

A Complete End-To-End Open Source Toolchain
for the Versatile Video Coding (VVC) Standard

Adam Wieckowski*, Christian Lehmann*, Benjamin Bross*, Detlev Marpe*,
Thibaud Biatek+, Mickael Raulet+, Jean Le Feuvre$

*Video Communication and Applications Department, Fraunhofer HHI, Berlin, Germany
+ATEME, Vélizy-Villacoublay, France

$LTCI, Telecom Paris, Institut Polytechnique de Paris, France
{firstname.lastname}@hhi.fraunhofer.de, {t.biatek,m.raulet}@ateme.com, jean.lefeuvre@telecom-paris.fr

ABSTRACT
Versatile Video Coding (VVC) is the most recent international
video coding standard jointly developed by ITU-T and ISO/IEC,
which has been finalized in July 2020. VVC allows for significant
bit-rate reductions around 50% for the same subjective video
quality compared to its predecessor, High Efficiency Video Coding
(HEVC). One year after finalization, VVC support in devices and
chipsets is still under development, which is aligned with the
typical development cycles of new video coding standards. This
paper presents open-source software packages that allow building
a complete VVC end-to-end toolchain already one year after its
finalization. This includes the Fraunhofer HHI VVenC library for
fast and efficient VVC encoding as well as HHI's VVdeC library for
live decoding. An experimental integration of VVC in the GPAC
software tools and FFmpeg media framework allows packaging
VVC bitstreams, e.g. encoded with VVenC, in MP4 file format and
using DASH for content creation and streaming. The integration
of VVdeC allows playback on the receiver. Given these packages,
step-by-step tutorials are provided for two possible application
scenarios: VVC file encoding plus playback and adaptive
streaming with DASH.

CCS CONCEPTS
• Computing methodologies ~ Computer graphics ~ Image
compression • Software and its engineering ~ Software creation
and management ~ Collaboration in software development ~ Open
source model

KEYWORDS
DASH; FFmpeg; GPAC; mp4; Open Source; Video Streaming;
Versatile Video Coding (VVC); VVdeC; VVenC; HLS

ACM Reference format:
Adam Wieckowski, Christian Lehmann, Benjamin Bross, Detlev Marpe,
Thibaud Biatek, Mickael Raulet, Jean Le Feuvre. 2021. A Complete End-To-
End Open Source Toolchain for the Versatile Video Coding (VVC) Standard.

This work is licensed under a Creative Commons Attribution International 4.0 License.

MM '21, October 20–24, 2021, Virtual Event, China.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8651-7/21/10.
https://doi.org/10.1145/3474085.3478320

In Proceedings of 29th ACM International Conference on Multimedia
(MM’21), October 20—24, 2021, Virtual Event, China. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3474085.3478320

1 Introduction
In July 2020, the Versatile Video Coding (VVC) standard has been
finalized by the Joint Video Experts Team (JVET) of ITU-T VCEG
and ISO/IEC MPEG [1, 2]. VVC was designed with two main
objectives: significant bit-rate reduction over its predecessor High
Efficiency Video Coding (HEVC) for the same perceived video
quality and versatility to facilitate coding and transport for a wide
range of applications and content types. This ranges from adaptive
streaming of screen content to 360-degree video for virtual reality.
The coding efficiency improvement of VVC over HEVC has been
verified by independent subjective testing with naive viewers
showing over 40% bit-rate reduction for High-Definition (HD) and
Ultra-HD (UHD) video [3, 4] as well as over 50% bit-rate reduction
for 360-degree video [4].

For standard development and verification, the VVC test model
(VTM) reference software has been used. It is well suited to
evaluate the compression potential of VVC but not optimized for
runtime and lacks real-world features on the encoder side such as
rate control, subjective optimizations, parallelization as well
different efficiency / runtime trade-offs. Furthermore, VVC
specifies the bitstream of coded video as well as the decoding
processes. To use a video coding standard in real world application
scenarios, its integration into transport systems layer such as
MPEG-2 transport stream (MPEG2-TS) [5], ISO base media file
format (ISOBMFF a.k.a. MP4 file format) [6] tracks is key. In
addition, VVC encapsulated in MP4 file format can be used in
dynamic adaptive streaming over HTTP (DASH) [7].

Real-world codec implementations in devices together with
mp4 file format support for file-based playback and streaming
typically emerge 2–3 years after the finalization of a standard.
However, already today open-source software allows to use VVC
with Fraunhofer HHI's encoder VVenC and decoder VVdeC. VVC
bitstreams can be encapsulated in mp4 file format and packetized
into DASH segments using GPAC while extraction and playback is
feasible with VVdeC integrated into FFmpeg and GPAC. This
paper describes these software packages in Section 2. Section 3
demonstrates how to use them for file playback and DASH

Session 26: Open Source Competition MM ’21, October 20–24, 2021, Virtual Event, China

3795

https://doi.org/10.1145/3474085.3478320
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3474085.3478320&domain=pdf&date_stamp=2021-10-17

streaming applications. Finally, Section 4 concludes this paper and
gives an outlook of future work.

2 VVC Toolchain Software Packages

2.1 VVenC
The Fraunhofer Versatile Video Encoder, VVenC [8], is an
optimized software encoder implementation of the VVC standard.
Its source code is freely available on GitHub under a 3-clause BSD
copyright license for both commercial and non-commercial
use [9]. Version 1.0.0 has been released in May 2021, for which the
results are presented.

VVenC has initially been derived from the VTM reference
software. Its main purpose is to maintain the high coding
efficiency of VTM while running significantly faster and providing
real-world application features. While VVenC itself is
implemented in C++, the software package includes a C library
interface as well as two sample applications that can be used as
standalone command line encoders – a simple application
designed for ease-of-use as well as an expert app resembling the
VTM interface. VTM as well as VVenC convert a raw YUV video
input into a VVC compliant bitstream.

2.1.1. Main features. Compared to the VTM software the
encoder is much more user friendly. This includes five pre-
configured presets allowing different encoding speed to
compression efficiency trade-offs: faster, fast, medium, slow and
slower. While the slower preset delivers full VTM compression
performance at less than half of its runtime, other presets provide
faster and much faster encoding at the cost of bitrate increase.
Additional speedup can be obtained using multi-threading with
minimal compression efficiency degradation. A combination of
coding tree unit line and frame parallel processing provides very
good thread number to runtime reduction scaling [10]. Single-pass

and two-pass frame-based rate control modes have been
implemented, allowing very efficient encoding at fixed bit rates.
Both have also been optimized for multi-threaded operation.
VVenC further incorporates subjective optimizations using a
weighted extended PSNR distortion metric (XPSNR). It overcomes
the limited correlation of commonly used sum-of-squares- (SSD)
or sum-of-absolutes (SAD) distortion calculations with perceived
distortions using a simplified model of the human visual system to
calculate weights. XPSNR can be calculated block-wise and
therefore incorporated into block-level rate-distortion decisions. It
is implemented by the means of local quantization parameter
adaptations (QPA) and designed to improve the rate control
accuracy and performance as well [11]. As of the current version,
VVenC is compliant to the Main 10 profile (4:2:0 chroma
subsampling and up to 10 bit per sample) and optimized for
standard dynamic range (SDR) as well as for high dynamic
range (HDR) content with wide color gamut. Currently, only one
slice and tile per picture is supported, without sub-pictures.
VVenC already anticipates versatile application scenarios by
incorporating all Main 10 profile screen content coding tools
and providing a constrained encoding mode optimized for use in
open-GOP adaptive streaming with resolution change [12].

2.1.2. Results. The multi-threaded runtime and PSNR-based
Bjøntegard Delta (BD) rate compression performance (negative
numbers mean bit-rate reduction) for VVenC 1.0.0 relative to the
HEVC reference software (HM-16.22) is shown in Figure 1. The
results are based on encoding of the HD and UHD sequences from
the JVET common test conditions [13] test-set under JVET random
access conditions. Additionally, the figure contains results for
VTM 12.0 as well as two alternative freely available encoders, for
HEVC (x265 3.4) and AV1 (aomenc 3.0). The results show that
VVenC can achieve VTM coding efficiency at much lower
runtimes when run multi-threaded. Compared to aomenc, it
provides a steady 20% bit-rate reduction at similar runtimes. The
three faster presets of VVenC can match the three slowest x265
presets regarding encoding time with very high bit-rate savings of
around 50%. However, there are no VVenC presets available yet to
match the encoding speed in faster x265 presets.

In recent JVET VVC verification tests, initial versions of VVenC
were subjectively tested together with VTM and HM for UHD
(VVenC 0.1) and HD (VVenC 0.3). These tests, which have been
conducted in a controlled laboratory environment with naive
viewers, concluded that VVenC in medium preset with subjective
optimizations visually outperformed VTM.

2.2 VVdeC
The Fraunhofer Versatile Video Decoder, VVdeC, is an optimized
VVC software decoder implementation, freely available on GitHub
under a 3-clause BSD copyright license [14]. Analogue to VVenC,
the license covers both commercial and non-commercial use. The
latest release, v1.1.2, was published in July 2021. It is compliant
with the VVC Main 10 profile and correctly decodes the current
VVC conformance testing set [15].

The decoder software has been derived from VTM as well, with
subsequent optimizations and parallelization. Being based on
VTM, it has performance limitations beyond the complexity of the

Figure 1: Runtime and BD rate of VVenC, x265, aomenc
and VTM compared to HM. All encoders but VTM and HM

are run multithreaded with 8 threads.

Session 26: Open Source Competition MM ’21, October 20–24, 2021, Virtual Event, China

3796

VVC standard itself. The decoder allows playback of HD video at
60 frames per second (fps) on most modern computers using only
2 or 3 threads, and 60 fps UHD playback on more powerful
modern workstations with sufficient processing cores to fully
exploit the multi-threading potential [16].

The VVdeC package contains a simple and easy-to-use C
library interface and a standalone decoder application capable of
decoding elementary VVC bitstreams into raw YUV video data.
The framework integrations described in the following sections
allow actual video playback.

2.3 FFmpeg VVC integration with VVdeC
FFmpeg is a well-known multimedia framework which provides a
set of libraries to record, convert and stream any type of audio and
video data. In order to support VVC in FFmpeg, a parser and a
Code Bitstreams Type (CBT) were implemented in the
development branch (currently under review). This first step
enables support for VVC elementary streams but does not provide
a system level support with standard delivery mechanisms such as
MPEG2-TS or DASH. To further extend the VVC capabilities in
FFmpeg, the support for VVdeC and MPEG2-TS as well as
ISOBMFF/DASH binds have been implemented by ATEME in a
public FFmpeg fork [17]. The support for VVC video stream type
has been added to MPEG2-TS demuxer in the libavformat. The
ISOBMFF demuxer has been upgraded to support VVC tag ‘vvc1’
and ‘vvcC’ MOV table entry. Finally, the VVC MP4-to-AnnexB
filter has been implemented in libavcodec for proper demuxing
and decoding.

The provided implementation enables FFmpeg to natively
support VVC services when delivered in MPEG2-TS or DASH. In
addition, it provides VVC support through libavcodec when
integrated in other projects, such as GPAC.

Within this fork, ffplay can be used to playback DASH
manifest, or UDP MPEG2-TS streams, by using:

ffplay -i URL/manifest.mpd
ffplay -f mpegts -i udp://host:port

2.4 VVC support in GPAC
The GPAC multimedia framework provides a set of tools to
package, stream and playback multimedia content. It is well-
known for its MP4Box tool, an mp4 file packager and HTTP
streaming (HLS) segmenter. GPAC also enables end users to build
custom multimedia processing pipelines through its filter-based
architecture [18].

The systems aspect of VVC have been implemented in the
master branch of GPAC and are part of the nightly builds of the
project. This covers the most common application use cases:
 MPEG-2 broadcasting: multiplexing and demultiplexing an

MPEG2-TS program with VVC content
 MP4 file packaging and dumping of VVC bitstreams
 MPEG-DASH and HLS content packaging

GPAC supports all codecs integrated in FFmpeg’s libavcodec
library, including VVdeC as included in [17]. This is detected at
configure time and currently requires a custom build of GPAC,
VVdeC and libavcodec, as previously explained. The GPAC player

embeds the customized libavcodec which itself embeds the VVdeC
core decoding library.

Until integration of VVenC is finalized in libavcodec, GPAC
can consume the VVenC output through files and pipes.

3 Application scenarios
In this section, we give some examples of using VVC in common
case scenarios. The described end-to-end chain addresses both
MPEG2-TS and IP based delivery mechanisms.

When used in a traditional digital video broadcast
terrestrial/satellite environment (DVB-T2/S2), VVC bitstreams
encapsulated in MPEG2-TS can be efficiently delivered and played
with the proposed framework. The FFmpeg player has been used
for that purpose during an in-field VVC broadcasting trial [19]
showing interoperability with legacy delivery infrastructure.
Recent full-IP broadcasting technologies such as ATSC-3.0 or the
currently under-standardization TV3.0 in Brazil have also been
addressed. The VVC encapsulation and carriage with ISOBMFF
opens the door for such modern applications where the proposed
solution can be used in an end-to-end manner. VVenC can be used
to prepare and encode the video sequence (Figure 2), while GPAC
can package and multicast the services using DASH / ROUTE, in
an ATSC-3.0 fashion. At the receiver side, the GPAC client
integrated with libavcodec / VVdeC can be used to deliver TV
services to the viewer (Figure 2). The proposed solution is
currently part of a response to the SBTVD TV3.0 [20] call for
technology, utilizing presented components for playback.

In the following subsections two encoding and distribution
scenarios using VVC are demonstrated step-by-step.

3.1 VVC encoding and packaging for playback
VVenC requires a YUV input file, either existing or decoded from
another video file. Starting from the raw source video file, the

Raw YUV Video
VVC Elementary

Stream

 ISOMBBF incl.
VVC (.mp4)

 DASH manifest
 Live stream

Encoded audio
track

VVenC GPAC

a) Encoding workflow and used components.

 ISOMBBF incl.
VVC (.mp4)

 DASH manifest
 Live stream

Playback

ffplay MP4Client (GPAC)

libavcodec (ffmpeg)

VVdeC

b) Decoding workflow and components.

Figure 2: Components used in en- and decoding.

Session 26: Open Source Competition MM ’21, October 20–24, 2021, Virtual Event, China

3797

following steps are required to create a packaged VVC encode of
the raw YUV input input.yuv:

 (Optional) decode an existing video to 8-bit YUV input.yuv

gpac –i input.mp4 –o input.yuv

 Encode the raw YUV data to VVC elementary stream es.vvc

vvencapp --preset medium –i input.yuv –s
1920x1080 [OPTS] –o es.vvc

 Possible packaging options with GPAC
o Package the ES as MP4 to VVC_demo.mp4

MP4Box -add es.vvc -new VVC_demo.mp4

o Mux raw VVC and AAC streams to MP4

MP4Box –add es.vvc -add audio.aac -new
VVC_demo.mp4

o Create an MPEG-2 TS live-stream at 10mbps (VVenC
bitstreams might exceed some rate constraints)

gpac -i es.vvc -i audio.aac -o udp://127.
0.0.1:1234/:ext=ts:rate=10m:realtime

In the presented examples the VVC elementary stream (ES) file
extension does not matter, because GPAC including MP4Box
always probe the input data.

The following commands enable MP4 playback and high-level
inspection of a VVC bitstream:

MP4Client -gui URL
gpac -i URL inspect:deep:anayze=bs

3.2 VVC encoding and packaging for DASH
HTTP streaming works by segmenting the input media into short
segments, each starting with an IDR frame. Some configurations
will expect a roughly constant segment duration, which may
require enforcing fixed frame structure. VVenC can be forced to
create appropriate encoding for DASH using the
parameters --refreshtype idr.

GPAC accepts both raw bitstreams or packaged files, such as
MP4, as input to its DASH preparation process. The creation of
DASH sessions in different profiles can be acchieved using:
 Using the “onDemand” profile:

MP4Box -dash 2000 -profile onDemand es.vvc -out
dash/vod.mpd

 Using the “live” profile:
MP4Box -dash 2000 -profile live es.vvc -out
dash/vod.mpd:dual

 Using segment timeline for variable duration segments:
MP4Box -dash 2000 -profile live es.vvc -out
dash/vod.mpd:stl

The following illustrates creating live DASH and HLS sessions
made available through GPAC HTTP server:

gpac flist:srcs=VVC_AAC.mp4:flop=-1 reframer:rt
=on @ -o http://127.0.0.1:8080/live.mpd:gpac:
dual:segdur=2:cdur=0.1:asto=1.9:llhls=br:dmode=d
ynamic:rdirs=dash_live
More information regarding the complex subject of HTTP

Streaming is available on GPAC’s wiki, including HowTos.

4 Conclusion and Future Work
This paper teaches how to use publicly available open-source
software to set up a complete VVC toolchain for file playback and
adaptive streaming application scenarios.

Beyond these more traditional use cases, future work will focus
on novel applications like adaptive streaming utilizing resolution
change or high-resolution streaming with tiles for VR applications.

REFERENCES
[1] ITU-T and ISO/IEC JTC 1. 2020. Versatile Video Coding, Rec. ITU-T H.266 and

ISO/IEC 23090-3 (VVC).
[2] B. Bross, J. Chen, J.-R. Ohm, G. J. Sullivan and Y.-K. Wang. 2021. Developments

in International Video Coding Standardization After AVC, with an Overview of
Versatile Video Coding (VVC). Proc. of the IEEE (Jan. 2021), 31 pages. DOI:
https://doi.org/10.1109/JPROC.2020.3043399

[3] V. Baroncini and M. Wien. 2020. VVC verification test report for UHD SDR video
content. Doc. JVET-T2020 of ITU-T/ISO/IEC Joint Video Experts Team (JVET),
20th JVET meeting: October 2020.

[4] V. Baroncini and M. Wien. 2021. Dry run subjective assessment of SDR HD and 360
video verification tests. Doc. JVET-U0119 of ITU-T/ISO/IEC Joint Video Experts
Team (JVET), 21st JVET meeting: January 2021.

[5] K. Grüneberg, Y. Lim, Y. Syed, and P. Wu (eds.). 2020. Text of ISO/IEC 13818-
1:2019 DAM 2 Carriage of VVC in MPEG-2 TS. ISO/IEC JTC 1 SC 29 WG 11 output
document N19436.

[6] K. Grüneberg, M. M. Hannuksela, J. M. Le Fevre, and Y.-K. Wang (eds.). 2020.
Potential improvements on Carriage of VVC and EVC in ISOBMFF, ISO/IEC JTC
1/SC 29 WG 03 output document N0035.

[7] ISO/IEC JTC 1. 2012. Information technology — Dynamic adaptive streaming over
HTTP (DASH) — Part 1: Media presentation description and segment formats,
ISO/IEC 23009-1.

[8] A. Wieckowski, J. Brandenburg, T Hinz, C. Bartnik, V. George, G. Hege, C.
Helmrich, A. Henkel, C. Lehmann, C. Stoffers, I .Zupancic, B. Bross and D.
Marpe. 2021. VVenC: An Open And Optimized VVC Encoder Implementation. In
2021 IEEE International Conference on Multimedia & Expo Workshops (ICMEW),
July 5–9, 2021, Shenzhen, China. 1-2. DOI:
https://doi.org/10.1109/ICMEW53276.2021.9455944

[9] Fraunhofer HHI VVenC software repository. Retrieved from
https://github.com/fraunhoferhhi/vvenc.

[10] VVenC Fraunhofer Versatile Video Encoder v1.0.0. Retrieved from
https://github.com/fraunhoferhhi/vvenc/wiki/data/vvenc-v1.0.0-v1.pdf.

[11] C. R. Helmrich, I. Zupancic, J. Brandenburg, V. George, A. Wieckowski and B.
Bross. 2021. Visually Optimized Two-Pass Rate Control for Video Coding Using
the Low-Complexity XPSNR Model. Submitted to VCIP’21.

[12] R. Skupin, C. Bartnik, A. Wieckowski, Y. Sanchez, B. Bross, C. Hellge, and T.
Schierl. 2021. Open GOP Resolution Switching in HTTP Adaptive Streaming
with VVC. In 2021 Picture Coding Symposium (PCS), June 29 – July 2, 2021,
Bristol, UK. DOI: https://doi.org/10.1109/PCS50896.2021.9477501

[13] F. Bossen, J. Boyce, X. Li, V. Seregin, and K. Sühring. 2020. JVET common test
conditions and software reference configurations for SDR video. Doc. JVET-T2010 of
ITU-T/ISO/IEC Joint Video Experts Team (JVET), 20th JVET meeting: October
2020.

[14] Fraunhofer HHI VVdeC software repository. Retrieved from
https://github.com/fraunhoferhhi/vvdec.

[15] J. Boyce, E. Alshina, F. Bossen, K. Kawamura, I. Moccagatta and W. Wan. 2021.
Conformance testing for versatile video coding (Draft 6). Doc. JVET-U2008 of ITU-
T/ISO/IEC Joint Video Experts Team (JVET), 21st JVET meeting: January 2021.

[16] A. Wieckowski, G. Hege, C. Bartnik, C. Lehmann, C. Stoffers, B. Bros, and D.
Marpe. 2020. Towards a Live Software Decoder Implementation for the
Upcoming Versatile Video Coding (VVC) Codec. In 2020 IEEE International
Conference on Image Processing (ICIP), October, 2020, Abu Dhabi, UAE 3124–3128.
DOI: https://doi.org/10.1109/ICIP40778.2020.9191199

[17] FFmpeg fork with full VVdeC integration. Retrieved from
https://github.com/tbiat/FFmpeg/releases/tag/vvc.

[18] Jean Le Feuvre. 2020. GPAC filters. In Proceedings of the 11th ACM Multimedia
Systems Conference. ACM, New York, NY, USA, 249–254. DOI:
https://doi.org/10.1145/3339825.3394929

[19] T. Biatek, M. Abdoli, T. Guionnet, M. Raulet, T. Wrede, J. Outters, T.
Christophory, H. Bauzée-Luyssen, S. Latapie, J.-B. Kempf, P.-L. Cabarat, and W.
Hamidouche. 2020. End-to-End UHD Satellite Broadcast Transmission using VVC.
MPEG document m54377.

[20] TV3.0 Project. Retrieved from https://forumsbtvd.org.br/tv3_0/

Session 26: Open Source Competition MM ’21, October 20–24, 2021, Virtual Event, China

3798

