintaining

good performance.

3 PROPOSED METHOD

We propose a network named Pose-Guided Feature Learning with

Knowledge Distillation (PGFL-KD) for occluded person ReID. Fig-

ure 2 shows the flowchat for training. PGFL-KD consists of three

branches: amain branch (MB), a foreground-enhanced branch (FEB),

and a body part semantics aligned branch (SAB). Guided by pose

information, the FEB learns foreground-enhanced featurewhich al-

levates the interference from obstructions and background (see Sec.

3.2) while the SAB learns body part semantics aligned feature (see

Sec. 3.3). We promote the global feature in the MB to possess the

merits of the features in the other two branches by distilling knowl-

edge from them. Particularly, we encourage the global feature f�
to approach the foreground-enhanced feature f� by adding consis-

tent loss. Moreover, we encourage the global feature f� to be body
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Figure 2: Illustration of our proposed network Pose-Guided Feature Learning with Knowledge Distillation (PGFL-KD), where

the pose information is exploited to regularize the learning of semantics aligned features but is discarded in testing. PGFL-KD

consists of a main branch (MB) and two pose-guided branches: a foreground-enhanced branch (FEB), and a body part seman-

tics aligned branch (SAB). In testing, only the MB is needed. The FEB aims to alleviate the interference of obstructions and

background by learning foreground-enhanced feature. The SAB aims to learn body part semantics aligned feature representa-

tions. We distill the knowledge from the two branches to the MB by the knowledge distillation losses (i.e., consistent loss w.r.t.

the FEB, and multi-part contrastive loss and interaction-based training (marked by purple) w.r.t. the SAB.

part semantically aligned as f% by using multi-part contrastive loss

and enabling channel wise fusion. In this way, we are capable of

exploiting only the MB in the testing with satisfied performance,

where the pose related two branches are discarded.

3.1 Feature Extraction

Similar to others works, we exploit both global features and local

body part features in training. In contrast, we leverage the local

body part features to regularize the global feature learning and

only use the global feature in inference. We review how to obtain

them.

Global Feature Extraction. As illustrated in Figure 2, for the

main branch, we use a backbone network (e.g., ResNet-50) to ex-

tract a feature map � ∈ Rℎ×F×2 , where ℎ, F , 2 denote the height,

width, and the number of channels, respectively. Then we adopt

a global average pooling operation 6(·) on the feature map � to

output a global feature f� = 6(� ) ∈ R2 , where 2 = 2048.

Local Body Part Feature Extraction. For local body part feature

extraction, we obtain local body part features with the guidance of

the estimated human pose. Based on the off-the-shelf human pose

(key-points) estimator (HR-Net [37]), given an input image, we ob-

tain the heat map, with the responses identifying the estimated

positions of each key point (in total 17 key points, with one chan-

nel denoting background), respectively. We merge the key-points

based on semantics to have a merged heatmap � ∈ Rℎ×F× of

 = 8 channels corresponding to  key-point groups: including

head, left lower arm, right lower arm, left knee, right knee, left

ankle, right ankle, and torso. We denote the :Cℎ channel of � as

�: = � (:, :, :). To suppress noise and outliers, �: is obtained by

spatially normalizing original key-point heatmap with a softmax

function. Note that for an occluded key point, the pose estimator

in general output low responses in the heatmap.

With the guidance of key-points regions, we get  groups of

semantic local features {f;,: }|
 
:=1

by spatially pooling the feature

with each key-point heatmap as attention, respectively. We obtain

the features as:

f;,: = 6(� ⊙ (�: ⊗ e )), : = 1, · · · ,  , (1)

where ⊗ denotes outer product, ⊙ denotes Hadamard product,6(·)

denotes global average pooling, e ∈ R denotes a vector of all

ones, f;,: ∈ R2 .

Based on local body part features, we explicitly alleviate the

interference from the obstructions and background by learning

foreground-enhanced feature in the FEB, where we define the fore-

ground as the regions around detected visible body joints based on
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pose. Meanwhile, we also use the local body part features to enable

different channel groups to represent features of the different body

parts to have semantics aligned representation in the SAB. We in-

troduce the FEB and SAB in details in the following subsections.

3.2 Foreground-enhanced Branch (FEB)

The Foreground-enhanced Branch (FEB) intends to emphasise the

features of visible body parts while excluding the interference of

occluding objects and background. Specifically, we use the sum of

local body part features as a query to find more salient foreground

regions in the feature map to obtain enhanced foreground feature.

We distill the knowledge from the FEB to the MB.

Pose-Guided Feature Enhancement. With the local body part

featuresf;,: (: = 1, · · · ,  ) representing the informative foreground

human parts, we intend to let the feature learning focus onmore se-

manticallymeaningful regions.We propose a pose-guided foreground-

enhanced module to improve the quality of the pooled feature by

emphasising the features of visible body parts.

As illustrated in Figure 2, given a feature map � ∈ Rℎ×F×2

and its pose-based pooled feature vector f! ∈ R2 , where f! =

(
∑ 
:=1

f;,: )/ , we first calculate the cosine similarity between the

feature f! and the feature map � at each pixel. Then we use soft-

max function to calculate the attention score map with the score

value a position (8, 9) as

08, 9 =
exp(�8, 9 · 5!)

∑

8, 9 exp(�8, 9 · 5!)
, 8 ∈ [1, ℎ], 9 ∈ [1,F], (2)

where �8, 9 ∈ R
2 denotes the feature vector at position (8, 9) of the

feature map � . After obtaining the attention score map, we use it

as the weights for attentive pooling of the feature map to output

the foreground feature vector as

f� =

∑

8, 9

08, 9 × �8, 9 . (3)

This attentive pooling procedure can effectively shift the focus

of the pooled feature vector to the body part regions, leading to

more meaningful foreground representation. In order to enable the

model to preserve more complete information, we add the fore-

ground feature and the global feature to have the foreground-enhanced

feature f� = f� + f� .

Knowledge Distillation. In order to get rid of the dependency on

pose information in testing and inherent themerit of the foreground-

enhanced feature, we regularize the feature learning of the MB by

distilling knowledge from the FEB using consistent loss as

L�! = ‖f� − f� ‖
2
2, (4)

where the feature f� from the FEB acts as the teacher and the MB

as the student (by detaching the foreground-enhanced feature f� ).

3.3 Body Part Semantics Aligned Branch (SAB)

The SAB encourages different channel groups to focus on differ-

ent body parts to have semantics aligned representation. In or-

der to get rid of the dependency on pose information when test-

ing, we regularize the MB to learn the merits of the SAB branches

through multi-part contrastive loss for knowledge distillation and

interaction-based training.

For the SAB, to generate body part semantics aligned feature

representation f% , we reduce the number of dimension of each lo-

cal body part feature f;,: by  to have f?,: , and concatenate them

asf% = [f?,1,f?,2, · · · ,f?, ]. Heref?,: = '4!* (�# (,:f?,: )), where

, ∈ R
2
 
×2 and �# denotes batch normalization operation.

Multi-part Contrastive Loss. We use the multi-part contrastive

loss to explicitly align the global featuref� with the local body part

feature f% to have the semantics aligned feature representation.

To align with the local part featuref% , we split the global feature

f� of the MB into  groups, i.e., f� = [f6,1,f6,2, · · · ,f6, ], where

f6,: ∈ R2/ . Particularly, for an input image, we encourage the con-

sistency of the features between a local part featuref?,: and its cor-

responding channel-group f6,: of the global feature, and encour-

age the dissimilarity of the features between a local part f?,: and

a channel-group f6,8 of a different body part of the global feature,

where 8 ≠ 9 . To exploit the symmetry of a human body,we consider

that feature of the left part (e.g., left shoulder) of the body should

also be close to the feature of the corresponding right part (e.g.,

right shoulder). By following the design of the multi-positive con-

trastive loss [6], for an image, we have the multi-part contrastive

loss as

L"�! = −

 
∑

8=1

log

∑

9∈P(8 ) exp (f6,9 · f?,8 )
∑

9∈P(8 ) exp (f6,9 · f?,8 ) +
∑

9∈N(8 ) exp (f6,9 · f?,8 )
,

(5)

where N(8) denotes the negative set within the global feature f�
w.r.t. the 8Cℎ part featuref?,8 . For example, when the 8Cℎ part feature

f?,8 denotes the feature of left foot, the left foot and right foot fea-

tures in the global feature belongs to positive set while other part

features belongs to negative set. Note that in such distillation, the

local body part features act as teacher and the MB acts as student

(by detaching the local body part feature f% ).

Interaction-based Optimization. Besides the above multi-part

contrastive loss for distilling semantics aligned representation, we

enable the interaction between local part features and global fea-

ture to promote the channel-wise semantic alignment through joint

learning by fusing.

Particularly,we enable the joint optimization of the two branches

by fusing the global featureswith the local part features by element-

wise addition, i.e.,

f+ = f� + f% . (6)

The widely-used ReID loss L'4�� (i.e., the cross-entropy loss for

identity classification (ID Loss), and the ranking loss of triplet loss

with batch hard mining [12] (Triplet Loss)), is added on the fused

feature f+ , which we refer to L+
'4��

.

The fusion followed by supervision plays the role of assisting

the feature alignment, which drives different channel groups of

the global feature to focus on different human body parts. We will

give the analysis below.

Analysis from Perspective of Gradients: For the body part feature

f% , features of different local body parts are allocated into different

channel groups of f% and are thus semantically aligned across two

images. Global feature f� is not naturally semantically aligned but

it contains more comprehensive information. We promote their in-

teraction by element-wisely fusing them. We analyze the optimiza-

tion gradients for the two branches below.
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We take the triplet-loss as an example to analyze the gradients

for the two branches, where the analysis w.r.t the classification loss

is similar. We denote the two branch fused features of an anchor

sample, a positive sample, and a negative sample as v0 = f0
�
+ f0

%
,

v? = f
?

�
+ f

?

%
, v= = f=

�
+ f=

%
respectively (that could be sampled

from a mini-batch).

We define the triplet loss on the positive-pair and the negative-

pair as

LCA8 = − log
4v
)
0 ·v?

4v
)
0 ·v? + 4v

)
0 ·v=

= − log
(

1 + 4v
)
0 ·v=−v

)
0 ·v?

)

. (7)

For the triplet loss, the gradients w.r.t. the two features are as

mLCA8

mf0
�

=
mLCA8

mv0
·
mv0

mf0
�

=

v? − v=

1 + 4 (f
0
�
+f 0
%
)) ·v?−(f

0
�
+f0
%
)) ·v=

, (8)

mLCA8

mf0
%

=
mLCA8

mv0
·
mv0

mf0
%

=

v? − v=

1 + 4 (f
0
�
+f0
%
)) ·v?−(f

0
�
+f 0
%
)) ·v=

. (9)

We can see that the gradient for each branch/feature is related

with/influenced by the feature of the other branch, which denotes

they are not independent but interacted. Moreover, the optimiza-

tion direction (gradient) w.r.t. the global feature and that w.r.t. the

part-aligned local feature are the same. When their optimization

directions are the same, the two features share similar behaviors

and are prone to have consistent characteristics/semantics. Specifi-

cally, the local feature is semantically aligned and thus encourages

the global feature to be similarly semantically aligned.

3.4 Overall Loss Function

To drive both global branch and local branch to learn discrimina-

tive feature representations, we add the ReID loss on the global fea-

ture f� (denoted as L�
'4��

), the foreground-enhanced feature f�

(denoted as L�
'4��

), and the body part semantics aligned feature

(after fusion) f+ (denoted as L+
'4��

). Together with the distillation

losses, the overall loss is as

L = L�'4�� + L�'4�� + L+'4�� + _2;L�! + _<2;L"�! , (10)

where _2; and _<2; denote hyper-parameters for balancing the

losses.

3.5 Inference/Testing

In the testing phase, we discard the pose estimator and only use

the main branch (MB), where the feature f� is used for matching.

This removes the dependency on a pose estimator and makes the

model simple with low computational complexity in testing.

4 EXPERIMENTS

4.1 Datasets and Evaluation Metrics

We evaluate our methods using four person ReID datasets, includ-

ing two occludeddatasets (Occluded-Duke [28], andOccluded-ReID [60]),

three partial datasets (Partial-REID [8], Partial-iLIDS [8], and our

generated Partial-Duke), and two holistic datasets (DukeMT MC-

reID [31] and Market-1501 [53]), with details shown in Table 1.

Occluded Person ReID Datasets. These datasets focus more on

occluded person images, where in a cropped person image, a per-

son is usually occludedby some other objects/obstructions.Occluded-

Duke [28] is generated fromDukeMTMC-reID by leaving occluded

Dataset
Train Nums

(ID/Image)

Testing Nums (ID/Image)

Gallery Query

Market-1501 [53] 751/12,936 750/19,732 750/3,368

DukeMTMC-reID [31] 702/16,522 1,110/17,661 702/2,228

Occluded-Duke [28] 702/15,618 1,110/17,661 519/2,210

Occluded-ReID [60] - 200/1,000 200/1,000

Partial-REID [8] - 60/300 60/300

Partial-iLIDS [8] - 119/119 119/119

Partial-Duke (Ours) 702/16,522 1,110/17,661 702/2,228

Table 1: Dataset details. We evaluate our proposed method

on seven public datasets, including two occluded datasets,

three partial datasets and two holistic ones.

images and filtering out somenoisy images. It contains 15,618 train-

ing images, 17,661 gallery images, and 2,210 occluded query im-

ages. Occluded-ReID [60] is captured by the mobile camera, con-

sisting of 2000 images of 200 occluded persons. Each identity has

five full-body person images and five occluded person images with

different types of severe occlusions.

Partial PersonReID Datasets.These datasets focusmore on par-

tial person images, where only a partial of a person is presented in

the image due to imperfect detection or out of camera field. In a

broad sense, these are also occluded person images. Partial-REID

[8] includes 600 images from 60 people, with five full-body images

and five partial images per person, which is only used for the test.

Partial-iLIDS [8] is based on the iLIDS [8] dataset and contains

a total of 238 images from 119 people captured by multiple non-

overlapping cameras in the airport, and their occluded regions are

manually cropped.

The existing partial person ReID datasets are too small for re-

liable training and testing. For example, Partial-REID [8] includes

only 600 images from 60 people and Partial-iLIDS [8] includes only

238 images from 119 people. There is a lack of large size partial per-

son ReID dataset. To facilitate the investigation and evaluation, we

generate a large partial person ReID dataset based on DukeMTMC-

reID. We refer to it as Partial-Duke. The original DukeMTMC-reID

dataset is not designed for the investigation/evaluation of partial

person ReID due to its small number of partial person images. We

manually generate the Partial-Duke dataset. Partial-Duke contains

50%partial images and 50%holistic images for the training/query/gallery

sets. For these partial images, a half of them are the cropped upper

half (prone to be the upper body) of the original images, and an-

other half of images are the cropped upper one third of the original

images (prone to be the upper body). In total, it contains 702 iden-

tities of 16,522 training images, 702 identities of 2,228 queries, and

1110 identities of 17,661 gallery images.

Holistic Person ReID Datasets.Market-1501 [53] and DukeMT

MC-reID [31] sare twowidely-used large-scale holistic ReIDdatasets.

Market-1501 contains 1,501 identities captured from 6 cameras. It

has 19,732 gallery images, and 12,936 training images. This dataset

contains very few occluded or partial person images. DukeMTMC-

reID dataset contains 1,404 identities, 16,522 training images, 2,228

queries, and 17,661 gallery images.

EvaluationMetrics.We use standardmetrics inmost person ReID

literature, namely CumulativeMatching Characteristic Rank-1/5/10

(i.e., R1/R5/R10) and mean average precision (mAP).
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Methods
Occluded-Duke Occluded-REID

Rank-1 mAP Rank-1 mAP

LOMO+XQDA [21] 8.1 5.0 - -

DIM [44] 21.5 14.4 - -

Part-Aligned [49] 28.8 20.2 - -

HACNN [20] 34.4 26.0 - -

Random Erasing [57] 40.0 30.0 - -

PCB [39] 42.6 33.7 41.3 38.9

AFPB[60] - - 68.2 -

Part Bilinear [36] 36.9 - - -

FD-GAN [3] 40.8 - - -

AMC+SWM [56] - - 31.2 27.3

DSR [8] 40.8 30.4 72.8 62.8

SFR [10] 42.3 32 - -

Ad-Occluded [13] 44.5 32.2 - -

TCSDO [61] - - 73.7 77.9

FPR [11] - - 78.3 68.0

PGFA w/o pose [28] 46.0 34.4 - -

PGFA [28] 51.4 37.3 - -

PVPM [2] - - 66.8 59.5

PVPM+Aug [2] - - 70.4 61.2

HOReID [40] 55.1 43.8 80.3 70.2

ISP* [59] 62.8 52.3 - -

Baseline 52.7 45.9 73.6 61.5

PGFL-KD (Ours) 63.0 54.1 80.7 70.3

Table 2: Comparison with state-of-the-arts on two occluded

datasets, i.e. Occluded-Duke [28] and Occluded-REID [60]. *

denotes that ISP [59] uses HRNet-W32 as the backbone and

all other methods use ResNet50 backbone.

4.2 Implementation Details

For our PGFL-KD, We use ResNet50 pre-trained on ImageNet [32]

as our backbone network. Similarly, we build our baseline scheme

Baseline using ResNet50. As [25], we perform data augmentation

of randomly erasing [57], cropping, and flipping. The images are

resized to 384× 128. Each mini-batch contains 64 images of 4 iden-

tities, where there are 16 images for each identity. Adam [18] opti-

mizer is adopted to optimize the networks. The initial learning rate

is set to 0.00035. For the identity classifiers, a BNNeck is adopted,

which contains a batch normalization layer [15], and a fully con-

nected layer followed by a softmax function. The network is jointly

trained end-to-end for 120 epochs with an initialized learning rate

of 3.5e-4. The learning rate is decayed by 0.1 at 30 and 70 epochs.

We implement our framework with Pytorch.

The HR-Net [37] trained on the COCO dataset [23] is used to

extract the human key-points. The keypoint extractor predicts 17

key-points, and we merge these key-points according to the body

semantics to obtain  = 8 key-points. Specifically, torso consists

of left/right shoulders and hips. We merge the left (or right) elbow

and wrist as the left (or right) lower arm. After merging, the  = 8

key-points consist of head, left lower arm, right lower arm, left

knee, right knee, left ankle, right ankle, and torso.

4.3 Comparison with the State-of-the-Arts

Results on Occluded Person ReID Datasets. As are shown in

Table 2, wemainly comparewithmethods of four categories: vanilla

Methods
Partial-REID Partial-iLIDS

Rank-1 Rank-3 Rank-1 Rank-3

DSR [8] 50.7 70.0 58.8 67.2

SFR [10] 56.9 78.5 63.9 74.8

VPM [38] 67.7 81.9 65.5 74.8

PGFA [28] 68.0 80.0 69.1 80.9

AFPB [60] 78.5 - - -

FPR [11] 81.0 - 68.1 -

TCSDO [61] 82.7 - - -

HOReID [40] 85.3 91.0 72.6 86.4

PGFL-KD (Ours) 85.1 90.8 74.0 86.7

Table 3: Comparison with state-of-the-art approaches on

two partial datasets, i.e. Partial-REID [56] and Partial-

iLIDS [8] datasets. Our method achieves competitive perfor-

mance on the two partial datasets.

Methods
Partial-Duke

Rank-1 Rank-5 Rank-10 mAP

FPR [11] 69.2 83. 4 87.6 50.5

PGFA [28] 66.2 81.5 85.4 42.5

PVPM [2] 74.6 83.7 88.9 57.3

HOReID [40] 77.6 86.3 90.9 59.0

Baseline 70.1 82.2 87.7 51.2

PGFL-KD (Ours) 81.1 89.5 92.7 64.2

Table 4: Performance comparison (%) with the state-of-the-

arts on our created large partial dataset, i.e. Partial-Duke.

holistic ReID methods [39, 49], holistic ReID methods with key-

point information [3, 36], partial ReID methods [8, 10, 56], and oc-

cluded ReID methods [11, 13, 28, 61].

The first two category approaches achieve less satisfactory re-

sults, because they do not design the networks specific to the oc-

cluded ReID. For partial/occluded ReID methods, an obvious im-

provement is achieved on the two datasets. Our proposed PGFL-

KDachieves the best performancewhen comparedwith these state-

of-the-art methods, which outperforms the second best method

HOReID [40] by 10.3% in mAPaccuracy on the large dataset Occluded-

Duke. Note that HOReID needs a pose estimator in testing but we

do not. At the same inference complexity, our PGFL-KD outper-

forms the baseline scheme Baseline significantly by 8.2% and 8.8%

in mAP on Occluded-Duke and Occluded-REID, respectively.

Results on Partial Person ReID Datasets. To further evaluate

our proposed scheme, in Table 3 we report the results on two par-

tial person ReID datasets, Partial-REID [56] and Partial-iLIDS [8].

Aswe can see, our proposed PGFL-KD outperforms the othermeth-

ods by at least 1.4% in terms of Rank-1 accuracy on Partial-iLIDS

and achieves the competitive results toHOReID[7] on Partial-REID.

Our inference model is simple and does not need pose estimator

but HOReID requires.

The existing partial person ReID datasets are too small for reli-

able training and testing. Thus we manually generate the Partial-

Duke dataset, which is much larger than Partial-REID and Partial-

iLIDS (see Table 1. Table 4 shows the comparison with the state-of-

the-art approaches on this large Partial-Duke dataset, where the

results are obtained by running their source codes. We can see that
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Methods
Market-1501 DukeMTMC

Rank-1 mAP Rank-1 mAP

PCB [39] 92.3 77.4 81.8 66.1

VPM [38] 93.0 80.8 83.6 72.6

BOT [25] 94.1 85.7 86.4 76.4

GCP [29] 95.2 88.9 87.9 78.6

SPReID [17] 92.5 81.3 - -

MGCAM [34] 83.8 74.3 46.7 46.0

MaskReID [30] 90.0 75.3 - -

ISP [59] - - 88.7 78.9

PDC [35] 84.2 63.4 - -

Pose-transfer [24] 87.7 68.9 30.1 28.2

PSE [33] 87.7 69.0 27.3 30.2

PGFA [28] 91.2 76.8 82.6 65.5

HOReID [7] 94.2 84.9 86.9 75.6

GASM [9] 95.3 84.7 88.3 74.4

Baseline 94.0 85.2 86.3 76.1

PGFL-KD (Ours) 95.3 87.2 89.6 79.5

Table 5: Comparison with state-of-the-arts on two holistic

datasets, Market-1501 and DukeMTMTc-reID.

our proposed PGFL-KD achieves the best performance, which out-

performs the second best method by 5.2% in mAP accuracy.

Results on Holistic Person ReID Datasets. In considering the

practical applicationswhere both occludedand holistic personmatch-

ing is needed, it is expected that a method designed for occluded

person ReID should work for holistic person ReID. We compare

with the state-of-the-art approaches on holistic person ReID in Ta-

ble 5. We also compare with the vanilla ReID methods [25, 38, 39],

the ReID methods with human-parsing information [17, 30, 34, 59],

and the holistic ReID methods with key-points information [9, 24,

28, 33, 35].

We can see that our proposed PGFL-KD achieves the compet-

itive results on the holistic person ReID datasets. It is mentioned

that ourmodel uses only the vanilla ResNet model in testing, which

does not introduce additional computational complexity and does

not need a pose estimator.

4.4 Ablation Studies

In this section, we conduct ablation studies to evaluate the effec-

tiveness of designs in the proposed PGFL-KD. PGFL-KD consists of

amain branch (MB), and two pose-guided branches, i.e., a foreground-

enhanced branch (FEB), and a body part semantics aligned branch

(SAB). Occluded-Duke is a larger occluded dataset, which can bet-

ter reflect the effectiveness of themodels. Table 6 shows the results.

Model-1 denotes our Baseline, where ResNet50 network is trained

followed by ReID loss. We denote whether SAB/FEB is enabled (de-

noted by On) or not (denoted by Off) in training in the column ti-

tled by S (means Switch). For all these schemes, the global feature

f� of the MB is used for testing.

Effectiveness of SAB. As shown in Table 6, we denote our inter-

action based optimization in SAB as I, and multi-part contrastive

loss (for knowledge distillation) in SAB asM (see Section 3.3). We

Index (Scheme)
SAB FEB

R1 mAP
S I M S C

1 (Baseline) Off × × Off × 52.7 45.9

2 (MB+SAB) On × × Off × 54.0 46.5

3 (MB+SAB w/ � ) On X × Off × 56.4 48.1

4 (MB+SAB w/ �") On X X Off × 59.4 52.0

5 (MB-SAB+FEB) On X X On × 61.2 52.1

6 (MB-SAB+FEB w/�) On X X On X 63.0 54.1

Table 6: Effectiveness of our designs in the proposed PGFL-

KD on Occluded-Duke. It consists of a main branch (MB),

and two pose-guided branches, i.e., a foreground-enhanced

branch (FEB), and a body part semantics aligned branch

(SAB). We denote the interaction-based otimization in SAB

by I, multi-part contrastive loss in SAB by M, and consis-

tent loss in FEB by C. Note that for all these schemes, the

global feature f� of the MB is used for testing.

denoteModel-2 (MB+SAB) as a scheme whenwe add the SABwith-

out I and M , where the part semantics aligned feature f% is fol-

lowed by ReID loss. Then the SAB plays a role of regularizing the

backbone feature learning. We can see that Model-2 outperforms

Baseline by 0.6%/1.3% in mAP/Rank-1.

When the interaction based optimization I of SAB is used, i.e.,

Model-3 (MB+SAB w/ � ), the performance is further improved by

1.6%/2.4% in mAP/Rank-1 in comparison with Model-2 (MB+SAB).

This demonstrates the effectiveness of our proposed interaction-

based training in promoting the semantics alignment for the global

feature. In Model-4 (MB+SAB w/ �"), the using of the proposed

multi-part contrastive loss (M) explicitly enhances the channel-

wise feature alignment of the global feature guided by the local

part features of the SAB, which brings additional 3.9%/3.0% gain

in mAP/Rank-1.

Effectiveness of FEB. We denote the consistent loss (for knowl-

edge distillation) in FEB as C. On top of Model-4 (MB+SAB w/ �"),

when adding the FEB without C, we denote the scheme as Model-5

(MB-SAB), where the foreground-enhanced feature f� is followed

by ReID loss. In this case, the FEB regularizes the feature learn-

ing of the backbone network. The performance is significantly im-

proved by 0.1%/1.8% in mAP/Rank-1 over Model-4 (MB+SAB w/

�"). The foreground-enhanced operation in FEB intends to empha-

sise the features of visible body parts while alleviating the inter-

ference of obstructions and background. When we explicitly dis-

tilling the knowledge from the FEB to the MB by adding consis-

tent loss (i.e., C enabled), we can see that Model-6 (MB-SAB + FEB

w/ �) is much superior than Model-5 that without using consis-

tent loss. Model-6 represents our final scheme PGFL-KD. Thanks

to our designs, it outperforms Baseline significantly by 8.2%/10.3%

in mAP/Rank-1.

Effectiveness of Multi-part Constrastive Loss vs. Consistent

Loss for the SAB. To distill knowledge from the body part seman-

tics aligned featuref% in the SAB to the global featuref� in theMB,

we use multi-part constrastive loss (L"�! ) for better alignment.

Table 7 shows that replacing this contrastive loss with a consistent

loss L�! (similar to Eq.(4) in SAB, there is a 3.9% drop in mAP

accuracy.
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Method Rank-1 mAP

MB + FEB + SAB w L�! 59.1 50.0

MB + FEB + SAB w L"�! 63.0 54.1

Table 7: Effectiveness of using different knowledge distilla-

tion losses for the SAB in our PGFL-KD on Occluded-Duke.
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Figure 3: Evaluation of the proposed PGFL-KD with differ-

ent values of parameter on Occluded-Duke. (a) multi-part

contrastive loss _<2; ;(b) consistent loss _2; .

Feature for Testing FLOPS Param Rank-1 mAP
Global Feature f� (Baseline) 8.98G 39.89M 52.7 45.9
Global Feature f� (PGFL-KD) 8.98G 39.89M 63.0 54.1

Body Part Feature f% 24.75G 116.09M 57.1 46.7
Body Part Fused Feature f+ 24.75G 117.54M 62.8 53.0

Foreground Feature f� 24.72G 103.51M 58.3 47.3
Foreground Fused Feature f� 24.72G 104.95M 63.4 54.6

Table 8: Performance (%) and inference complexity compar-

isons when we use different features for matching for our

PGFL-KD on Occluded-Duke.

Influence of Different Hyper-parameters.We study the influ-

ence of different hyper-parameters on the performance. Figure 3

shows the results.We can see that when _2; = 0.25 and _<2; = 0.25,

PGFL-KD presents the best performance (in mAP).

4.5 Different Features for Matching and
Inference Complexity

For our PGFL-KD scheme, we compare the performance when we

use different features for matching in inference, and show the re-

sults in Table 8. 1) When we use the global feature f� in test-

ing, ours significantly outperforms Baseline by 8.3%/10.3% in term

of mAP/Rank-1. This is only 0.5%/0.4% inferior to the best per-

formance in term of mAP/Rank-1 which need to use pose infor-

mation in testing. Through pose-guided interaction learning (i.e.,

knowledge distillation and interaction-based training), we get rid

of the dependency on the pose estimator, retaining high perfor-

mance and low computational complexity in the test. The compu-

tational complexity is the same as Baseline, which is about 1/3 of

the schemes which need a pose estimator. 2) Body part feature f%
only or foreground feature f% only is less effective since it lacks

the global information. In contrast, f� still preserves global in-

formation while inheriting the merits of pose-guided features. 3)

The ensemble of the features (f� and f+ ) further brings slight gain

(about 0.5 in mAP). However, their computational complexity is

Method Time Method Time

DSR [8] 4.84s SFR [10] 4.65s

PGFA [28] 0.82s PGFA w/o pose [28] 0.12s

PCB [39] 0.09s PGFL-KD (Ours) 0.08s

Table 9: Inference speed (seconds per query) on Occluded-

Duke.
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Figure 4: Visualization of the feature corresponds for our

PGFL-KD scheme, where the responses for Baseline and the

original images are shown in Figure 1.

about three times greater than that of using only the global fea-

ture.

We compare the inference speed of our method with PCB [39],

the partial re-id methods (DSR [8], and SFR [10]), and the occluded

re-id methods PGFA [28]. Table 9 shows that our method is much

faster than other methods DSR [8], and SFR [10] because there is

no time-consuming feature map matching during inference in our

method. Ours has similar inference speedwith PGFAw/o pose [28]

but achieves much better performance (see Table 2)

4.6 Feature Visualization

As discussed in Section 3.2 and 3.3, we expect to let themain branch

ignore the interference from obstructions/background and learn

semantics aligned representations. We visualize the feature responses

� of our PGFL-KD in Figure 4, where the responses for Baseline are

shown in Figure 1 (b). In Figure 1 (b), for the regions with objects

occluding persons (i.e., obstructions), the networks usually mistak-

enly generate high responses by regarding them as discriminative

person regions. With the guidance of FEB and SAB, the PGFL-KD

focuses on the regions more related to foreground objects com-

pared with Baseline.

5 CONCLUSION

In this paper, we propose a network named Pose-Guided Feature

Learning with Knowledge Distillation (PGFL-KD). PGFL-KD con-

sists of a main branch (MB), a foreground-enhanced branch (FEB),

and a body part semantics aligned branch (SAB). Specifically, the

FEB intends to emphasise the features of visible body parts while

excluding the interference of obstructions and background (i.e.,

foreground feature alignment). The SAB encourages different chan-

nel groups to focus on different body parts to have body part se-

mantics aligned representation. To get rid of the dependency on

pose information and have a model of low complexity when test-

ing, we regularize the main branch to learn the merits of the FEB

and SAB through knowledge distillation and interaction-based train-

ing. Extensive experiments on occluded, partial, and holistic ReID

tasks show the effectiveness of our proposed network and validate

the superiority of PGFL-KD over various state-of-the-art methods.
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