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ABSTRACT KEYWORDS

In this paper, we address multi-modal pretraining of product data
in the field of E-commerce. Current multi-modal pretraining meth-
ods proposed for image and text modalities lack robustness in the
face of modality-missing and modality-noise, which are two per-
vasive problems of multi-modal product data in real E-commerce
scenarios. To this end, we propose a novel method, K3M, which in-
troduces knowledge modality in multi-modal pretraining to correct
the noise and supplement the missing of image and text modalities.
The modal-encoding layer extracts the features of each modality.
The modal-interaction layer is capable of effectively modeling the in-
teraction of multiple modalities, where an initial-interactive feature
fusion model is designed to maintain the independence of image
modality and text modality, and a structure aggregation module
is designed to fuse the information of image, text, and knowledge
modalities. We pretrain K3M with three pretraining tasks, includ-
ing masked object modeling (MOM), masked language modeling
(MLM), and link prediction modeling (LPM). Experimental results
on a real-world E-commerce dataset and a series of product-based
downstream tasks demonstrate that K3M achieves significant im-
provements in performances than the baseline and state-of-the-art
methods when modality-noise or modality-missing exists.

CCS CONCEPTS

+ Computing methodologies — Information extraction; Se-
mantic networks.
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1 INTRODUCTION

The emergence of E-commerce has greatly facilitated people’s lives.
And there are a large number of product-based application tasks in
the E-commerce scenario, such as item classification [1, 2], product
alignment [3], recommendation system [2, 4, 5] and so on. As shown
in Figure 1, there are usually images, titles, and structure knowledge
of products, which is a typical multi-modal scenario.

Recently, multi-modal pretraining has attracted wide attention [6—
15], and these methods are dedicated to mining the association be-
tween information of image (or video) modality and text modality.
Considering a wide range of downstream E-commerce applica-
tions, we focus on the pretraining of multi-modal data of products.
However, applying these multi-modal pretraining methods directly
to E-commerce scenarios will cause problems, because modality-
missing and modality-noise are two challenges in the E-commerce
scene, which will seriously reduce the performance of multi-modal
information learning [16]. In a real E-commerce scenario, some
sellers do not upload the product image (or title) to the platform,
and some sellers provide the product image (or title) without ac-
curate themes or semantics so that they are particularly puzzling.
Item-2 and Item-3 in Figure 1 respectively shows an example of
modality-noise and modality-missing in our scene.

*Equal contribution.
SCorresponding author.
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Figure 1: Examples of multi-modal data of products. Each
item has a title, an image, and a PKG describing the objec-
tive properties of the product by triples as <item, property,
value>.

To solve this problem, we introduce Product Knowledge Graph
(PKG)[17] into consideration and regard it as a new modality called
knowledge modality. As shown in Figure 1, PKG contains triples
in the form of <h, r,t>. For example, <Item-1, Material, Cotton>
represents that the material of Item-1 is cotton. We introduce PKG
mainly for two reasons: (1) PKG has high quality. PKG describes the
objective properties of the product, which is structured and easy
to manage, and maintenance and standardization work are usually
done for PKG. So PKG is relatively clean and credible. (2) Infor-
mation contained in PKG and other modalities overlap each other.
Take Item-1 in Figure 1 as an example, on the one hand, the image,
title and PKG all tell that Item-1 is a long-sleeve T-shirt. On the
other hand, PKG shows that this long-sleeve T-shirt is not only suit-
able for autumn, but also suitable for spring, which can’t be known
from the image or title. Thus PKG could correct or supplement
other modalities when modality-noise or modality-missing exists.
Therefore, for the pretraining of product data, we consider the in-
formation of three modalities: image modality (product image), text
modality (product title), and knowledge modality (PKG).

In this paper, we propose a novel Knowledge perceived Multi-
Modal pretraining Method in E-commerce application, named K3M.
In particular, K3M learns the multi-modal information of products
in 2 steps: (1) encoding the individual information of each modality,
and (2) modeling the interaction between modalities. When encod-
ing the individual information of each modality, for image modality,
a Transformer-based image encoder is used to extract image initial
features; for text modality, a Transformer-based text encoder is
used to extract text initial features; for knowledge modality, the
same text encoder is used to extract the surface form features of
relations and tail entities of triples in PKG.

When modeling the interaction between modalities, there are
two processes. The first is the interaction between text modality
and image modality as did in previous work [12], and the second is
the interaction between knowledge modality and the other two. In
the first process, interactive features of image and text modalities
are learned based on their initial features through co-attention
Transformer [12]. And to remain the independence of individual

modality, we propose to fuse the initial features of image and text
modalities with their interactive features by an initial-interactive
feature fusion module. In the second process, the interaction result
of image and text modalities is used to initialize the representation
of the target product entity, which is the head entity of triples in
PKG, and the surface form features of relations and tail entities
are used as their initial representations. Then the information of
entities and relations is propagated and aggregated on the target
product entity through a structure aggregation module. Finally, the
knowledge-guided representation of product entities can be used
for various downstream tasks.

The pretraining tasks for image modality, text modality, and
knowledge modality are masked object modeling, masked language
modeling, and link prediction modeling, respectively.

The experimental results on several downstream tasks show
that our K3M is more robust than current multi-modal pretraining
methods in modeling entity. Our main contributions are as follows:

e We introduce structured knowledge of PKG into multi-modal
pretraining in E-commerce, which can correct or weaken
the modality-noise and modality-missing problems in large-
scale multi-modal datasets.

e We propose a novel multi-modal pretraining method, K3M.
In K3M, we fuse the initial features of image and text modal-
ities with their interactive features to further improve the
model performance.

e Experiments on a real-world E-commerce dataset show the
powerful ability of K3M in many downstream tasks. Our code
and dataset is available at https://github.com/YushanZhu/K3M.

2 RELATED WORK
2.1 Multi-Modal Pretraining

The success applications of pretraining technique in the field of
computer vision (CV), such as VGG [18], Google Inception [19]
and ResNet [20], and natural language processing (NLP), such as
BERT [21], XLNet [22] and GPT-3 [23], have inspired the develop-
ment of multi-modal pretraining. Recently a series of multi-modal
pretraining methods have been proposed, where information from
different modalities complements each other.

VideoBERT [6] is the first work of multi-modal pretraining,
which trains a large number of unlabeled video-text pairs through
BERT. At present, there are two main architectures of multi-modal
pretraining models for image and text. B2T2 [15], VisualBERT [7],
Unicoder-VL [8], VL-BERT [9] and UNITER [24] propose the single-
stream architecture, where a single Transformer is applied to both
images and text. On the other hand, LXMERT [10], VILBERT [12]
and FashionBERT [11] introduce the two-stream architecture, where
the features of image and text are first extracted independently, and
then a more complex mechanism named co-attention is applied
to complete their interaction. To further boost the performance,
VLP [14] applies a shared multi-layer Transformer for encoding
and decoding, which is used for both image captioning and VQA.
Based on the single-stream architecture, InterBERT [13] adds two
streams of separate Transformer to the output of the single-stream
model to capture the modal independence. These multi-modal pre-
training methods cannot solve the problem of modality-missing
and modality-noise. Compared with the previous work, K3M has



several significant differences. Our proposed model architecture
can effectively utilize the structured knowledge to improve the
robustness of the model against modality-missing and modality-
noise. In addition, we propose to fuse modal initial features and
interactive features to retain the independence of text and image
modalities, which makes the model more effective.

2.2 KG-enhanced pretraining models

Recently, more and more researchers pay attention to the combi-
nation of knowledge graph (KG) and pretrained language model
(PLM) to enable PLMs to reach better performance.

K-BERT [25] injects triples into a sentence to generate a unified
knowledge-rich language representation. ERNIE [26] integrates
entity representations from the knowledge module into the seman-
tic module to represent heterogeneous information of tokens and
entities into a united feature space. KEPLER [27] encodes textual
descriptions for entities as text embeddings and treats the descrip-
tion embeddings as entity embeddings. KnowBert [28] uses an
integrated entity linker to generate knowledge enhanced entity-
span representations via a form of word-to-entity attention. K-
Adapter [29] injects factual knowledge and linguistic knowledge
into RoBERTa with a neural adapter for each kind of infused knowl-
edge. DKPLM [30] could dynamically select and embed knowledge
according to the textual context for PLMs, with the awareness of
both global and local KG information. JAKET [31] proposes a joint
pretraining framework, including the knowledge module to produce
embeddings for entities to generate context-aware embeddings in
the graph. What’s more, KALM [32], ProQA [33], LIBERT [34] and
other researchers explore the fusion experiment with knowledge
graphs and PLMs in different application tasks.

However, the current KG-enhanced pretraining models only
aim at single modality, especially text modality. To the best of our
knowledge, this is the first work that incorporates knowledge graph
into multi-modal pretraining.

3 METHODS

In this section, we will describe how K3M jointly models the in-
formation of text, image and knowledge modality. Given a set of
product data D = {C, I, 7,K}, where C is a set of products, I is a
set of product images, 7 is a set of product titles, K = {&E, R, TR}
is PKG where &, R and 7 R are the set of entities, relations and
triples and TR = {< h,r,t > |lh € E,r € R, t € E}. For each item
ec € C, it has an product image i. € 7, a product title t, € 7 and
a set of triples from K that are related to ec, namely 7R, = {<
ec, property,value > |e; € &, property € R,value € E} ¢ TR.
Our target is to learn a model M (ic, tc, TR.) to learn a good cross-
modal representation for e € C, represented as c*.

Our model consists of three layers, as shown in Figure 2. The first
layer named modal-encoding layer aims to separately encode the
individual information of each modality. The second layer named
modal-interaction layer aims to model the interaction between dif-
ferent modalities. The third layer is modal-task layer, and there
are different pretraining tasks for different modalities. We (1) first
describe how to encode image initial features, text initial features,
and surface form features of knowledge in modal-encoding layer.

(2) And then we demonstrate the two processes of modeling the in-
teraction between modalities in modal-interaction layer. (3) Finally,
we describe the three pretraining tasks in modal-task layer.

3.1 Modal-encoding layer

3.1.1 Image initial features. Following [7, 9, 10, 12, 13], we trans-
form the product image i. of a given item e, a matrix of pixels,
into a object sequence through the object detection model. Specif-
ically, following ViLBERT [12], we apply Faster R-CNN [35] to
detect a series of objects (Rols regions of interest) from ic, and
the bounding boxes of these objects are used as their positional
information. 15% of the objects are randomly masked as in [12].
Then as shown in Figure 2, the sum of the object embedding and
positional embedding [E;1, Ej2, ..., Eipm, ] is input to a Transformer-
based image encoder, and the image encoder outputs the image
initial features [h(l.)l, h(i)z, e h(i)Ml]’ where M is the maximum object
sequence length.

3.1.2  Text initial features. Following BERT [21], the product title
tc of ec is first tokenized into a token sequence by WordPieces [36],
and 15% of the tokens are randomly masked. Then as shown in
Figure 2, the sum of the token embedding and positional embedding
[Et1, Et2, ..., Etar, ] is input to a Transformer-based text encoder, and
the text encoder outputs the text initial features [h?l, h?z, h(t) Mz]’
where M is the maximum token sequence length.

3.1.3  Surface form features of knowledge. In this step, we obtain
the surface form features of the relations and the tail entities of
the triples <e., propertyy, valuex>in 7R, where x = 1, ..., X, and
X is the number of triples in 7R.. Here we do not consider the
head entity because its surface form has no semantics as shown in
Figure 1. To make full use of the contextual information, we first
stitch all relations and tail entities of the triples in 7R together
into a long knowledge text like “property; value; property; valuey
propertys ...” (for example, the knowledge text of Item-1in Figure 1
is “material cotton way to dress pullover season ..”), and then to-
kenize it into a token sequence according to WordPieces. After
that, the same text encoder for extracting text initial features in sec-
tion 3.1.2 is used to encode the token sequence of knowledge text.
As shown in Figure 2, the text encoder outputs [h(]l v hgz, hz Ma]
based on the input embedding [Ejy, Exg, .-, Expm, |, Where Ms is the
maximum token sequence length for knowledge text. Finally, we
calculate the surface form features of each relation and tail entity
as the mean-pooling value of the last hidden layer state of their
corresponding tokens (one relation or tail entity may be tokenized
into several tokens as shown in Figure 2), denoted as px and vy,
where x = 1,..., X, and X, is the number of triples in 7R..

3.2 Modal-interaction layer

In this layer, there are two process to model the modal interaction.
The first is the interaction between image modality and text modal-
ity, and the second is the interaction between knowledge modality
and the other two. We will separately introduce the two processes.

3.2.1 Interaction between image modality and text modality. First,
an image-text interactor, applying the co-attention Transformer [12],
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Figure 2: Model framework of K3M.

takes the image initial features [h?,, h? and text initial fea-

1 Mo h(t)Ml]
tures [h?l, h?z, . h?Mz] as input. Specifically, in co-attention Trans-
former, the “key” and “value” in attention blocks of each modality
are passed to the attention blocks of the other modality, perform-
ing image-conditioned text attention and text-conditioned image
attention. After that, the image-text interactor produces interactive
features [hl.Tl, hITZ’ . hgwl] for image conditioned on the text and
[h{l, h{z, e hg Mz] for text conditioned on the image.

However, when learning the modal interactive features through
co-attention Transformer, the independence of individual modality
is ignored [13]. When a modality has noise or missing, the modal in-
teraction will have a negative impact on the other modality, thereby
destroying the modal interactive features. Thus, it is necessary to
maintain the independence of individual modality. To solve this
problem, we propose to retain the image initial features and text
initial feature learned in the modal-encoding layer, and design an
initial-interactive feature fusion module (IFFM) to fuse the
initial features and the interactive features of image and text modal-
ities. IFFM takes the initial feature and interactive feature of an
object (or a token) as input, and fuse the two feature vectors into
an output vector, expressed as:

hia = fusion(h?a, hga), (a=1,2,.., M),

hip = fusion(hl, hL), (b =1,2,... My),

1)

where function fusion(-) is fusion algorithm, and there are three fu-
sion algorithms in K3M: (1) Mean: calculating the mean of two input
vectors, the model is denoted as “K3M(mean)”. (2) Soft-Sampling: an
advanced sampling method proposed for feature fusion in [37], the
model is denoted as “K3M(soft-spl)”. (3) Hard-Sampling: another
advanced sampling method proposed for feature fusion in [37], the

model is denoted as “K3M(hard-spl)”.

3.2.2 Interaction between knowledge modality and the other two
modalities. First, the interaction result of image and text modalities
is used to initialize the representation of item e, which is the head
entity of the triples in 7R.. We calculate the initial representation
of e; as the mean-pooling value of all output of IFFM:

()
where W) is a linear transformation matrix to convert all vectors to
the same dimension. So the representations of head entity, relation,
tail entity of triple <ec, propertyx, valuex> (x = 1,..,X;) can be
respectively initialized as c, px, and vy, where pyx and vy are surface
features of the relations and tail entities learned in modal-encoding
layer.

Inspired by the idea of [38], an improvement of GAT [39] and aim-
ing to capture both entity and relation features in any given entity’s
neighborhood, we design a structure aggregation module to
propagate and aggregate the information of entities and relations, so

¢ = mean_pooling(h¢1, ..., hepm,, Wohit, ..., Wohipm,)



as to fuse the information of image, text and knowledge modalities.
Specifically, the representation of each triple <e¢, propertyy, valuex>
is first learned by:
tx = Wi[cllpxllox]. ®)

where Wj is a linear transformation matrix. Then, the importance
of the triple is denoted by the LeakyRelu non-linearity as:

by = LeakyReLU (Waty), (4)
where W is a linear weight matrix. And the attention value of each
triple is obtained by applying So ftmax:

exp(bx)

X :
2 exp(bi)
Finally, the final representation of item e, is obtained by adding its
initial representation ¢ and the sum of the representations of all
triples in 7 R, weighted by their attention values as:

1 My X
C*=W3C+G(sza?t;(n), (6)

h m=1x=1
where W3 is a weight matrix, o(-) is the activate function, My, is the
number of attention heads, and X, is the number of triples in 7 R..

ax = Softmax(by) =

®)

3.3 Modal-task layer

In this layer, we exploit different pretraining tasks for the three
modalities. They are masked language modeling (MLM) for text
modality, masked object modeling (MOM) for image modality, and
link prediction modeling (LPM) for knowledge modality.

3.3.1 Masked Language Modeling (MLM). This task is the same as
the MLM task in BERT pretraining, whose objective is to predict
the masked tokens. The training minimizes the cross-entropy loss:

Imim = —Eg ~glogP(tokm|tokz), (7)
where toky, refers to the masked tokens, and tokg; refers to the
token sequence in which toky, has been masked.

3.3.2 Masked Object Modeling (MOM). Similar to MLM, the objec-
tive of MOM is to predict the categories of the masked objects in
the image. The training minimizes the cross-entropy loss:

Imom = —E; . rlogP(objm|ob ), ®)

where 0b jp, refers to the masked objects, and obj; refers to the
object sequence in which obj,, has been masked.

3.3.3 Link Prediction Modeling (LPM). The goal of this task is to
evaluate the credibility of a given triple. Following the translation-
based KG embedding method TransE [40], which assumes that
if <h,r, t> is a true triple, the representation vector of A plus the
representation vector of r should be equal to the representation
vector of ¢, we define the score of triple <e¢, propertyy, valuex> as
S¥ =||c¢* + px —vx||l1, x = 1,..., X¢. The objective of LPM is to make
the score lower for the correct triples while higher for the wrong
ones. The training minimizes the margin-loss:
1% —
lpm = Erre~acse D max{Sy - S¥ +y.0}, ©)
x=1

where y is a margin hyper-parameter, S¥ is the score of the positive
triple <ec, propertyx, valueyx>, and 3;’? is the score of the negative
triple <el, propertyy, valuey > or <ec, propertyy, valuel > generated

by randomly replacing the head entity e, or tail entity value, with
any other entity in &.

And the final pretraining loss of K3M is the sum of the losses of
the above three tasks:

Lpre = IMm + Imom + lpm. (10)

4 EXPERIMENTS

4.1 Pretraining

4.1.1 Dataset. Our K3M is trained and validated on millions of
items, 40132418, from Taobao, where each item contains a title, an
image and a set of triples related to it from PKG. The statistics of
pretraining dataset are shown in Table 1.

Table 1: Pretraining data statistics.

# Train # Valid  # Test Total
Items 39,966,300 33,704 132,414 40,132,418
Triples 287,445,622 245,162 955,512 288,646,296

Our K3M is pretrained on the train and the valid dataset, and we
evaluate the pretrained K3M on the test dataset, which is used as
the finetuning dataset for downstream tasks.

4.1.2  Implementation details. We implement K3M with Pytorch in
which three fusion algorithms, named “K3M(mean)”, “K3M(soft-spl)”
and “K3M(hard-spl)”, are applied in the initial-interactive fusion
module. More details are in Appendix.

4.1.3  Pretraining of Baselines. We compare K3M with several im-
age and text modality pretraining baselines: a representative single-
stream method VLBERT [9], and two two-stream methods ViL-
BERT [12] and LXMERT [10]. Baselines are also pretrained on the
Taobao data and initialized following their original papers. We pre-
train two types of models for baselines: (1) training with normal
image and text modality which include “ViLBERT”, “LXMERT” and
“VLBERT”; (2) training with image, text, and knowledge modality

which include “ViLBERT+PKG”, “VLBERT+PKG”, and “LXMERT+PKG”,

where knowledge text from PKG are spliced behind title text as the
text modality input. More details are in Appendix.

4.2 Finetuning: Item Classification

4.2.1 Task definition. Item classification is to assign given items to
corresponding classes which is a common task for product manage-
ment in E-commerce platform and could be regarded as a multi-class
classification task as given a set of items C and a set of classes C.LS,
the target is to train a mapping function f : C — CLS.

4.2.2 Model. K3M. For a given item e.; € C, which contains an
image ic, a title t¢, and a set of triples 7R, we get its representation
¢; = M(ic, tc, TRc) and feed it into a full connection layer:

pi=0c(We; +p), (11)

where W € RIXICLS] js 5 weighted matrix, d is the dimension
of c:.‘, B is bias vector, p; = [pi1, piz, .- pijc £5|] Where pij is the
probability that item e, belongs to class clsj, j € {1,..., |CLS]}.
We finetune K3M with a cross-entropy loss:
[C] ICLS]|
L= “iCl Z; Z; Yijlog(pij), (12)
-1 j=

1
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Figure 3: Test accuracy (%) for item classification with various missing and noise settings.

where y;; = 1if ec; belongs to class cls;, otherwise y;; = 0.

Baseline models. Following original papers, we compute the
representation of e.; as the element-wise product between the last
hidden states of [IMG] and [CLS] for ViLBERT, and as the last
hidden state of [CLS] for LXMERT and VLBERT. The following
steps are the same as Equation (11) and (12).

4.2.3 Dataset. More details are in Appendix.

4.2.4 Missing and noise of Dataset. For a dataset that contains N
items, we set 3 missing situations for product title and image:

o Title-only missing ratio TMR=p% denotes that p% items do
not have titles.

e Image-only missing ratio IMR=p% denotes that p% of all
items do not have images.

o Mixed missing ratio MMR=p% denotes that p% items have
different conditions of title-only and image-only missing. As
in [41], for each item class, we randomly sample N X p/2%
items to remove their images, and sample N X p/2% items
from the rest to remove their titles.

And we set 4 noise situations for product title and image:

o Title-only noise TNR=p% denotes that p% items have titles
that don’t match them, which are created via replacing item
titles with any other items’ titles.

o Image-only noise ratio INR=p% denotes that p% of all items
have images that don’t match them, which are created by
replacing item images with any other items’ images.

o Title-image noise ratio TINR=p% denotes that p% of all
items have both images and titles that don’t match them
at the same time, which are created by randomly replacing
both of their titles and images as introduced before.

e Mixed noise. The mixed noise ratio MNR=p% denotes that
a total of p% items have different conditions of title-only,
image-only, and title-image noise. As in [41], for each item

class, we randomly sample N X p/3% items to replace their
images/titles, and randomly sample N X p/3% items from
the rest to replace both their titles and images.

Following [41], to make balanced datasets, we keep the num-
ber of items for each class and each missing or noise situation in
train/dev/test dataset as 7 : 1 : 2. The settings of modal missing and
noise of datasets are the same for all downstream tasks.

4.2.5 Result analysis. Figure 3 8 shows results of various mod-
els for item classification, from which we have the following ob-
servations: (1) Baseline models seriously lack robustness when
modality-missing or modality-noise exists. For “title-only missing”,
performance of “ViLBERT”, “LXMERT” and “VLBERT” decreases
on average 10.2%, 24.4%, 33.1% , and 40.2% as TMR increases to 20%,
50%, 80%, and 100%, compared with TMR=0%. (2) Text modality
with missing and noise have greater impact on the performance
than image modality. Comparing the “title-only noise” and “image-
only noise” of the 3 baselines, the model performance decreases
by between 15.1% and 43.9% as TNR increases, while between 2.8%
and 10.3% as INR increases, which indicates that text information
plays a more important role. (3) The introduction of knowledge
graph can significantly improve the problem of modality-missing
and modality-noise. The experimental results of baselines with
PKG are significantly better than those without PKG. For “title-only
missing”, on the basis of baselines without PKG, “ViLBERT+PKG”,
“LXMERT+PKG” and “VLBERT+PKG” achieve an average improve-
ment of 13.0%, 22.2%, 39.9%, 54.4% and 70.1% when TMR increases
from 0% to 100%. (4) Our method achieves state-of-the-art perfor-
mance on these benchmarks. It further improves the results of
“VILBERT+PKG”, “LXMERT+PKG” and “VLBERT+PKG” by between
0.6% and 4.5% on various modality-missing and modality-noise
settings.

SIn Figure 3 and 4, reults of K3M(hard-spl) are shown since it works the best. For more
results of K3M(mean) and K3M(soft-spl), please refer to Table 3.
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Figure 4: Test F1-score (%) for product alignment with various missing and noise settings.

4.3 Finetuning: Product Alignment

4.3.1 Task definition. Product alignment is to tell whether a given
pair of items are aligned (referring to the same product). For ex-
ample, there are many online shops selling IPhone 11 with White
color and 128 GB capacity. They are different items on the platform,
while from the perspective of the product, they refer to the same
product. This task greatly helps daily business, such as recommend-
ing products to help the user compare their prices and after-sale
services. It could be regarded as a binary classification task as given
a set of item pairs C? and a set Y = {True, False}, the target is to
train a mapping function f : CP +— Y.

4.3.2 Model. K3M For a given item pair (egi, eii) € CP, we first
get the representations of item egl. and eéi respectively, namely
c;‘o = M(i(c), tg, TRS) and c;‘l = M(ig, té,TRg), which then are
concatenated and fed into a full connection layer:

pi=o(Wlcgllei; ]+ p), (13)
where W € R22_ p; = [pio, pi1] where p;1 is the probability that
egi and e;i are aligned. We finetune K3M with a cross-entropy loss:

1 1€l
L=—1oh 21 yilog(pin) + (1= y)log(pio).  (14)
i=

where y; = 1if egi and egi are aligned, otherwise y; = 0.

Baseline models We calculate the item representations of e(c)l.
and eéi respectively in the same way as in item classification task.
The following steps are the same as Equation 13 and 14.

4.3.3 Dataset. More details are in Appendix.

4.3.4 Result analysis. The evaluation metric of this task is F1-score.
Figure 4 shows the test F1-score of product alignment task. In this
task, we can have the similar observations as in the item classifica-
tion task. In addition, for modality-missing, the model performance
does not necessarily decrease as the missing ratio ncreases, but
fluctuates: When the missing ratio (TMR, IMR and MMR) is 50% or

80%, the model performance sometimes is even lower than when
it is 100%. Actually, the essence of this task is to learn a model to
evaluate the similarity of the multi-modal information of two items.
Intuitively, when the two items of an aligned item pair lack titles
or images at the same time, their information looks more similar
than when one lacks title or image while the other lacks nothing.

4.4 Finetuning: Multi-modal Question
Answering

4.4.1 Task definition. The goal of this task is to return an answer
based on the multi-modal information of a given item and a question.
This task can serve the automatic customer service system. For
example, if a user wants to know the material or applicable season
of a certain product, automatic customer service system can quickly
give an answer. Following the question answering task in previous
works [9, 11-13], we frame it as a multi-class classification task.
Given a set of item-question pairs QP and a set of candidate answers
A, the target is to train a mapping function f : Q° +— A.

4.4.2 Model. K3M For a given item-question pair (e, q;) € QP,
we take c;i = M([iclgi], te, TRe) as the representation of (ec;, i),
where [ic|q;] is the connection of the “question” and the product
title of the item, expressed as “product title [SEP] question”. Then
we feed c;i into a full connection layer:

pi= O'(WC;I- +B), (15)
where W € R A is a weighted matrix, p; = [pi1, piz. o DAY
where p;; is the probability that the answer of (ec;, q;) is aj € A,
j=1,..,|A| We finetune K3M with a cross-entropy loss:

QL1 A]

|
1
L==1gp] 2 D viilog(piy) (16)
i=1 j=1

where y;; = 1if the answer of (ec;, g;) is aj, otherwise y;; = 0.
Baseline models For “ViLBERT”, “LXMERT” and “VLBERT”,
we connect the title i; and “question” as the text modality input,



Table 2: Test Rank@ 10 (%) for multi-modal question answering with various missing and noise settings.

TMR IMR MMR TNR INR TINR MNR
Method 0% 1 50% 100%|50% 100%]|50% 100% |50% 100% |50% 100%|50% 100% |50% 100%
ViLBERT 741|525 385|734 727|587 512|479 39.0|73.7 733|345 21 |46.8 27.7
VIiLBERT+PKG 80.6 | 71.0 68.9 | 79.6 79.1 | 73.8 70.9 |70.7 66.3 |80.3 79.9 | 69.6 645|714 673
VLBERT 74.6 | 523 39.2 |73.6 728 |59.2 515|482 39.6 |740 733|348 22 |483 283
VLBERT+PKG 80.9 | 72.0 68.7 |79.7 793|737 713 |71.0 674|805 80.1|70.2 652|715 67.2
LXMERT 7431521 384|735 724|584 50.8|474 39.1|73.6 731|346 22 |468 274
LXMERT+PKG 80.7 | 70.9 68.4 |79.8 78.9 |73.6 71.2 |71.0 66.9 | 80.2 79.8 |69.5 64.8 |71.2 66.6
K3M(hard-spl) 87.2|79.6 76.8 |86.6 86.3 |81.3 78.9|79.6 76.5 |86.9 86.6|77.9 73.7|79.6 75.3

Table 3: Results of ablation for item classification (IC), product alignment (PA) and multi-modal question answering (MMQA).

TMR IMR MMR TNR INR TINR MNR

Task Method 0% | 50% 100% | 50% 100%| 50% 100%|50% 100%|50% 100%|50% 100% |50% 100%
K3M w/o IFFM 924 | 86.9 83.7 | 90.3 87.1 | 884 84.6 | 86.8 83.3 |89.2 86.3 | 85.7 813 |87.6 83.9

IC K3M(mean)  93.0 | 87.4 843 |90.6 87.4 (887 853 |87.1 83.7 |89.5 867|859 812 [88.0 843
(accuracy %) K3M(soft-spl) 92.9 | 89.5 865 | 91.2 88.9 | 89.8 87.3 | 88.7 859 |91.3 88.1 |86.4 815|894 86.8
K3M(hard-spl) 93.2|89.9 86.9 [91.7 89.6 |90.2 87.7 |89.2 86.4 |91.6 88.5|86.8 817 |90.1 87.2
K3M w/o IFEM 917 | 84.6 855 | 89.4 91.2 | 87.6 863 | 847 825 |91.1 89.8 | 79.2 764 | 841 783

PA K3M(mean) 923|861 86.1 |90.8 91.9 |88.6 87.6 |86.1 83.7 |91.7 91.2|82.6 766 |852 81.9
(F1-score %) K3M(soft-spl) 92.7|86.7 87.1 | 917 92.4 | 895 885 |87.1 859|922 917 |84.0 782 |87.2 83.1
K3M(hard-spl) 93.2|86.8 86.9 [91.9 92.6 [89.9 89.1|87.5 86.4 |92.7 92.4 |84.1 79.6 |87.6 83.8
K3M w/o IFEM 83.8 | 75.7 72.4 | 825 81.9 | 76.1 73.7 | 747 72.0 | 834 83.1 | 723 682 | 747 706

MMQA  K3M(mean) 854 |77.1 747 | 84.6 842|792 76.6 |77.6 74.1 |852 846|752 701|771 73.1
(Rank@10 %) K3M(soft-spl)  86.5 | 78.6 75.6 | 86.0 85.4 |80.9 77.6 |78.2 752 |86.2 857 |76.6 719 |78.1 745
K3M(hard-spl) 87.2|79.6 76.8 [86.6 86.3 |81.3 78.9|79.6 76.5|86.9 86.6|77.9 73.7|79.6 75.3

expressed as “ product title [SEP] question ”. For “VILBERT+PKG”,

“LXMERT+PKG” and “VLBERT+PKG”, we connect i, the knowledge

text of ec;, and “question” as the text modality input, expressed as

“product title [SEP] property; value; propertys ... [SEP] question”.
Following the original papers, we compute the representation of

(eci» qi) as the element-wise product between the last hidden states

of [CLS] and [IMG] for VILBERT, and as the last hidden state of

[CLS] for LXMERT and VLBERT. The following steps are the same

as Equation 15 and 16.

4.4.3 Dataset. More details are in Appendix.

4.4.4  Result analysis. The evaluation metric of this task is Rank@K
(K=1, 3, 10), where Rank@K is the percentage of ground-truth
answers appearing in the top-K ranked list. In particular, same
with [12], for a item-question pair (e, i), we score each candidate
answer aj € A as the probability that a; is its answer, that is p;j,
and then we sort all of the candidate answers in A.

Table 28 shows the rank result of multi-modal question answer-
ing task. In this task, we can also have the similar observations as
in the item classification task.

4.5 Ablation Study

In this section, we verify the effectiveness of our proposal that
fusing the initial features and interactive features of image and text
modalities. We pretrain another K3M without the initial-interactive
feature module (IFFM) from scratch, denoted as “K3M w/o IFFM”,
where the head entities of triples in PKG is initialized by only the
interactive features of image and text modalities, and Equation 2 is
rewritten as:

SMore results of Rank@1 and Rank@3 are shown in the Appendix.

c= mean_pooling(hil, e hﬁMl, Wohl-Tl, e Wohl?;wz). (17)

Table 3 shows the results on three downstream tasks. We can
see that K3Ms with IFFM applying different fusion algorithms all
work better than K3M without IFFM, indicating that our proposed
fusion of initial features and interactive features can indeed further
improve the model performance by retaining the independence of
text and image modalities. Due to limited space, we only show a

part of all results, and for more results, please refer to the Appendix.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduce structured knowledge of PKG into multi-
modal pretraining in E-commerce, and propose a new method, K3M.
The model architecture consists of modal-encoding layer for ex-
tracting the features of each modality, modal-interaction layer for
modeling the interaction of multiple modalities, and modal-task
layer containing different pretraining tasks for different modalities.
In the modal-interaction layer, we design a structure aggregation
module to propagate and aggregate the information of entity nodes
and relationship edges of PKG, and design an initial-interactive
feature fusion module to fuse the initial features of image and
text modalities with their interactive features to further improve
the model performance. Experiments on a real-world E-commerce
dataset show the powerful ability of K3M. In future work, we would
like to apply K3M to more downstream tasks and explore its per-
formance on more general datasets.
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A APPENDICES

A.1 Additional implementation details for
pretraining

A.1.1  Pretraining of K3M. In experiments, the number of layers of
all Transformer structures in K3M is 6. The Transformer blocks in
the text encoder and the co-attention Transformer blocks of textual
stream in the image-text interactor are initialized by the pretrained
parameters of the 12-layer BERT-base-chinese’ with each block
having 768 hidden units and 12 attention heads. The Transformer
blocks in the image encoder and the co-attention Transformer
blocks of visual stream in the image-text interactor are randomly
initialized with each block having 1024 hidden units and 8 attention
heads. In the structure aggregation module, the representation
dimension of entity and relation is set to 768 and the number of
attention heads is 8.

The length of each product title is shorter than 40 tokens (M; =40).
The length of each object sequence is shorter than 36 (Mz=36) as 10
to 36 objects are extracted from each image following the previous
work [12]. The length of the knowledge text stitched by relations
and tail entities is shorter than 80 (M3=80). The hyper-parameter y
of margin loss in Equation 9 is set at 1, and 3 negative triples are
sampled for each positive triple.

We pretrained K3M with 3 different fusion algorithms used in the
initial-interactive fusion module, namely “K3M(mean)”, “K3M(soft-
spl)” and “K3M(hard-spl)”. They are implemented on Pytorch and
trained on 8 Tsela-V100 GPUs with a total batch size of 256 for 3
epochs. We pretrain the model with Adam whose initial learning
rate set at le-4 and use a linear decay learning rate schedule with
warm up. Finally the model size is 1.7G and the whole training
consumed 275 hours.

A.1.2  Pretraining of baseline models. For “ViLBERT”, “LXMERT”
and “VLBERT”, the same as K3M, we set the length of title shorter
than 40 tokens, and set the length of object sequence shorter than
36.

For ‘VILBERT+PKG”, “VLBERT+PKG” and “LXMERT+PKG”, to
introduce information of the knowledge modality (PKG) into the
models, we spliced the knowledge text of PKG behind the product
title and used the whole as the text modality input of the mod-
els. Specifically, we first stitch all relations and tail entities of the
triples related to target item together into a long knowledge text
like “property; value; propertyy value, ...”. Then we connect the
product title with the knowledge text by a separator [SEP] as the
final text input of the baseline models, expressed as “product title
[SEP] property; value; property; values ...”. The same as K3M,
the length of title is shorter than 40 tokens, the length of object
sequence is shorter than 36, and the length of the knowledge text
shorter than 80 tokens.

The other model settings and training details of baseline models
are the same as their original papers.

Shttps://huggingface.co/bert-base-chinese

A.2 Additional implementation details and
results for item classification task

A.2.1 Dataset. In the dataset, there are 115, 467 items belong to 518
classes which contain at least 50 items used for item classification
task. The number of items of train/test/dev dataset are 7 : 1 : 2.

A.2.2  Implementation details. We use Adam optimizer with an
initial learning rate of 5e-5 and apply a linear decay learning rate
schedule with warm up. We finetune the model for 4 epochs with a
batch size of 32.

A.2.3  Results. Table 4 shows the test accuracy of various models
for item classification task of different modality-missing situations.
Table 5 shows the test accuracy of various models for item classifi-
cation task of different modality-noise situations.

A.3 Additional implementation details and
results for product alignment task

A.3.1 Dataset. In the dataset, there are 24, 707 aligned item pairs in
total, and we filter out the item pairs belong to classes that contain
less than 50 aligned item pairs (two aligned items belong to the same
item class in our platform). Finally, we collect 20, 818 aligned item
pairs for experiment. To generate negative item pairs, for a given
pair of aligned items (egi, eii) € CP, we randomly replace egl. or
egi with another item e, namely (egi, el;) ¢ CP or (e, egi) ¢ CP.
We generate 3 negative item pairs for each aligned item pair in
train dataset, 1 negative item pair for each aligned item pair in
dev/test dataset. The number of item pairs of train/dev/test dataset
are7:1:2.

A.3.2  Implementation details. We use Adam optimizer with an
initial learning rate of 5e-5 and apply a linear decay learning rate
schedule with warm up. We finetune the model for 4 epochs with a
batch size of 24.

A.3.3  Results. Table 6 shows the test F1-score of various models
for product alignment task of different modality-missing situations.
Table 7 shows the test F1-score of various models for product align-
ment task of different modality-noise situations.

A.4 Additional implementation details and
results for multi-modal question
answering task

A.4.1 Dataset. We generate the dataset for this task based on the
115,467 items from the dataset of item classification task. For each
item e;, we randomly select and remove one triple from 7R, which
is used to generate a question and the answer. For example, for
Item-1 in Figure 1, we remove the triple <Item-1, Material, Cotton>,
so “What is the material of this item ?” is the generated question
and “Cotton” is answer. Finally, 115,467 item-question pairs are
generated, the size of the candidate answer set A is 4, 809. The
number of item-question pairs of train/dev/test dataset are 7 : 1 : 2.

A.4.2  Implementation details. We use Adam optimizer with an
initial learning rate of 5e-5 and apply a linear decay learning rate
schedule with warm up. We finetune the model for 6 epochs with a
batch size of 32.



Table 4: Test Accuracy (%) for item classification task compared with baselines with various IMRs, TMRs and MMRs.

Method 0% TMR IMR MMR
20% 50% 80% 100% | 20% 50% 80% 100% | 20% 50% 80% 100%
ViLBERT 818 | 73.4 618 546 489 | 80.1 787 757 738 | 76.1 67.0 626 594
VIiLBERT+PKG | 92.5 | 89.7 865 844 83.1 | 91.8 894 87.6 863 | 90.4 881 855 841
VLBERT 819 | 73.6 620 549 493 | 804 785 759 742 | 763 672 629 597
VLBERT+PKG | 92.6 | 89.9 86.8 84.6 834 | 919 896 877 864 | 90.5 883 857 844
LXMERT 81.6 | 73.2 61.7 545 485 | 80.2 784 754 736 | 768 66.7 624 593

LXMERT+PKG | 92.2 | 894 86.2 84.2 83.0 | 91.5 893 874 861 | 903 88.0 852 838
K3M w/o IFFM | 924 | 904 869 84.8 83.7 | 922 903 882 87.1 | 90.8 884 860 846
K3M(mean) 93.0 | 90.8 874 856 843 | 926 906 885 874 | 914 887 864 853
K3M(soft-spl) 929 | 91.1 895 87.6 86,5 | 926 912 89.6 889 | 919 898 886 873
K3M(hard-spl) | 93.2 | 91.6 89.9 88.2 86.9 | 929 917 90.3 89.6 | 92.1 90.2 88.7 87.7

Table 5: Test Accuracy (%) for item classification task compared with baselines with various TNRs, INRs, TIMRs and MNRs.

Method 0% TNR INR TINR MNR
20% 50% 80% 100% | 20% 50% 80% 100% | 20% 50% 80% 100% | 20% 50% 80% 100%
ViLBERT 81.8 | 69.2 586 495 46.1 | 793 785 752 73.6 | 653 427 17.6 3.7 70.1 56.8 46.7 40.8
VILBERT+PKG | 925 | 904 86.2 835 821 | 914 89.6 87.1 857 | 891 84.7 808 786 | 905 875 849 833
VLBERT 819 | 695 588 496 462 | 796 787 753 740 | 65.6 428 17.6 3.4 70.2 57.1 46.8 40.9
VLBERT+PKG | 92.6 | 90.5 86.5 83.8 822 | 91.7 899 873 859 | 8.4 848 808 785 | 90.7 877 851 834
LXMERT 81.6 | 688 583 492 458 | 791 784 748 732 | 648 426 175 3.5 69.8 56.7 465 40.6

LXMERT+PKG | 92.2 | 90.1 858 832 819 | 91.1 89.2 869 854 | 8.7 846 802 783 | 903 873 84.6 832
K3M w/o IFFM | 924 | 90.3 86.8 849 833 | 91.7 89.2 874 863 | 89.4 857 820 813 | 91.0 876 852 839
K3M(mean) 93.0 | 90.6 87.1 852 837 | 919 895 878 867 | 89.7 859 819 812 | 91.3 880 854 843
K3M(soft-spl) 929 | 909 887 868 8.9 | 921 913 892 881 |903 864 825 815 | 915 894 881 86.8
K3M(hard-spl) | 93.2 | 91.5 89.2 87.5 86.4 | 92.8 91.6 89.7 88.5 | 89.8 86.8 823 817 | 919 90.1 883 87.2

Table 6: Test F1-score (%) for product alignment task compared with baselines with various IMRs, TMRs and MMRs.

Method 0% TMR IMR MMR
20% 50% 80% 100% | 20% 50% 80% 100% | 20% 50% 80% 100%
ViLBERT 91.2 | 87.4 847 829 843 | 91.0 857 895 89.7 | 89.0 873 848 831
VIiLBERT+PKG | 91.7 | 89.2 861 83.7 854 | 914 884 914 912 | 89.5 883 874 865
VLBERT 914 | 87.8 854 833 837 | 91.1 868 89.7 899 | 893 87.6 852 844
VLBERT+PKG | 91.8 | 89.1 863 84.8 853 | 915 892 91.6 914 | 8.6 884 871 863
LXMERT 91.1 | 869 845 828 833 | 904 86.1 88.7 89.1 | 88.7 857 842 828

LXMERT+PKG | 91.6 | 885 857 845 849 | 909 886 90.2 905 | 89.3 873 864 857
K3M w/o IFFM | 91.7 | 87.7 84.6 839 855 | 914 894 916 912 | 90.2 87.6 868 863
K3M(mean) 923 | 89.8 86.1 853 86.1 | 91.8 90.8 92 919 | 90.7 88.6 87.7 876
K3M(soft-spl) 92.7 | 88.4 86.7 855 87.1 | 92.6 917 924 924 | 913 895 883 885
K3M(hard-spl) | 93.2 | 90.1 86.8 86.2 869 | 929 919 92.8 92.6 | 919 899 88.7 89.1

A.4.3  Results. Table 8, Table 9 and Table 10 shows the test Rank@1, of various models for product alignment task of different modality-
Rank@3 and Rank@10 of various models for product alignment task noise situations, respectively.

of different modality-missing situations, respectively. Table 11, Ta-

ble 12 and Table 13 shows the test Rank@1, Rank@3 and Rank@10



Table 7: Test F1-score (%) for product alignment task compared with baselines with various TNRs, INRs, TIMRs and MNRs.

Method 0% TNR INR TINR MNR
20% 50% 80% 100% | 20% 50% 80% 100% | 20% 50% 80% 100% | 20% 50% 80% 100%
ViLBERT 91.2 | 858 833 812 793 | 905 90.2 90.0 8.7 | 76.6 632 51.7 333 | 846 782 731 672
VILBERT+PKG | 91.7 | 87.2 847 83.7 826 | 914 909 906 904 | 8.1 79.1 763 746 | 858 841 812 787
VLBERT 914 | 86.4 836 815 80.2 | 90.6 90.5 90.2 89.8 | 77.2 638 521 333 | 8.1 789 73.6 683
VLBERT+PKG | 91.8 | 87.6 851 842 834 | 915 91.1 90.8 906 | 864 793 77.1 751 | 86.2 846 815 79.7
LXMERT 91.1 | 846 834 810 794 | 903 898 893 890 | 76.2 628 51.6 333 | 847 779 727 671

LXMERT+PKG | 91.6 | 86.3 850 83.8 828 | 91.2 90.5 903 90.2 | 8.7 784 766 748 | 854 839 80.6 782
K3M w/o IFFM | 91.7 | 87.2 847 838 825 | 915 91.1 905 898 | 8.4 792 769 764 | 86.8 841 812 783
K3M(mean) 923 | 88.1 8.1 848 837 | 921 917 914 912 | 869 826 782 76.6 | 877 852 837 819
K3M(soft-spl) 92.7 | 90.2 87.1 86,5 8.9 | 925 922 91.8 917 | 88.7 &4 80.5 782 | 89.1 87.2 847 831
K3M(hard-spl) | 93.2 | 90.6 87.5 86.8 86.4 | 93.1 92.7 925 924 | 833 84.1 811 79.6 | 89.7 87.6 854 838

Table 8: Test Rank@1 (%) for multi-modal question answer task compared with baselines with various IMRs, TMRs and MMRs.

Method 0% TMR IMR MMR
20% 50% 80% 100% | 20% 50% 80% 100% | 20% 50% 80% 100%
ViLBERT 57.8 | 48.0 349 235 203 | 574 568 563 559 | 51.8 425 379 343
VIiLBERT+PKG | 69.1 | 63.2 581 55.6 553 | 684 68.1 675 671 | 652 61.2 59.7 573
VLBERT 58.0 | 47.8 352 237 20.6 | 579 573 56.6 563 | 52.6 428 384 349
VLBERT+PKG | 69.6 | 63.8 59.0 56.0 55.6 | 68.8 685 679 675 | 65.6 61.5 599 582
LXMERT 57.2 | 463 346 232 196 | 57.0 56.6 563 56.1 | 52.1 42.6 375 345

LXMERT+PKG | 68.6 | 62.4 574 55.1 549 | 685 683 674 673 | 652 612 594 58.0
K3M w/o IFFM | 72.1 | 67.3 60.8 59.1 58.2 | 71.7 713 70.7 705 | 685 62.7 626 59.7
K3M(mean) 748 | 68.6 628 589 582 | 742 739 73.6 734 | 713 663 648 633
K3M(soft-spl) 759 | 70.6 642 60.7 60.2 | 752 745 739 733 | 726 664 656 645
K3M(hard-spl) | 76.7 | 72.2 65.7 61.7 61.1 | 76.5 762 755 749 732 694 67.2 65.6

Table 9: Test Rank @3 (%) for multi-modal question answer task compared with baselines with various IMRs, TMRs and MMRs.

Method 0% TMR IMR MMR
20% 50% 80% 100% | 20% 50% 80% 100% | 20% 50% 80% 100%
ViLBERT 69.2 | 57.4 448 327 291 | 68.6 682 67.8 674 | 62.1 52.6 47.1 438
VILBERT+PKG | 76.8 | 70.6 65.6 635 627 | 76.1 756 751 747 | 725 68.6 67.2 653
VLBERT 69.5 | 57.8 447 329 29.7 | 689 685 679 67.7 | 62.6 529 483 442
VLBERT+PKG | 77.2 | 71.5 66.6 63.7 625 | 764 758 754 749 | 73.0 69.2 675 66.1
LXMERT 68.9 | 56.6 444 323 287 | 68.7 686 67.8 67.5 | 623 527 476 443

LXMERT+PKG | 76.7 | 70.0 653 63.1 62.6 | 76.3 758 753 750 | 729 689 673 657
KsM w/o IFFM | 79.9 | 742 685 663 65.1 | 793 789 782 77.6 | 758 70.6 710 67.8
K3M(mean) 81.1 | 755 714 686 67.8 | 80.7 804 799 798 | 77.6 740 724 712
K3M(soft-spl) 82.2 | 763 727 702 69.1 | 81.8 8l.6 81.2 811 | 79.2 751 734 719
K3M(hard-spl) | 83.4 | 78.5 74.2 71.6 70.8 | 83.2 82.8 824 824 (807 760 744 72.6




Table 10: Test Rank@10 (%) for multi-modal question answer task compared with baselines with various IMRs, TMRs and
MMRs.

Method 0% TMR IMR MMR
20% 50% 80% 100% | 20% 50% 80% 100% | 20% 50% 80% 100%
ViLBERT 741 | 633 525 419 385 | 73.6 734 729 727 | 68.2 587 542 512
VILBERT+PKG | 80.6 | 75.2 71.0 694 689 | 799 796 793 791 | 771 738 724 709
VLBERT 74.6 | 63.7 523 421 392 | 73.7 736 733 728 | 68.1 59.2 551 515
VLBERT+PKG | 809 | 76.0 720 69.1 687 | 80.1 79.7 794 793 | 770 737 726 713
LXMERT 743 | 628 521 41.6 384 | 73.6 735 732 724 | 67.6 584 543 508

LXMERT+PKG | 80.7 | 746 709 69.2 684 | 799 798 794 789 | 775 73.6 725 712
K3M w/o IFFM | 83.8 | 79.2 757 734 724 | 82.8 825 821 819 | 8.2 761 750 737
K3M(mean) 854 | 814 77.1 758 747 | 849 846 845 842 | 825 792 779 76.6
K3M(soft-spl) 86.5 | 823 78.6 772 756 | 86.1 86.0 857 854 | 841 809 791 77.6
K3M(hard-spl) | 87.2 | 834 79.6 78.1 768 | 86.8 86.6 864 863 |844 813 80.1 789

Table 11: Test Rank@1 (%) for multi-modal question answer task compared with baselines with various INRs, TNRs, TINRs
and MNRs.

Method 0% TNR INR TINR MNR
20% 50% 80% 100% | 20% 50% 80% 100% | 20% 50% 80% 100% | 20% 50% 80% 100%
VIiLBERT 57.8 | 447 30.6 208 20.2 | 574 57.1 56.6 56.4 45 261 83 0.2 479 337 226 175
VIiLBERT+PKG | 69.1 | 61.8 57.7 541 532 | 689 687 684 682 | 624 558 499 486 | 63.6 583 533 525
VLBERT 58.0 | 455 30.8 21.1 204 | 57.8 574 571 56.8 | 454 263 8.6 0.2 48.5 348 228 18
VLBERT+PKG | 69.6 | 62.7 57.6 55.4 54 69.1 693 688 686 | 63.2 563 502 49.6 | 63.8 586 53.7 527
LXMERT 57.2 | 45.2 30.6 20.7 203 | 569 56.7 563 557 | 453 26.1 8.2 0.2 48.0 333 223 169

LXMERT+PKG | 68.6 | 62.2 57 549 53.6 | 684 680 677 674 | 625 557 482 489 | 62.8 580 528 523
KSM w/o IFFM | 72.1 | 65.2 57.2 583 57.1 | 715 712 707 703 | 647 575 493 525 | 669 612 558 53.8
K3M(mean) 748 | 67.6 61.8 593 584 | 740 742 738 734 | 674 583 496 519 | 69.6 644 589 57.6
K3M(soft-spl) 759 | 683 632 608 606 | 755 751 748 745 | 674 599 551 547 | 70.1 651 61.1 59.1
K3M(hard-spl) | 76.7 | 70.4 64.4 61.1 604 |76.2 759 755 753|701 622 569 553|712 66.7 61.6 59.8

Table 12: Test Rank@3 (%) for multi-modal question answer task compared with baselines with various INRs, TNRs, TINRs
and MNRs.

Method 0% TNR INR TINR MNR
20% 50% 80% 100% | 20% 50% 80% 100% | 20% 50% 80% 100% | 20% 50% 80% 100%
ViLBERT 69.2 | 545 400 303 298 | 69.0 686 683 679 | 532 310 102 0.6 574 415 289 229
VIiLBERT+PKG | 76.8 | 69.1 652 623 612 | 765 762 758 755 | 69.8 63.5 589 57.7 | 70.8 66.2 61.2 60.7
VLBERT 69.5 | 548 404 308 30.1 | 693 691 686 684 | 539 314 105 0.6 57.6 427 293 235
VLBERT+PKG | 77.2 | 703 655 634 619 | 768 765 761 757 | 70.2 641 592 584 | 71.1 664 613 61.1
LXMERT 68.9 | 547 397 305 300 | 687 683 679 67.7 | 535 312 10.1 0.6 57.1 411 288 22.6

LXMERT+PKG | 76.7 | 69.6 651 632 616 | 765 76.2 757 755 | 70.0 634 582 573 | 703 657 60.8 60.0
KM w/oIFFM | 79.9 | 73.2 659 674 662 | 795 79.1 787 784 | 725 66.2 621 60.5 | 744 691 641 633
K3M(mean) 81.1 | 758 708 684 674 | 80.9 80.7 804 803 | 759 673 643 632 | 752 714 662 654
K3M(soft-spl) 822 | 765 713 698 693 | 818 816 814 813 | 762 689 658 641 | 767 723 691 672
K3M(hard-spl) | 83.4 | 77.6 72.1 689 685 | 83.2 829 82.7 826 (774 702 662 648 |77.8 732 69.9 68.6




Table 13: Test Rank@ 10 (%) for multi-modal question answer task compared with baselines with various INRs, TNRs, TINRs
and MNRs.

Method 0% TNR INR TINR MNR
20% 50% 80% 100% | 20% 50% 80% 100% | 20% 50% 80% 100% | 20% 50% 80% 100%
ViLBERT 741 | 60.9 479 399 39.0 | 738 737 734 733 | 57.6 345 126 2.1 62.7 468 341 277
VIiLBERT+PKG | 80.6 | 741 70.7 682 663 | 804 803 80.1 799 | 746 69.6 665 645 | 753 714 673 673
VLBERT 74.6 | 61.2 482 40.1 39.6 | 743 740 73.6 733 | 58.1 348 128 2.2 629 483 342 283
VLBERT+PKG | 809 | 749 710 69.1 674 | 80.8 805 80.2 80.1 | 751 70.2 662 652 | 755 715 677 67.2
LXMERT 743 | 610 474 403 391 | 73.8 73.6 732 731 | 58.0 346 124 2.2 624 46.8 331 274

LXMERT+PKG | 80.7 | 744 71.0 68.6 669 | 80.5 80.2 80.1 798 | 743 695 647 648 | 746 712 67.1 66.6
K3M w/o IFFM | 83.8 | 77.3 747 735 720 | 836 834 832 831 | 778 723 695 682 | 787 747 719 70.6
K3M(mean) 854 | 80.7 776 751 741 | 853 852 847 846 | 802 752 712 701 | 778 771 744 731
K3M(soft-spl) 86.5 | 80.7 782 756 752 | 863 862 859 8.7 | 803 766 728 719 | 817 781 752 745
K3M(hard-spl) | 87.2 | 81.8 79.6 77.0 765 | 87.1 86.9 86.7 86.6 | 819 779 743 73.7|821 79.6 764 753
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