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Figure 1: Our portrait shadow removal, tattoo removal, and watermark removal results. We propose the first unsupervised
portrait shadow removalmethodwithout any training data. Ourmethod can recover high-quality shadow-free portrait images
from real-world portrait shadow images. Our proposed method can also be extended to facial tattoo removal and watermark
removal as a general framework with only little modification.

ABSTRACT
Portrait images often suffer from undesirable shadows cast by casual
objects or even the face itself. While existing methods for portrait
shadow removal require training on a large-scale synthetic dataset,
we propose the first unsupervised method for portrait shadow re-
moval without any training data. Our key idea is to leverage the
generative facial priors embedded in the off-the-shelf pretrained
StyleGAN2. To achieve this, we formulate the shadow removal task
as a layer decomposition problem: a shadowed portrait image is
constructed by the blending of a shadow image and a shadow-free
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image. We propose an effective progressive optimization algorithm
to learn the decomposition process. Our approach can also be ex-
tended to portrait tattoo removal and watermark removal. Qualita-
tive and quantitative experiments on a real-world portrait shadow
dataset demonstrate that our approach achieves comparable per-
formance with supervised shadow removal methods. Our source
code is available at this repository.

CCS CONCEPTS
•Computingmethodologies→Computational photography;
Image processing.

KEYWORDS
Portrait Shadow Removal, Unsupervised Learning, Generative Pri-
ors, Image Decomposition
ACM Reference Format:
Yingqing He, Yazhou Xing, Tianjia Zhang, and Qifeng Chen. 2021. Un-
supervised Portrait Shadow Removal via Generative Priors. In Proceed-
ings of the 29th ACM Int’l Conference on Multimedia (MM ’21), Oct. 20–
24, 2021, Virtual Event, China. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3474085.3475663

ar
X

iv
:2

10
8.

03
46

6v
1 

 [
cs

.C
V

] 
 7

 A
ug

 2
02

1

https://doi.org/10.1145/3474085.3475663
https://github.com/YingqingHe/Shadow-Removal-via-Generative-Priors
https://doi.org/10.1145/3474085.3475663
https://doi.org/10.1145/3474085.3475663


1 INTRODUCTION
Portrait photography is the art of capturing the inherent character
of a person with a face in a photograph. Due to the rapid growth
of digital cameras and smartphone cameras, portrait photography
has also become popular among amateur photographers. However,
portrait photographs taken in the wild often suffer from undesirable
shadows cast by casual objects or even the face itself due to the lack
of professional lighting control or the unpleasing environmental
illumination conditions. Although photo editing software such as
Adobe Photoshop provides a series of image adjustment operations
for post-processing, portrait shadow removal as an effective, high-
quality, and automatic application is highly desirable. Therefore,
we are interested in designing an automatic and effective algorithm
to remove portrait shadows without any user input.

Due to the importance of lighting manipulation to photography,
there have been many approaches to remove unpleasing shadows
in photographs [1, 5, 7–9, 11, 13, 15, 20, 25, 27, 30, 32, 32, 33]. Re-
cent state-of-the-art shadow removal and portrait shadow removal
methods are based on deep learning techniques and trained on
large-scale image pairs in a supervised manner [5, 15, 20, 25, 30].
Although it has achieved better performance than traditional meth-
ods, those approaches are limited by the nature of their training
data which may fail on complex and various real-world images.
Moreover, preparing training data is a tedious and challenging task,
since the diversity of training pairs for varied background environ-
ments, shadows, and subjects are very hard to cover. Meanwhile,
different tasks need different kinds of training data also causes
inconvenience on both model training and practical usage.

In this paper, we propose the first unsupervised portrait shadow
removalmethodwithout any paired training data. Ourmethod takes
only one single shadowed portrait image as input, then recovers the
shadow-free portrait image without any user intervention. The key
insight of our method is that off-the-shelf pretrained face generators
such as StyleGAN2 [18], own abundant priors on high-quality face
appearances and geometries. The prior work [24] also exploits
generative priors for versatile image restoration and manipulation
tasks including colorization and inpainting. However, their method
assumes that the degradation transformation is deterministic (e.g.,
converting generated RGB image to grayscale for image colorization
and a known binary mask for image inpainting). This assumption
cannot hold for restoration cases where the image degradation is
complex and unknown. In our portrait shadow removal task, the
shadow degradation is spatially varying and the shadowed region
can be any kinds of shape. Thus, unlike their method, we make
the first attempt to exploiting generative priors towards unknown
degradation process in order to solve the portrait shadow removal
task in an unsupervised manner.

To effectively leverage generative priors with unknown shad-
owed degradation, we formulate the portrait shadow removal task
as an image decomposition problem [36]: a shadowed image is a
composite of a full-shadow image and a shadow-free image.Since
learning the image layer decomposition from one single image
is an ill-posed problem, we observed that exploiting deep gener-
ative facial priors can help to reduce the ambiguity of the layer
decomposition. For the shadow degradation learning, we exploit a
neural network which takes a random noise as input to estimate the

shadow mask. Meanwhile, we optimize a color matrix to obtain a
full shadow image from the generated shadow-free image. We note
that directly optimizing our framework leads to poor performance
due to the layer ambiguity nature of this problem. Thus, we propose
a progressive optimization strategy and design effective regular-
ization to clear the ambiguity step-by-step. Extensive experiments
show that our unsupervised method can achieve comparable perfor-
mance with state-of-the-art supervised methods. Moreover, we also
extend our method to tattoo removal and watermark removal for
portrait images to demonstrate the general ability of our method.

Our contributions can be summarized as follows:

• We present the first unsupervised portrait shadow removal
method leveraging the abundant deep generative priors em-
bedded in the pretrained GAN model. Our model can handle
unknown degradation process in shadowed images, which
cannot be achieved by a set of existing GAN-inversion-based
image restoration methods.

• We propose an effective progressive optimization strategy to
eliminate the ambiguous nature of the shadow degradation
learning from a single input image.

• We demonstrate that our unsupervised method can achieve
comparable performance with existing supervised methods.
In addition, our method can also serve as a general frame-
work to deal with multiple tasks (i.e., watermark removal
and tattoo removal), which cannot be achieved via existing
supervised methods.

2 RELATEDWORK
2.1 Shadow removal
Traditionally, graphics-based shadow removal approaches identify
shadows by manually label shadow regions [1, 11, 27, 32], exploit
shadow priors such as illumination discontinuity across shadow
edges [2, 26], or find the relationship between shadow and non-
shadow regions [13]. Then, shadow removal can be performed by
histogram manipulation [19], color transfer [27, 29, 31], illumina-
tion modelling and relighting [7–9, 13, 32, 33].

With the development of deep learning in recent years, many
works have been proposed to train deep neural networks on large-
scale datasets for shadow removal [5, 15, 20, 25, 30]. Deshadow-
Net [25] removes shadows in an end-to-end manner to predict a
shadow matte. ST-CGAN [30] exploits conditional GAN [16] to
generate shadow-free images and shadow masks in a unified frame-
work. Mask-ShadowGAN [14] and ARGAN [6] also exploit genera-
tive models [4] to perform shadow removal on unpaired training
data or in a semi-supervised manner. Recently [20] formulate the
shadow removal task as an image layer decomposition problem
similar to ours.

However, all of the previous deep learning approaches need a
large amount of paired images (e.g., shadow and shadow-free image
pairs) to train their networks which is time-consuming. Besides,
collecting training data pairs is tedious and collected training pairs
may have inconsistent colors, luminosity, and positions [14]. Most
importantly, their method has dubious generalization ability due
to the intrinsic limitation caused by their training data which may
not be generalized well on portrait images.
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Figure 2: Framework Overview. We design a multi-path network to effectively decompose a shadowed portrait image into
three components: a shadow-free image 𝐼𝑓 𝑟𝑒𝑒 , a full-shadow image 𝐼𝑓 𝑢𝑙𝑙 , and a shadow mask 𝑀 . We utilize generative priors
from the pretrained StyleGAN to generate 𝐼𝑓 𝑟𝑒𝑒 and optimize a color matrix𝐶 to generate 𝐼𝑓 𝑢𝑙𝑙 . We propose a MaskNet to learn
a shadow mask from sampled noise. Composing 𝐼𝑓 𝑢𝑙𝑙 with 𝐼𝑓 𝑟𝑒𝑒 with𝑀 can reconstruct the input shadowed image 𝐼 (see Eq. 1).
Blocks in red dash lines are trainable. Please refer to Section 3 for our detailed design and optimization strategy.

For portrait shadow removal, [36] divide facial shadows into two
types: foreign shadows which are cast by foreign objects, and facial
shadows which are caused by the face itself. They designed two
separate models for each kind of shadow, and two training sets
are needed for these two tasks. While our upsupervised portrait
shadow removal method can handle the two types of shadow in
one single model and only use one single input shadowed portrait
image.

2.2 Deep generative priors
Since performing shadow and face decomposition in a single-image
manner is an ill-pose problem, we exploit the idea of GAN inver-
sion [12, 23, 24, 37] so that we can use a pretrained state-of-the-art
GANmodel to provide high-quality generative facial priors to guide
our clean portrait image reconstruction process.

GAN inversion aims at finding a corresponding latent vector to
reconstruct the desired image using a pretrained GAN generator.
Thanks to the development of state-of-the-art GAN models, many
works proposed to exploit the generative priors to facilitate a set of
image restoration and processing tasks. Sachit et al. [23] proposed
PULSEwhich aimed to find a corresponding latent code in the latent
space of generative models to generate high-resolution images from
a single low-resolution image. Gu et al. [12] increased the amount
of latent code and expand the application of GAN priors to multiple
image processing and manipulation tasks. Pan et al. [24] proposed
DGP to exploit the deep generative priors from the pretrained
BigGAN to facilitate a set of image restoration tasks.

However, previous works exploiting GAN priors always assume
the image degradation process is known, while our method can
learn the spatial-varying and various shapes of shadow degradation
from the input single shadowed image, which is a more challenging
setting than previous methods.

3 METHOD
3.1 Overview
We formulate the portrait shadow removal task as an image de-
composition problem [36]. To be specific, given an input shadowed
portrait image 𝐼 , we decompose it into 𝐼𝑓 𝑟𝑒𝑒 , 𝐼𝑓 𝑢𝑙𝑙 , and𝑀 :

𝐼 = 𝐼𝑓 𝑟𝑒𝑒 ⊙ 𝑀 + 𝐼𝑓 𝑢𝑙𝑙 ⊙ (1 −𝑀), (1)

where 𝐼𝑓 𝑟𝑒𝑒 and 𝐼𝑓 𝑢𝑙𝑙 denote shadow-free portrait and full-shadow
portrait respectively.𝑀 is a shadowmaskwhich denotes the shadow
region and intensity. ⊙ is the Hadamard product. Decomposing
a single shadowed portrait into 𝐼𝑓 𝑟𝑒𝑒 , 𝐼𝑓 𝑢𝑙𝑙 and 𝑀 is a highly ill-
posed problem. To achieve this, we leverage the generative priors
to eliminate the layer ambiguity of the decomposition. To further
constrain the decomposition process, we regularize the full shadow
image 𝐼𝑓 𝑢𝑙𝑙 using a color matrix 𝐶 ∈ [0, 1]3×3,

𝐶 =


𝜆𝑅 0 0
0 𝜆𝐺 0
0 0 𝜆𝐵

 , (2)

𝐼𝑓 𝑢𝑙𝑙 (𝑥,𝑦) = 𝐶 × 𝐼𝑓 𝑟𝑒𝑒 (𝑥,𝑦), (3)

where 𝑥,𝑦 denote pixel positions and 𝜆 denotes learnable shadow
parameters for R, G and B channels. We will firstly introduce our
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Figure 3: Illustration of our method. We formulate the portrait shadow removal as an image decomposition problem. Our
unsupervised method takes a single shadow portrait as input and can decompose it into a shadow-free portrait image, a full-
shadow portrait image, and a shadow mask.

network architecture at Section 3.2, and then describe our proposed
alternative optimization strategy at Section 3.3. Finally, we intro-
duce how to extend our framework to portrait tattoo removal and
watermark removal tasks at Section 3.4.

3.2 Network architecture
Following the image decomposition process defined in equation (1),
we design customized modules to learn 𝐼𝑓 𝑟𝑒𝑒 , 𝐼𝑓 𝑢𝑙𝑙 and𝑀 respec-
tively, as illustrated in Figure 2. Specifically, we use the pretrained
StyleGAN2, denoted as 𝐺 , as the branch for recovering underlying
shadow-free portrait 𝐼𝑓 𝑟𝑒𝑒 , using optimization-based GAN inver-
sion method [18]. To reconstruct the full-shadow image 𝐼𝑓 𝑢𝑙𝑙 , we
directly optimize a 3 × 3 color matrix through backpropagation.
Note that although the same strategy can be applied to optimize
our shadow mask 𝑀 , we find it is prone to local minima during
the mask 𝑀 optimization process. Thus, we adopt another small
network MaskNet 𝑓𝑀 and take a random initialized noise map 𝑛𝑀
as the input to the network to reconstruct the shadow mask𝑀 . We
design the MaskNet as an encoder-decoder network with skip con-
nections, similar to Double-DIP [10]. We apply a sigmoid function
to MaskNet output to further regularize the value of learned mask
to be in (0, 1). In summary, the StyleGAN2 latent code 𝑤 , color
matrix 𝐶 and the network parameters of MaskNet 𝑓𝑀 need to be
optimized. We design an effective progressive optimization strategy
for this problem, as shown in Sec. 3.3.

3.3 Progressive optimization
To produce high-quality shadow removal results, we need to care-
fully design the optimization process to utilize the GAN priors effec-
tively. Joint optimization produces unpleasing artifacts, as shown
in Figure 5. We instead adopt a progressive optimization strategy
to guide the image recovering process step by step. We divide the
optimization process into three stages, as explained in Algorithm 1.

Stage 1. Initial face optimization. We firstly use GAN inversion to
project the shadowed image into the StyleGAN2 latent space for 𝐾
steps to obtain an initial shadow-free face. To avoid the disturbance
of portrait background for GAN inversion quality, we only aim at
recovering high-quality human faces through segmenting face parts
with a pretrained face parsing model [34]. We use LPIPS loss [35]

as the optimization goal for GAN inversion.

L𝐿𝑃𝐼𝑃𝑆 = | |Φ(𝐼 𝑖𝑛𝑖𝑡
𝑓 𝑟𝑒𝑒

⊙ 𝑆) − Φ(𝐼 ⊙ 𝑆) | |2, (4)

where 𝑆 is the segmentation mask for face obtained by [34], and
Φ is the pretrained VGG-19 network [3, 22, 28, 35]. We also add a
regularization term to the StyleGAN2 noise map 𝑛𝐺 such that the
image will not be projected into the noise latent space, as shown
in [18].

L𝑟𝑒𝑔 =
∑︁
𝑖, 𝑗

L𝑖, 𝑗𝑟𝑒𝑔 . (5)

where L𝑖, 𝑗𝑟𝑒𝑔 is defined by

L𝑖, 𝑗𝑟𝑒𝑔 =
(
1
𝑟2
𝑖, 𝑗

·
∑︁
𝑥,𝑦

𝒏𝐺𝑖,𝑗 (𝑥,𝑦) · 𝒏
𝐺
𝑖,𝑗 (𝑥 − 1, 𝑦)

)2
(6)

+
(
1
𝑟2
𝑖, 𝑗

·
∑︁
𝑥,𝑦

𝒏𝐺𝑖,𝑗 (𝑥,𝑦) · 𝒏
𝐺
𝑖,𝑗 (𝑥,𝑦 − 1)

)2
,

where 𝑛𝐺
𝑖,𝑗

is the 2𝑗 times downsampled map of 𝑖-th noise map, 𝑟𝑖, 𝑗
denotes the resolution of 𝑛𝐺

𝑖,𝑗
and 𝑥,𝑦 are pixel positions.

In total, our loss function for Stage 1 can be formulated as

L𝑆1 = L𝐿𝑃𝐼𝑃𝑆 + 𝛼L𝑟𝑒𝑔 (7)

Following [18], we set 𝛼 to 105 in our experiments.
Latent Initialization: In order to ease the optimization process

of this stage, we find it helpful to start with a good latent vector
𝑤 which approximates the face image 𝐼 ⊙ 𝑆 well. Thus, instead of
randomly initializing a latent vector from the prior distribution,
we randomly sample 500 latent vectors fed into the pretrained
StyleGAN2 to generate 500 images. Then we use L𝐿𝑃𝐼𝑃𝑆 to select
the best initial value for𝑤 . We empirically set 𝐾 to 300 to allow the
network to produce the best shadow-free face approximation and
to prevent fitting on portrait shadows.

Stage 2. Color matrix and shadow mask optimization. After ob-
taining an approximate shadow-free face in Stage 1, we aim at
recovering a full-shadow portrait 𝐼𝑓 𝑢𝑙𝑙 with the color matrix𝐶 , and
estimating the shadow mask𝑀 for image blending, following the
definition in Equation (1). In this stage, we fix the latent space of the
StyleGAN2, and jointly optimize color matrix𝐶 and parameters 𝜃 of
MaskNet 𝑓𝑀 to minimize the reconstruction loss, which is defined



Algorithm 1 Progressive optimization
Input: Shadowed portrait 𝐼 , face parsing map 𝑆
Output: Shadow-free portrait 𝐼𝑓 𝑟𝑒𝑒 , full-shadow portrait 𝐼𝑓 𝑢𝑙𝑙 ,

blending mask𝑀

Stage 1 – Initial face optimization.

1: Sample 500 {𝑧𝑖 }500𝑖=1 from Gaussian distribution;
2: Infer𝑤 space latents {𝑤𝑖 }500𝑖=1 using {𝑧𝑖 }500𝑖=1;
3: Select𝑤𝑏 which minimizes L𝐿𝑃𝐼𝑃𝑆 (𝐼 ,𝐺 (𝑤𝑖 ));
4: 𝑤0

𝑏
= 𝑤𝑏 ;

5: for 𝑘 = 1 to 𝐾 do
6: 𝐼 𝑖𝑛𝑖𝑡

𝑓 𝑟𝑒𝑒
= 𝐺 (𝑤𝑘−1

𝑏
);

7: Loss=L𝐿𝑃𝐼𝑃𝑆 (𝐼 𝑖𝑛𝑖𝑡𝑓 𝑟𝑒𝑒
, 𝐼 );

8: Update𝑤𝑘−1
𝑏

using ADAM algorithm;
end for

9: return 𝐼 𝑖𝑛𝑖𝑡
𝑓 𝑟𝑒𝑒

= 𝐺 (𝑤𝐾
𝑏
).

Stage 2 – Color matrix and shadow mask optimization.

10: Randomly initialize the MaskNet 𝑓 0
𝑀

and the noise map 𝑛𝑀 ;
11: 𝑀0 = 𝑓 0

𝑀
(𝑛𝑀 );

12: Initialize diagonal element of color matrix to 0.5 to obtain 𝐶0;
13: for 𝑝 = 1 to 𝑃 do
14: 𝑀𝑝 = 𝑓

𝑝

𝑀
(𝑛𝑀 );

15: 𝐼 = 𝐼 𝑖𝑛𝑖𝑡
𝑓 𝑟𝑒𝑒

⊙ 𝑀𝑝−1 + (𝐶𝑝−1𝐼 𝑖𝑛𝑖𝑡
𝑓 𝑟𝑒𝑒

) ⊙ (1 −𝑀𝑝−1);
16: Loss=𝑀𝑆𝐸 (𝐼 , 𝐼 );
17: Update 𝐶𝑝−1 and 𝑓 𝑝

𝑀
using ADAM algorithm;

end for
18: return𝑀𝑃 and 𝐶𝑃 .

Stage 3 – Facial features refinement.

19: Initialization: 𝐶0 = 𝐶𝑃 ,𝑤0 = 𝑤𝐾
𝑏
, 𝐼0
𝑓 𝑟𝑒𝑒

= 𝐼 𝑖𝑛𝑖𝑡
𝑓 𝑟𝑒𝑒

;
20: for 𝑞 = 1 to 𝑄 do
21: 𝐼

𝑞−1
𝑓 𝑟𝑒𝑒

= 𝐺 (𝑤𝑞−1);

22: 𝐼 = 𝐼
𝑞−1
𝑓 𝑟𝑒𝑒

⊙ 𝑀𝑃 + (𝐶𝑞−1𝐼𝑞−1
𝑓 𝑟𝑒𝑒

) ⊙ (1 −𝑀𝑃 );
23: Loss = L𝑓 𝑒𝑎𝑡 (𝐼 , 𝐼 ) + L𝐿𝑃𝐼𝑃𝑆 (𝐼 , 𝐼 );
24: Update 𝐶𝑞−1 and𝑤𝑞−1 using ADAM algorithm;

end for
25: 𝐼𝑓 𝑟𝑒𝑒 = 𝐺 (𝑤𝑄 ), 𝐶 = 𝐶𝑄 ,𝑀 = 𝑀𝑃 , 𝐼𝑓 𝑢𝑙𝑙 = 𝐶 × 𝐼𝑓 𝑟𝑒𝑒 ;
26: return 𝐼𝑓 𝑟𝑒𝑒 , 𝐼𝑓 𝑢𝑙𝑙 and𝑀 .

by the L2 distance between reconstructed shadow portrait 𝐼 and
input shadowed portrait 𝐼 which served as ground truth:

min
𝐶,𝜃

| |𝐼𝐶,𝜃 − 𝐼 | |22 . (8)

In practice, we optimize objective function (8) for only 50 steps
to guide the mask𝑀 to learn the blending relationship instead of
compensating for the face details. Please note that although there
exists some face detail mismatch after the optimization of Stage 1,
the lighting appearance of shadow-free face 𝐼𝑓 𝑟𝑒𝑒 is adequate to
learn high-quality shadow mask𝑀 , as shown in Figure 3.

Stage 3. Facial features refinement. After the previous two opti-
mization stages, we can now coarsely decompose 𝐼 into 𝐼𝑓 𝑟𝑒𝑒 and

𝐼𝑓 𝑢𝑙𝑙 . However, the face reconstruction results of the first stage
may miss perceptually important face details, such as eyeball colors
and nose size, since the optimization process is relatively short.
Therefore, in this stage, we further improve the projection quality
to the StyleGAN2 latent space to refine face details. Besides global
perceptual loss applied on the whole face, we also propose facial
feature loss to precisely optimize important face components:

𝐹 = {nose, eyebrow, eyeball,mouth, glasses}.

We use the same parse map extracted in Stage 1 to identify impor-
tant facial features. The LPIPS losses for face detail refinement are
defined as

L𝑓 𝑒𝑎𝑡 =
∑︁
𝑓 ∈𝐹

𝜆fΦ(𝑓 , 𝑓 ), (9)

where f is the element defined in 𝐹 .
We also optimize color matrix 𝐶 in this stage since the change

of face detail may influence the estimation of full shadow images.
We optimize this stage for 450 iterations, and the total optimization
objective is

min
𝐶,𝑤

L𝑓 𝑒𝑎𝑡 + L𝐿𝑃𝐼𝑃𝑆 . (10)

After optimization process, the generator of StyleGAN2 outputs
a shadow-free portrait image 𝐼𝑓 𝑟𝑒𝑒 which is served as final output
result.

3.4 Extensions
Our framework can also be extended to face tattoo removal and face
watermark removal with only minimal modification. Note that this
characteristic indicates better versatility of our framework than any
existing supervised shadow manipulation methods. To demonstrate
this potential, we synthesize faces with tattoos and watermarks
respectively and adopt a similar optimization strategy for this layer
decomposition problem. In these two tasks, we modify the problem
formulation of equation (1) into:

𝐼 = 𝐼𝑐𝑙𝑒𝑎𝑛 ⊙ 𝑀 + 𝐼𝑝𝑢𝑟𝑒 ⊙ (1 −𝑀), (11)

where 𝐼𝑐𝑙𝑒𝑎𝑛 and 𝐼𝑝𝑢𝑟𝑒 denote the tattoo-free or watermark-free
face and the pure-color face. Here we restrict the mask to be binary
for better performance.

L𝑏𝑖𝑛𝑎𝑟𝑦 =𝑚𝑖𝑛( |𝑀 − 0|, |𝑀 − 1|) . (12)

4 EXPERIMENTS
4.1 Experimental setup

Datasets. Weevaluate ourmethod on a real-world portrait shadow
removal dataset which was proposed by [36]. The portrait shadow
removal dataset contains 9 subjects and 100 shadowed portrait
images in varied poses, shadow shapes, illumination conditions
and shadow types which provides a challenging setting for por-
trait shadow removal task. For tattoo and watermark removal, we
synthesize our own data based on CelebA-HQ dataset [21].

Implementation details. We implement our method with PyTorch
and conduct experiments on the NVIDIA RTX 2080Ti GPU. We
use the StyleGAN2 model which is pretrained on FFHQ [17] high-
quality face images with resolution 256 × 256. We set the learning
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Figure 4: Comparisonwith baselines. Supervised shadow removalmethods ST-CGAN, DAD andDHAN fail at shadow detection
or shadow pixel relit, or both. Our unsupervised method can achieve comparable visual performance with state-of-the-art
supervised portrait shadow removal method PSM [36].

Input Our model, No GP Our model, JO Our model Ground truth

Figure 5: Controlled Experiments Results. Optimizing our framework without pretrained generative priors (No GP), fails
at producing meaningful results. Jointly optimizing (JO) our framework will lose important perceptual facial details. Our
progressive optimization strategy can effectively leverage the pretrained generative priors thus produce high-quality shadow-
free portrait image.

rate to 0.01, 0.001 and 0.01 to project shadow images into Style-
GAN2 latent space, optimize MaskNet, and optimize color matrix
respectively.

4.2 Baselines and controlled experiments
Baselines: Since our method is the first unsupervised portrait
shadow removal framework, we can only compare our method
with a set of state-of-the-art supervised shadow removal meth-
ods ST-CGAN [30], DAD [38], and DHAN [5] and portrait shadow
removal methods PSM [36] to prove our effectiveness. Our quantita-
tive and qualitative results show that our method achieves superior
performance than a set of general shadow removal methods and

Table 1: Quantitative evaluation of our model and baselines
on portrait shadow removal.

Methods SSIM ↑ LPIPS ↓

Supervised
methods

ST-CGAN [30] 0.512 0.3031
DAD [38] 0.603 0.3225
DHAN [5] 0.629 0.1607
PSM [36] 0.859 0.0874

Unsupervised
methods

DGP [24] N/A N/A
Ours (No GP) 0.707 0.3270
Ours (JO) 0.811 0.1288
Ours 0.820 0.1162
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Figure 6: More Results. The bottom row shows the learned shadow mask.

comparable results with the state-of-the-art portrait shadow re-
moval approach.

Controlled experiments:We also conduct several controlled
experiments to evaluate the effectiveness of our proposed optimiza-
tion strategies in Figure 5.

(1) Joint optimization (JO): Instead of optimizing different
terms alternatively, we jointly optimize the shadow-free image,
color matrix and shadow mask.

(2) No generative priors (NO GP): We conduct another ex-
periment without pretrained StyleGAN2 weights. We keep the
same network architecture but randomly initialize the StyleGAN2
weights.

4.3 Quantitative results
We use SSIM and LPIPS [35] to quantitatively evaluate our method,
since these two metrics mostly reflect perceptual qualities. The
results are shown in Table 1. Compared with a series of supervised
learning-based method [5, 30, 38], our unsupervised method can
achieve superior results in terms of all these evaluationmetrics. This
is because our method leverages rich generative facial priors which

serve as important guidance to recover the underlying shadow-free
portraits. Moreover, the results reflect that the supervised baseline
methods own poor generalization ability to other domains such
as portraits. Our method, however, is free of generalization issues
thanks to its unsupervised nature. Compared with state-of-the-art
supervised portrait shadow removal method [36], our method can
achieve comparable performance. Moreover, as shown in Section 3.4
and Figure 7, our framework can also be used as other portrait
images decomposition tasks such as tattoo removal and watermark
removal, which cannot be achieved by [36].

4.4 Qualitative results
We also conduct qualitative comparisons between our method and
baselines, as illustrated in Figure 4. ST-CGAN [30] and DAD [38]
both produce severe artifacts on real-world shadow portraits. Al-
though the shadowed regions can be lightened up, they suffer from
unnatural color distortion problems. Besides, the original well-lit
face regions also contain distorted color patches. The results in-
dicate that [30, 38] can neither accurately detect shadow regions
nor relit shadowed pixels. The recovered shadow-free portrait of
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Tattoo removal Tattoo removal Watermark removal Watermark removal

Figure 7: Our facial tattoo and watermark removal results. Our method can recover high-quality clean portrait without any
training data. The bottom row shows our learned blending masks.

DHAN [5] differs a lot from ground-truth portraits, especially at
no-shadow regions. The results indicate that their method performs
well at shadow detection but poor at shadow removal. PSM [36] is a
state-of-the-art supervised portrait shadow removal method that is
trained on the same dataset as ours. Our method is free of any exter-
nal training data with the aid of generative priors. Our method can
achieve comparable visual results with PSM [36] but own greater
application scenarios (e.g., tattoo or watermark removal) than any
existing supervised shadow removal methods.

4.5 Limitations
While our method can can achieve comparable performance with
state-of-the-art supervised methods, we do observe some unpleas-
ing artifacts. For example, when the portrait image contains fine-
grained details such as wrinkles and bushy beards (see the first case
in Fig. 7), these details may be smoothed in the output image. This
is due to the imperfect reconstruction results of GAN inversion,
which is also an active research area. Besides, our method may
not work well when the portrait accessories or clothing are not

in the training set of StyleGAN2. Thus, more powerful expression
ability and GAN inversion techniques of StyleGAN2 can be further
explored to improve our face restoration quality.

5 CONCLUSION
We proposed the first unsupervised method for portrait shadow re-
moval which needs only one input shadow portrait image. We have
shown that the generative priors can be used in this unsupervised
layer decomposition setting to handle unknown degradation pro-
cesses which cannot be accomplished by existing GAN-inversion
methods. Meanwhile, we designed progressive optimization tech-
niques to guide the image decomposition and reconstruction pro-
cess. Then, we achieved comparable performance with existing
state-of-the-art supervised-based shadow removal methods, demon-
strating the effectiveness of our unsupervised method. Finally, we
have shown two extension applications (e.g., portrait tattoo re-
moval and watermark removal) of our method to demonstrate that
our method can serve as a unified framework for portrait image
decomposition tasks.
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