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Intra-frame Relations

Inter-frame Relations

Figure 1: Two important cures exist to recognize Human-Object Interaction in video: First, model the global interaction rela-
tionship between human and the objects being interacted with. For clarity, only the inter-frame relations between the first
frame and the rest of the frames are visualized. Second, the spatial location trajectory and semantic labels can be crucial clues
for recognizing when significant changes in the appearance features may not transpire during a Human-Object Interaction.

ABSTRACT

For a given video-based Human-Object Interaction scene, modeling
the spatio-temporal relationship between humans and objects is
the important cue to understand the contextual information pre-
sented in the video. With the efficient spatio-temporal relationship
modeling, it is possible not only to uncover contextual informa-
tion in each frame, but to directly capture inter-frame dependen-
cies as well. Capturing the position changes of human and objects
over the spatio-temporal dimension is more critical when signifi-
cant changes in the appearance features may not occur over time.
When utilizing appearance features, the spatial location and the
semantic information are also the key to improve the video-based
Human-Object Interaction recognition performance. In this paper,
Spatio-Temporal Interaction Graph Parsing Networks (STIGPN)
are constructed, which encode the videos with a graph composed
of human and object nodes. These nodes are connected by two
types of relations: (i) intra-frame relations: modeling the interac-
tions between human and the interacted objects within each frame.
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(ii) inter-frame relations: capturing the long range dependencies
between human and the interacted objects across frame. With the
graph, STIGPN learn spatio-temporal features directly from the
whole video-based Human-Object Interaction scenes. Multi-modal
features and a multi-stream fusion strategy are used to enhance the
reasoning capability of STIGPN. Two Human-Object Interaction
video datasets, including CAD-120 and Something-Else, are used to
evaluate the proposed architectures, and the state-of-the-art perfor-
mance demonstrates the superiority of STIGPN. Code for STIGPN
is available at https://github.com/GuangmingZhu/STIGPN.
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1 INTRODUCTION

As one of the most fundamental tasks in scene understanding,
Human-Object Interactions (HOI) has attracted significant attention
in recent years. HOI detection methods, including video-based[12,
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18, 19] and image-based[1, 14, 17, 37, 38], have been widely studied.
Generally, these methods visually understand the scene on the
basis of existing mature methods, such as object detection[2, 8,
22, 30], action recognition[27, 39, 40, 42, 43], visual relationship
detection[21, 24, 25, 29, 32], and so on. In this paper, we especially
focus on the problem of learning HOI from videos. Video-based
HOI aim to recognize the kind of interaction and which objects the
human interacts with. For example, as shown in Fig. 1, the goal is to
recognize the HOI category: human moves the plate. Video-based
HOI recognition requires greater understanding of spatio-temporal
contextual information for better inference.

A straightforward method of video-based HOI recognition is
to use deep learning end-to-end architectures, such as convolu-
tional neural networks (CNN) and recurrent neural network (RNN),
or 3D convolutional neural networks (3DCNN) [31] to learn the
spatio-temporal features. However, all these architectures capture
the spatio-temporal contextual information from the whole video
scene instead of capturing the key instances. Moreover, they fail to
directly capture the spatio-temporal dependence between human
and objects. Graphs are widely used to represent non-grid struc-
tures. When recognizing HOIs on the basis of human and object
instances, graphs are the natural choice for modeling the spatio-
temporal dependence. These methods usually detect humans and
objects first, and then recognize HOIs from the spatio-temporal
evolution of the graphs in which the nodes represent detected hu-
man and objects. Recently, many methods have attempted to model
video-based HOI scenes on the basis of the graph structure. Graph
Parsing Neural Network (GPNN) [20] represents HOI structures
with a single spatial graph and automatically parses the optimal
graph structures in an end-to-end manner. GPNN can model a video
in a single spatial graph, which benefits from the special spatio-
temporal features as input features provided by the CAD-120 [12]
dataset. However, given the unavailability of these features, GPNN
will find it difficult to perform equally well on other datasets. The
LIGHTEN [19] models a video with graph sequences, which con-
nects the instances of each other in each frame to build a graph.
However, they must stack very deep GCNs and RNNs to capture
spatio-temporal features from these graph sequences.

Sois there a graph structure or method to capture spatio-temporal
features more efficiently? Let us reconsider the video HOI scene
shown in Fig. 1. How do humans effortlessly recognize the HOI cat-
egory in videos? There could be two important clues that can solve
this problem: First, the spatio-temporal relationship between the
human and the interacting objects is critical to our HOI recognition.
This means that attention should be paid not only to the objects
being interacted with in the current frame, but also to the ones
in other frames. As shown in the Fig. 1, the status change of the
plate being held deserve greater attention than the stationary plate
and observing the state changes of the plate over time is beneficial
for identifying HOL Thus, the Intra-frame Relation links need be
established between the human and the interacting object in each
frame and the Inter-frame Relation links between the human and
the interacting objects across frame. This makes it possible not only
to uncover contextual information in each frame but also to directly
capture dependencies across time because of the complementar-
ity of the intra-frame relation and the inter-frame relation. These
settings can capture local and global long-range dependencies by
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directly pairwise comparison of the features between human and
object at all space-time location. Second, capturing the appearance
features of human and objects over the spatio-temporal dimension
is crucial for video-based HOI recognition. However, significant
changes may not emerge in the appearance features of human
and objects over time when the views only demonstrate local and
inapparent interactions. For example, significant changes in the
appearance features of the human and the plate do not transpire,
but the synchronous changes in the position of hands and the plate
exactly indicate the HOI i.e., "human moves the plate." Therefore,
utilizing the features beyond the appearance features, e.g., the spa-
tial location and the semantic information of human and objects,
become the keys to improve the interpretable HOI recognition.

On the basis of the above two clues, Spatio-Temporal Interac-
tion Graph Parsing Networks (STIGPN) are constructed, which
encode the videos with a graph composed of human and object
nodes, and automatically learn the spatio-temporal relationship
evolutions. First, multimodal features, including the appearance
features, the spatial location, and the semantic information, are
used for the feature representation of the input nodes of the graph.
Then, a graph is built to represent the spatio-temporal relationship.
Nodes in the graph are connected by two types of edge: intra-frame
relation and inter-frame relation. (i) Intra-frame relations model the
interactions between the human and the interacted objects within
each frame. (ii) Inter-frame relations capture the long range depen-
dencies between the human and the interacted objects across frame.
Finally, the graph evolution operations are performed to extract
the spatio-temporal features between graph nodes for the final HOI
recognition. Despite not using the groundtruth-based pre-computed
features and the small amount of data available for training from
videos, our networks achieve the state-of-the-art performance on
the CAD-120 [12] and Something-Else [18] datasets.

The main contributions of this paper can be summarized as fol-
lows: First, a novel and efficient spatio-temporal graph is proposed,
which can directly model the global relationship between the hu-
man and the object to be interacted and capture the state change of
the interacting objects across frames. Second, a framework which
takes full use of visual, spatial and semantic features is proposed.
Third, the state-of-the-art performances on two benchmark video-
based HOI datasets are achieved.

2 RELATED WORK

In this section, some existing technologies about human-object
interaction detection and multi-streams neural networks are re-
viewed.

Human-Object Interaction Detection. The HOI detection can
be divided into two parts: 1) image-based HOI detection and 2)
video-based HOI detection. The image-based HOI detection aims
to recognize the interaction relationship between each pair of a hu-
man and an object from an image. This requires the model to utilize
the contextual information in the scene. Georgia et.al.[6] proposed
InteractNet that predicts the activity density at the location of the
target object on the basis of the appearance of the detected hu-
man. Gao et al.[5] introduced an instance-centric attention-based
network to selectively aggregate and recognize features related
to HOIs. Recently, they were inspired by the design of two-stage
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object detectors and proposed dual relation graph in [4], which can
effectively capture the discriminative clues in the scene and solve
the fuzzy problem of local prediction. Liang et al.[16] proposed a
visual-segmantic graph attention network, which effectively ag-
gregates contextual visual, spatial, and semantic information to
eliminate the ambiguities of subsidiary relations. Furthermore, they
contribute a Pose-based Modular Network (PMN) in [15] which ex-
plores the absolute pose features and relative spatial pose features
to improve HOI detection.

Unlike image-based HOI detection that received significant at-
tention, video-based HOI detection is relatively less explored. This
task is typically related to the prediction of human activity and
objects affordance. Jain et al.[9] proposed a scalable method for
casting an arbitrary spatiotemporal graph as a rich RNN mixture
and for evaluating the task of HOI Xiao et al.[36] introduced a dual
attention network model that weights the important features for
objects and actions to reason about human-object interactions. Qi
et al. [20] proposed the GPNN which represents HOI structures
with graphs and automatically parses the optimal graph structures
in an end-to-end manner. Sai et al. [19] presented a hierarchical
approach, named LIGHTEN, to effectively capture spatio-temporal
cues. In this study, spatio-temporal graph parsing networks are
constructed, which encode the videos with graph sequences and
learn the spatio-temporal relationship evolutions over the temporal
dimension and the spatial graph topologies.

Multi-Stream Neural Network for Action Recognition. Re-
cently, multi-stream neural networks have been successful for ac-
tion recognition in videos. Singh et al.[28] contributed a multi-
stream bi-directional recurrent neural network(BiRNN), which uses
two different streams of information(i.e., motion and appearance)
for action recognition. Feichtenhofer et al.[3] presented a convolu-
tional two-stream network and fused the appearance and motion
information for video action recognition. Inspired by their work, Tu
et al.[33] introduced a human-related multi-stream CNN architec-
ture that integrates appearance, motion, and human-related regions.
Zang et al.[41] proposed an Attention-based temporal weighted
CNN, which uses three CNN streams to process spatial RGB im-
ages, temporal optical flow images, and temporal warped optical
flow images, respectively. Recently, Graph Convolutional Network
(GCN) [11] have extended CNNs to deal with non-grid structures
and has achieved remarkable performance for action recognition.
Shi et al.[26] contributed a multi-stream attention-enhanced adap-
tive graph convolutional neural network for skeleton-based action
recognition.

Generally, early and late feature fusions are widely used. Early
fusion can enhance the input features, but the dimension of the
imbalance of multimodal features may also suppress some features
during training. Late fusion can overcome the shortcoming, but
the separate inference can not utilize the mutual promotion of
multimodal features. In this study, we first early fuse the visual
and spatial features, the spatial and semantic features, respectively.
Next, they are fed into the two-stream STIGPN for late fusion.

3 OVERVIEW

Our goal is to identify Human-Object Interactions in videos. Specif-
ically, in videos, sub-activity labels (e.g., moving) for humans and
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a set of affordances labels (e.g., movable, stationary) for objects
must be predicted. The overview of the proposed architecture is
visualized in Fig. 2. For the input video, an object detection net-
works, such as Faster R-CNN[23],is first used to locate a set of
candidate instance on each video frame. And the visual, spatial, and
semantic features of each candidate instance are extracted indepen-
dently. In this study, the visual and spatial features are combined as
visual-spatial features, and joint the spatial and semantic features as
spatial-semantic features. The two joint feature sequences extracted
from the video are used as the input of our two-stream model.

Within each stream, we hope to build a graph that efficiently cap-
tures spatio-temporal features. Generally, in a HOI scene, the state
of the human and the interacting objects will change significantly.
Thus, a Temporal Enhancement module is first performed on the
joint feature sequences to allow the subsequent modules to focus
on the salient parts of the feature. Then, we constrcut a dense graph
where the nodes correspond the human/objects detected from the
video and parse a sparse graph from it. The joint feature sequences
are used to instantiate the corresponding nodes of the dense and
the sparse graphs. For simplicity, the sparse graph is decomposed
into two subgraphs sub-graphs, which have the same nodes but
different connections: the intra-frame relation graph and the inter-
frame relation graph. With the sparse graph, a Graphs Evolution
module is executed to extract the spatio-temporal features between
graph nodes. Finally, always one Prediction module exists for the
final HOI classification. The prediction results of the two-streams
are averaged to report the final performance.

4 PROPOSED APPROACH

In this section, the proposed STIGPN architecture is described in de-
tail. Specifically, three components of STIGPN, i.e., Video Feature
Extraction, Spatio-Temporal Interaction Graph Parsing, and
Inference, are described successively. The implementation details
are provided in the end of this section.

4.1 Video Feature Extraction

Given a video I with T frames, M instances of either human or ob-
ject class, an object detection network, such as Faster R-CNN[23],
is first used to locate a set of candidate instance on each video
frame. Each candidate instance comes with a bounding box and a
category. Then, multi-object tracking is used to determine a corre-
spondence between candidate instances in different video frames.
On the basis of the above detected results, the visual, spatial, and
semantic features of each candidate instance on video are extracted
independently.

Visual Features. In this paper, the pre-trained ResNet-50 model
is used to extract visual features due to limited data (the CAD-
120 dataset has only 120 RGB-D videos). Given the human/objects
bounding boxes, the first step is to extract the ROI crops from the
original images and reshape them to the input dimension of ResNet-
50. Next, these ROIs are fed into ResNet-50 and the outputs of the
last fully-connected layer are extracted as the visual features of
human or object instances.

Spatial Features. Spatial features represent the relationship
information between candidate human/objects. In this paper, a
simple yet efficient representation of spatial features is used. Given
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Figure 2: Overview of the proposed networks. Our method first extracts two sets of the visual-spatial feature sequences and
the spatial-semantic feature sequences from the input video. Then, they are fed into the two-stream networks to extract the
spatio-temporal features respectively. Finally, the prediction result of each stream is obtained by using the prediction module

and fusion them to report the final HOI recognition results.

a candidate human/object bounding box with its width W and
height H, a quadruple is defined as [xc, y., W, H] where (x¢, yc) is
the center position of the bounding box. A fully connected layer is
used to transform the quadruples to d-dimensional spatial features.

Semantic Features. Semantic features represent the identity
information of human and objects. In this paper, a learnable d-
dimensional embedding is trained to represent the semantic features
of human/objects. This can help our model be applicable to more
datasets because a general method is used to embed all kinds of
objects.

The combination of the above three kinds of features can be
used as the instance feature representation. In this study, the visual
and spatial features are combined as the visual-spatial features, and
the spatial and semantic features are combined as spatial-semantic
features. Then, they were fed into the two-stream network for HOI
learning respectively.

4.2 Spatio-Temporal Interaction Graph Parsing

The input can be defined as {Xyu, ¢m }m=1,. .M With a class label
c¢m where M is the number of instances (either human or object)
and Xy, = {x},};=1, T denote the temporal sequence of frame-level
features. On the basis of the inputs, the Spatio-Temporal Interaction
Graph Parsing module is proposed to extract high-level features
for the final recognition.

Temporal Enhancement. The changing orientations of hu-
man/objects are captured to help to enhance the extraction of the
salient human-object interaction pairs. Therefore, a BIRNN is used
to evolve the temporal relationship over the recurrent steps. The
BiRNN process can be expressed as

- - —_ =, -
Wiy = f(Waxlh, + Wy hiyh+ by, 1)
—, — — — —
hiy = f(Wyxh + Wy hit + by, )

—,  —

Um =Wyl bl +by), ®)

— —
where Wy and Wy are the weight matrices that map the input

— —
to the hidden state, and W}, and W}, are the transition matrices
between the hidden states in two adjacent time steps. Wy, is the the

weight matrix that maps the hidden states to the output. —b)h, (b_h
and by are the biases. f and g are activation functions. [-] is the
concatenation operation.

In the current stage, BiRNN is implemented on the temporal
sequence of frame-level features, without fusion of the features of
different categories of instances. The instances that have signifi-
cant changes in appearance or spatial features can be enhanced
to some degree. Long Short-Term Memory (LSTM) network is not
used, given that RNN is easier to train and has comparable per-
formance when the sequences are not longly. The size of the used
video datasets used in the experiments also restricts the network
complexity.

Building Graphs. In this paper, a graph is constructed to rep-
resents the attribute of human and objects and the relationship
between them. A dense graph is first constructed and then a sparse
graph is parsed from it. Formally, the dense graph with a size of
T-MXT - M is defined as G = (V, E) where V is the set of nodes
and E is the set of edges. Let o’,, € V be the m-th node of the t-th
graph, and the temporal enhanced features y’, are used to instan-
tiate the corresponding nodes o, of the graph. The edge weights
are initialized to be 1 for human-object edges and 0 for the rest.
The adjacency matrix is dynamically learned via backpropagation.
To obtain richer structure information and enlarge the number of
propagation neighborhoods during graph evolution, the graph is
built in a bidirectional manner.

Graph structures reflect human-object interaction relationships.
However, in the dense graph, the number of edges is close to the
maximal number of edges. Thus, a parsed graph is inferred, in
which humans only have salient connections with the objects they
are interacting with. In this paper, the self-attention mechanism is
used to reset the edge weights of the dense graph to infer a parsed
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graph. Formally, let y,» and y, denote the features of the source

and the target nodes, the affinity between them can be computed
as

Att(Yot. Yot ) = LeakyReLU (a[Wy,e, Wy, 1) )

where W is a shared weight matrix for node-wise feature transfor-
mation, and a is a learnable weight vector for computing attention
coefficients. The LeakyReLU activation is used to maintain weak
connections. [-] is the concatenation operation. For simplicity, the
constructed large graph is decomposed into two subgraphs sub-
graphs, which have the same nodes but different connections: the
intra-frame relation graph and the inter-frame relation graph.

Intra-frame Relation Graph. The intra-frame relation graph reflect
human-object interaction relationships in each frame. Specifically,
a highly credible edge between the pair of nodes represented by the
person and the interacting objects in each frame need be established.
Similar to [39], a set of nodes connected to o’, can be represented
as

B(vp,) = {0f1d(0].0p) < g =1} ©)

where d (U;I, ol ) denotes the minimum length of any path from

U;I to o,. For each node v, the affinity between the node v/, and

the node U? € B(v,) can be calculated by Att(yye ,y,9). After
m’20j

calculating the affinity value of all node pairs in the graph, an
affinity matrix with the same size of the adjacency matrix of the
dense graph is obtained. It is worth noting that for those node pairs
that have no connected edges of the dense graph, their affinity value
is directly set to 0. Finally, normalization is performed on each row
of the affinity matrix to obtain the adjacency matrix A" of the

intra-frame relation graph. The above steps of obtaining A% can
be more intuitively expressed as
t ¢
aintra _ | A1 Wot, bor) - 0 € Blom) (6)
0 other

Inter-frame Relation Graph. Although the intra-frame relation
graph captures the spatial dependence between the human and the
interacting objects, it does not capture their long-term dependence
and state correlations. Therefore, the inter-frame relation graph
is proposed, which is complementary to the intra-frame relation
graph. With the inter-frame relation graph, the correlations be-
tween the human and the interacting objects across frames can be
identified. The process of parsing the inter-frame relation graph
from the dense graph is similar to parsing the intra-frame relation
graph. Given a node v},, a set of nodes connected to v}, can be
represented as

B (vp,) = {0]1d(07,0p,) < 1,g # 1} ™

B’(v%)) represents a set of nodes, and the node in the set are on
different frames with node v%,. After the same operation as obtain-
ing the intra-frame relation graph, the adjacency matrix A€ of
the inter-frame relation graph is finally obtained. Intuitively, A™¢€"
can be obtained by

q o1
ainter _ Att Yy, Y1) 0; € B/ (o)
0 other

®)
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Graphs Evolution To perform reasoning on the graph, two
methods are applied to update node features: graph neural networks
(GCNs) and temporal fusion.

Graph neural networks. GCNs propagate messages via the con-
nection relationship between the graph nodes, which dynamically
updates the node feature vector. In this paper, the GCNs proposed in
[11] are used to evolve the intra-frame relation graph and the inter-
frame relation graph, respectively. To combine multiple graphs in
GCN, their output is concatenated. The above operation can be
expressed as

Zst — [AintraYWintra’AinterYWinter] (9)
t=1,..,T
m=1,..M
and W€T are the learnable weight matrix. [-] is the concatenation
operation.

Temporal Fusion. With the intra-frame relation graph and the
inter-frame relation graph, the GCNs module only propagate mes-
sages between people and objects, but not between homogeneous
node pairs (including human-human, object-object). Therefore, af-
ter the GCNs module, a BiRNN is performed on the nodes repre-
sented by instances of the same entity throughout time to capture
f;zllTM as the
final video-level representation can be used to predict the HOI
results.

where Y = {y!,} denote the input node features, Winra

the temporal dependencies. The output Z = {z, }

4.3 Inference

Generally, always one prediction module exists for the final HOI
classification. Furthermore, visual and semantic modalities have
their respective superiorities for HOI understanding. Therefore, a
two-stream strategy is employed to improve the network perfor-
mance.

Prediction. The parsed graphs still contain human and object
nodes. The final features of human nodes can be used to predict
interaction categories, and the final features of object nodes can be
used to predict an object’s affordance labels (if applicable). When
the dataset, such as CAD-120, has object affordance labels associ-
ated with HOI activities, the objects that the human is interacting
with predicts the affordance labels, and other nodes predict the
"Stationary" label to indicate the objects that are not involved in
the HOI activities.

Given the final node features of the parsed graphs as [z,1 ,z,2 , ...
0

readout
are executed on the human and object node features, respectively,

for the final recognition. The prediction of interaction categories
can be fused as

s Z,T ], a human-classifier f h and an object-classifier
m readout

T
P2 B o EHOIT. (10
t=1

where z! is the human node feature in the ¢-th frame. The v,,,-th
object’s affordance label can be predicted as

T
pgm = Z froeadout(zvfn)/T' (11)
t=1

Two-Stream Fusion. A straightforward way to fuse the appear-
ance, spatial and semantic features is to feed the concatenation of
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the three types of features into the STIGPN network. An alter-
native way is to construct a two-stream network to improve the
performance.

Visual-STIGPN. In this stream, the appearance features of each
node are augmented by concatenating the spatial features. This will
enhance the feature representation ability of nodes by embedding
the spatial location information.

Semantic-STIGPN. Human can recognize HOI activities only by
using the object category and information about the object’s chang-
ing spatial location. Therefore, the spatial and the semantic features
are concatenated to feed them into the Semantic-STIGPN stream
for the recognition.

The Visual-STIGPN and Semantic-STIGPN has the same net-
work architecture, but different input node features. The prediction
results of the two-streams are averaged to report the final perfor-
mance.

Loss Functions. We subject both streams’ classifiers to stan-
dard Cross-Entropy losses £, and L, and each comprises human
activity loss £ (or £") and object affordance loss (if applicable)
LY (or LY). The overall loss can be written as

L=Ly+ L= (LP+2L0+ (Ll 220, (12)

4.4 Implementation Details

In this section, the implementation details are discussed from two
different point of views: model and training.

Model. Each video segment or sequence is uniformly sampled
to a fixed frame number T (T = 10 for CAD-120 and T = 16 for
Something-Else). The ROI crops are extracted from each frame and
are resized to a fixed size of 224 X 224 x 3 for ResNet-50. A linear
layer is used to transform the 2048-dimensional ResNet-50 feature
vectors to 1024-dimensional visual feature vectors. A fully con-
nected layer is used to transform the quadruples to d-dimensional
spatial features. with architecture "Linear128-BatchNorm-ReLU-
Linear256-BatchNorm-ReLU" is used to transform the spatial quadru-
ples into 256-dimensional feature vectors. The embedded semantic
features are 128-dimensional vectors. The BiRNN in the Tempo-
ral Enhancement module keeps the feature dimension unchanged,
the Spatial-Temporal Interaction Reasoning Network module trans-
forms the node features into 1024-dimension, and the BiRNN in the
Temporal Fusion module outputs 2048-dimensional features. The
last MLP classifiers have the architecture of "Linear2048-BatchNorm-
ReLU-Linear512-BatchNorm-ReLU-LinearC" where C is the cate-
gory number.

Training. PyTorch framework and the DGL library[34] are used
to implement our method. During training, Adam [10] optimizer
with the initial learning rate of 2 x 107 is used. The learning
rate decreases by 0.8 every 10 epochs. A total of 300 epochs are
implemented on Nvidia TITAN X Pascal GPU. When training on
CAD-120, both the sub-activity labels and the object affordance
labels are used to supervise the prediction of all the nodes. While
training on Something-Else dataset, only the activity labels are used
to supervise the human node prediction.
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5 EXPERIMENTS

5.1 Dataset

Two benchmark datasets, i.e., CAD-120 [12] and Something-Else
[18] are used to evaluate our proposed framework.

CAD-120: The CAD-120 dataset is a video dataset, which has 120
RGB-D videos of four subjects performing ten daily indoor activities
(e.g., microwaving food, taking food). Each activity is a long sequence
of video, consisting of several segments which contain a finer-level
sub-activity (e.g., the activity ‘microwaving food’ is divided into six
sub-activities in a chronological order: ’reaching microwave’, ‘opening
microwave’, ‘reaching food’, 'moving food’, ’placing food’, ’closing
microwave’). In each video, the human is annotated with an sub-
activity label from a set of ten sub-activity classes (e.g., moving,
opening). Each object is annotated with an affordance label from a
set of twelve affordance classes (e.g., movable, openable).

The dataset provides multimodal data, but only the RGB im-
ages and the 2D bounding boxes annotation of human and objects
are used in this paper. The sub-activity F1-score and object affor-
dance F1-score are computed as the metric to evaluate the pro-
posed method on HOI sub-activity recognition and anticipation.
The dataset involves complex interactions, and thus human may be
interacting with multiple objects during an activity. Therefore, it
is necessary to learn the salient interaction relationships from the
whole scene.

Something-Else: The Something-Else dataset is built on the
Something-Something V2 dataset [7], which has 112,795 videos of
174 categories of activities. The dataset provides a 2D bounding
box of the hand (hands) and objects involved in an activity for each
video frame. Particularly, the dataset forces the same combinations
of activities and objects existed in the training set be absent in the
testing set.

5.2 Ablation Study

The proposed STIGPN consists of three components: temporal en-
hancement, graph building and graph evolution. A BiRNN layer
is used in the temporal enhancement component, while GCN and
another BiRNN layer in the graph evolution. To verify the neces-
sity of extracting the changing in the status of human/objects and
fusing the spatial and semantic features, some ablation studies are
implemented.

Role of Temporal Enhancement. As claimed ahead, change
means actions. To capture the changing orientations of human/objects
ahead is helpful for HOI recognition. A variant of STIGPN, in which
the temporal enhancement component is removed, is evaluated.
This may make it difficult for the subsequent modules to focus on
the salient parts of graphs. The performance comparison between
rows 4 and 5 in Table 1 demonstrates the necessity of temporal
enhancement. The wider gap on the sub-activity F1-score com-
pared with the affordance F1-score, also proves the importance of
extracting status change for activity recognition.

Role of Graph Structure. Traditional architecture, such as the
GCN+RNN, learns the spatial features first and then fuses them
along the temporal dimension. As shown in the baseline results
in row 1 of Table 1,it performs poorly when applying the spatial
GCNs (applying the GCNs on the constructed dense graph). After
that, as claimed ahead, a HOI scene may contain multiple objects,
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Table 1: Ablation experiments of the impact of design choices on sub-activity and object affordance recognition of CAD-120

dataset.
. Human Object
Stream Network Architecture Sub-activity | Affordance
Spatial GCN+BiRNN 79.5 83.7
One-Stream Intra-frame Relation GCN+BiRNN 82.8 83.1
Inter-frame Relation GCN+BiRNN 83.5 86.6
Intra-frame Relation GCN+Inter-frame Relation GCN+BiRNN 86.1 87.9
BiRNN+Intra-frame Relation GCN+Inter-frame Relation GCN+BiRNN 88.1 90.4
Two-Stream | STIGPN(BiRNN+Intra-frame Relation GCN+Inter-frame Relation GCN+BiRNN) 91.9 92.0

and only one or part of them are involved in the HOI process. The
HOI recognition methods based on the detected object instances,
must judge which object(s) the human is interacting with for high
precision HOI recognition. Therefore, it is necessary to evolve the
spatial graph topologies. With the intra-frame relation graph, a
3.3% improvements on the sub-activity F1 score can be obtained.
Similarly, the clue that the state of an object changes with respect
to human is helpful for HOI recognition. Our method improves the
sub-activity and object affordance F1 score by 4.0% and 2.9% again
by building the inter-frame relation graph. As shown in the row 4 of
Table 1, our method achieves significant gains in sub-activity, and
object affordance F1 score benefited from combining two graphs
together. Furthermore, the input node features are already deep,
thus learning the deeper features is no longer necessary. The chang-
ing components and their changing styles are more important, and
learning them for short-term HOI processes is not difficult.

Role of Two-Stream Fusion. To measure the multimodal fea-
tures fusion and multi-stream fusion strategy, an experiment is
designed, as shown in row 6 of Table 1, which fuses the appearance
and spatial features, the spatial and semantic features, respectively,
and feeds them into two-stream STIGPN. Compared with the exper-
iment shown in row 5 of Table 1, the concatenation of the appear-
ance, spatial and semantic features is fed into one-stream, and the
two-stream STIGPN achieves a better performance than one-stream
STIGPN. This improvement can be attributed to the multimodal
features fusion and multi-stream fusion strategy, which utilizes the
mutual promotion of multimodal features. The full model achieve
state-ofthe-art results on two challenging datasets, as illustrated in
Tables 2-4.

5.3 Comparison with State-of-the-arts

Comparison on CAD-120. CAD-120 contains long activity video
sequences, which comprise segments of sub-activities. HOI recog-
nition is performed to predict sub-activities and object affordance
labels of segments. Moreover, HOI anticipation can also be per-
formed to predict the next segment’s labels on the basis of the
current segment data. F1-score is used as the evaluation metric. Ta-
bles 2 and 3 report the results for HOI recognition and anticipation,
respectively. The proposed method outperforms the existing meth-
ods, such as ATCRF[13], Structural-RNN (S-RNN)[9], GPNN[20],
and LIGHTEN([19]. The proposed method achieves superior accu-
racy than the latest LIGHTEN method. The contextual information
of inter-segment can also be used to improve the recognition accu-
racy. Therefore, Sai et al. [19] proposed a segment-level temporal

subnet (Seg-RNN) for segment-level fusion. However, applying this
method may be difficult in real-time scene, hence this module is
not included in our model. It is worth noting that our method does
not perform segment-level fusion but is also outperforming the
LIGHTEN with Seg-RNN. This exactly demonstrates the superior-
ity of the proposed method.

The confusion matrices for both HOI recognition and antici-
pation tasks on CAD-120 are displayed in Fig.3. The affordance
"containable" is easily misrecognized as "reachable”, this is because
when "placing” something in the microwave, it also involve similar
tiny movements, such as "reaching". Our method performs well
in other interaction scene with multiple objects, e.g., "cleaning
something" or "pouring something".

Table 2: A comparison of our approach with the existing
methods on HOI recognition on CAD-120 dataset

Method F1 Score in %
Sub-activiy(%) | Affordence(%)

ARCRF[13] 80.4 815
S-RNNI[9] 83.2 88.7
S-RNN (multi-task)[9] 82.4 91.1
GPNN[20] 88.9 88.8
LIGHTEN w/o Seg-RNNJ[19] 85.9 88.9
LIGHTEN[19] 88.9 92.6
STIGPN 91.9 92.0

Table 3: A comparison of our approach with the existing
methods on HOI anticipation on CAD-120 dataset.

Method F1 Score in %
Sub-activiy(%) | Affordence(%)

ARCRF[13] 37.9 36.7
S-RNNI[9] 62.3 80.7
S-RNN (multi-task)[9] 65.6 80.9
GPNN[20] 75.6 81.9
LIGHTEN w/o Seg-RNN[19] 73.2 77.6
LIGHTEN[19] 76.4 78.8
STIGPN 81.1 81.8

Comparison on Something-Else. We further evaluate the pro-
posed method on the Something-Else dataset, and the comparison
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Table 4: A comparison of our approach with the existing
methods on HOI recognition on Something-Else dataset.

Method Top-1(%) | Top-5(%)
STIN+OIE[18] 513 79.3
STIN+OIE+NL[18] 51.4 79.3
STGCN[26] 54.4 81.4
I3D[35] 6.8 72.2
STRG[35] 52.3 78.3
I3D+STIN+OIE+NL[18] |  54.6 79.4
I3D,STIN+OIE+NL[18] | 58.1 83.2
STIGPN 60.8 85.6
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Figure 3: The confusion matrices for HOI recognition and
anticipation on CAD-120 dataset.

results are reported in Table.4. The proposed method outperforms
the state-of-the-art methods, including STGCN [26] which has nine
layers of adaptive spatial graph convolution and temporal con-
volution. In [18], the appearance features are additionally used.
I3D is widely used for video-based action recognition. The I3D us-
ing ResNet-50 backbone [35] is employed for comparison. "STRG"
is short for Space-Time Region Graph [35]. "I3D+STIN+OIE+NL"
means combining the appearance features from the I3D model and
the features from the STIN+OIE+NL model through joint learning.
"I3D,STIN+OIE+NL" means a simple ensemble model combining
the separately trained I3D and the trained STIN+OIE+NL model.
The comparison results in Table 4 show that the proposed method
outperforms all the above methods. Ultimately, the proposed meth-
ods achieve the state-of-the-art performance, and still gains the
top-1 and top-5 accuracy by 2.7% and 2.4%, respectively, even if our
method only uses the 2D appearance features of ResNet-50 but not
the 3D features of I3D.

Ning Wang and Guangming Zhu, et al.

Figure 4: Visualization of the parsed graphs of Visual-
STIGPN extracted from a video segment CAD-120 dataset.
The solid lines indicate the interaction relationships be-
tween human and objects in space. The dotted lines indi-
cate the interaction relationships between human and ob-
jects across time.

5.4 Visualization of Parsed Graphs

When constructing the dense graphs, the edges between human
and objects are uniformly set to 1. The parsed graphs are visualized
to check whether STIGPN can find the object(s) the human is inter-
acting with. For simplicity, the two parsed graph topologies of the
Visual-STIGPN are visualized. For the intra-frame relation graph,
an edge in the edge set {B(v}tl) - v}tl} is taken with the largest
affinity value for visualization where U;l is the node corresponding
to the human in frame ¢. For the inter-frame relation graph, some
edges in the edge set {B'(v;l) — U;l} corresponding to the top n
affinity value are used for visualization. Fig.4 provides some visual-
ization examples. It can be seen that the edges between the human
and the object being interacted with have much larger values.

6 CONCLUSION

In this paper, a novel video-based HOI recognition architecture is
presented, i.e., the Spatio-Temporal Interaction Graph Parsing Net-
works. Our framework is composed of three steps, namely, Video
Feature Extraction, Spatio-Temporal Interaction Graph Parsing, and
Inference. The visual, spatial and semantic features are utilized by
combining early and late fusion strategy. The proposed method
aims to learn the spatio-temporal relationship evolution and find
the objects involved in HOI process from the background objects
on the basis of the parsed graphs. The visualization of the parsed
graphs demonstrates that the proposed architecture can extract
the salient human-object interaction pairs effectively. Experimental
results on two publicly available benchmark video HOI datasets
show that our architecture outperforms state-of-the-art methods.
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