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ABSTRACT

Video advertisement content structuring aims to segment a given
video advertisement and label each segment on various dimen-
sions, such as presentation form, scene, and style. Different from
real-life videos, video advertisements contain sufficient and useful
multi-modal content like caption and speech, which provides cru-
cial video semantics and would enhance the structuring process. In
this paper, we propose a multi-modal encoder to learn multi-modal
representation from video advertisements by interacting between
video-audio and text. Based on multi-modal representation, we
then apply Boundary-Matching Network to generate temporal pro-
posals. To make the proposals more accurate, we refine generated
proposals by scene-guided alignment and re-ranking. Finally, we
incorporate proposal located embeddings into the introduced multi-
modal encoder to capture temporal relationships between local
features of each proposal and global features of the whole video for
classification. Experimental results show that our method achieves
significantly improvement compared with several baselines and
Rank 1 on the task of Multi-modal Ads Video Understanding in
ACM Multimedia 2021 Grand Challenge. Ablation study further
shows that leveraging multi-modal content like caption and speech
in video advertisements significantly improve the performance.
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1 INTRODUCTION

As the number of video advertisements in Internet grows rapidly,
video ads content analysis methods have become more crucial
and attracted more attention from both academia and industry.
Video ads content structuring is an important task in video ads
content analysis area, which aims to segment a given video ads
in time and label each segment on various dimensions, such as
presentation form, scene, and style. As shown in Figure 1, video
advertisements are different from real-life videos in temporal action
detection datasets like ActivityNet [2] and THUMOS [6]. They pro-
vide sufficient multi-modal content like caption and speech for the
purpose of promoting and popularizing their products. Therefore,
multi-modal contents like caption and speech provide crucial video
semantic and are important for the structuring process [4].
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Figure 1: (a) The left part is a frame of video from Activi-
tyNet dataset. (b) The right part is a frame of video adver-
tisement from ACM Multimedia 2021 Grand Challenge.

In this paper, we propose a multi-modal encoder to learn multi-
modal representation of video ads. The encoder consists of three
components, including a video-audio encoder, a text encoder and a
cross-modality encoder. The video-audio encoder contains several
Inception modules [13] implemented by 1D convlutional layers,
which takes video and audio features as the input and outputs con-
text representation of video-audio. The text encoder is a powerful
pre-trained model BERT [3]. A Transformer based cross-modality
encoder is used for cross-modality interaction between the text and
the video-audio to obtain multi-modal representation, which will
be used for video advertisement content structuring.

Inspired by state-of-the-art methods [7-9] in temporal action
detection area, we decouple the task of video advertisement con-
tent structuring into two subtasks, i.e Temporal Segmentation and
Proposal Tagging. In the temporal segmentation phrase, we ap-
ply Boundary-Matching Network (BMN) [8] to generate temporal
proposals using multi-modal representation. We then propose to
refine them by scene-guided alignment and re-ranking to make
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the generated proposals more accurate. In the proposal tagging
phrase, we take a whole video as the input and incorporate pro-
posal located embeddings into the multi-modal encoder to capture
temporal relationships between local features of each proposal and
global features of the whole video. Finally, the mean pooling is
adopted on the top of multi-modal representation for tagging.

We evaluate the proposed method on the dataset of Multi-modal
Ads Video Understanding in ACM Multimedia 2021 Grand Chal-
lenge. Experiments show that our method achieves state-of-the-art
performance and Rank 1 on the leaderboard. Further analysis shows
that multi-modal information and newly introduced proposal lo-
cated embeddings are helpful for video ads content structuring.

2 APPROACH

2.1 Overview

Figure 2 gives an overview of our approach. As shown in the Fig-
ure, we decouple the task of video ads content strutting into two
subtasks, i.e. segment and tagging. We first propose a multi-modal
encoder as the backbone of two subtasks that takes text with video-
audio feature as the input to obtain multi-modal representation of
video advertisement. In the segment phase, we adopt Boundary-
Matching Network (BMN) [8] to generate proposals based on the
multi-modal representation. These generated proposals are further
refined by scene-guided alignment [1] and re-ranking, which will
make proposals more accurate. In the tagging phase, we propose a
proposal located embeddings (PLE) to capture temporal relation-
ships between local features of each proposal and global features of
the whole video for proposal tagging. In the next, we will introduce
how to encode multi-modal content including video-audio and text
in Section 2.2. The details about our solution on temporal segmen-
tation and proposal tagging subtasks will be introduced in Sections
2.3 and Section 2.4, respectively.

2.2 Multi-modal Encoder

Text Encoder. Captions in video advertisements are of signifi-
cant for video ads content structuring. Taking Figure 1 as an exam-
ple, the caption “Hurry up and click on the bottom of the video to
sign up for your child" could help the model infer this frame is a
promotion page. To leverage text information in video ads, we first
utilize Optical Character Recognition (OCR) technique to extract
caption as the text input, denoted as X = {xo, x1, .., xp—1}. Since
pre-trained models [3, 12] have led to strong improvement on nu-
merous natural language processing (NLP) tasks, we use a powerful
pre-trained model BERT [3] as our text encoder to encode the text
input and obtain hidden states of the text Hx = {hx,, fix;, ..., hx,_, }

Video-Audio Encoder. Inspired by [10], we combine video and
audio features to obtain more discriminate representations. Given
an input video, we first split it into video clips with length 0.5 second.
For each video clip, we follow [15] to use S3D model pre-trained on
HowTo100M dataset[11] to extract its visual feature. For the given
audio input, we extract its feature by VGGish[5]. We then re-sample
the video and audio feature sequence into the same temporal size m
using bi-linear interpolation. We denote the re-sampled video and
audio features as V = {vg, v1, ...,0m—1} and A = {ag, a1, ..., am-1},
respectively. Since different video segment are variance in length,

we follow [13] to adopt Inception module to capture the informa-
tion from different temporal sizes. Specifically, We concatenate V'
and A into Y = {[vo; ao], ..., [Um-1; am—1]} along the channel di-
mension to form the input video-audio features, then feed it into
two Inception modules and produce Hy = {hy,, hy,, ..., hy,,_, }. We
follow [13] to design the Inception module, while only replacing
the 2D convolutional layers into 1D ones.

Cross-Modality Encoder. The text encoder and video-audio
encoder mainly focus on a part of modality. To fully leverage the
text and video-audio, we adopt a 6-layer Transformer [14] as our
cross-modality encoder for cross-modality interaction. The input
of cross-modality encoder is constructed by summing type em-
beddings and the concatenation [Hy; Hy] of the text and video-
audio representation. Finally, we obtain multi-modal representa-
tion H' = {h;o, h)’('H, h{,o, h;mi] }. We denote the multi-modal
representation of the whole video ads as H = {h;o, ;1’ ey h;m_l H
which will be used for segment and tagging phases.

2.3 Temporal Segmentation

Boundary-Matching Network. In the task of temporal action
detection, Lin et al. [8] propose the Boundary-Matching Network
(BMN) to generate high-quality temporal proposals. The network
consists of two components, including Temporal Evaluation Module
(TEM) and Proposal Evaluation Module (PEM). TEM aims to predict
precise boundaries for all temporal locations in untrimmed video
and PEM aims to provide confidence for each proposal.

Different from datasets like ActivityNet [2] and THUMOS [6],
there are no backgrounds in video ads content structuring. There-
fore, TEM only predicts boundary probability of two segments
for all temporal locations, shown in the top left of segment part
in Figure 2. We use 3-layer CNN following by a 6-layer Trans-
former as the TEM and take multi-modal representation H as
the input to calculate boundary probability of each video clip
pTem — {pOTem, ..,p}{f_’;’}. We use the cross entropy (CE) loss to
train TEM, where y; € {0, 1} is the boundary label for i-th video
clip.

lOSSTEM = -
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For proposal evaluation module shown in the top right of seg-
ment part in Figure 2, we use the same network architecture and
loss function losspgps as Lin et al. [8] and provide a confidence pl.a.)f
for each proposal prop;; from i-th to j-th video clip. The final loss

function of Boundary-Matching Network is empirically as:

lossgpn = 5 - lossTepm + losspem (2)

In the inference phase of BMN, for each proposal prop;;, we fuse
its boundary probabilities and confidence scores by multiplication
to generate the final confidence score s;j:

P = piepy pl - min(pin P 1t )
where pr = 1 — pg. Different from the final confidence score of
Lin et al. [8], we add the last term to indicate the approximate
probability of no existing boundary in the middle of the proposal
prop;j. The main reason for using approximate probability is that
true probability will over-punish proposals that too long.
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Figure 2: Overview of our proposed framework. We decouple the task of video ads content structuring into two subtasks. The
first subtask is segment that generates proposals, which is shown in the left part. The second subtask is tagging that classifies

each proposal, which is shown in the right part.

Finally, we use Non-Maximum Suppression (NMS) algorithm to
generate non-overlap proposal by the confidence score s;;.

Scene-Guided Alignment. The duration of each video clip we
use for temporal segmentation is only 0.5 second, thus the temporal
boundaries predicted by BMN are rough. To make the predicted
boundaries more precise, we propose to use the scene-changed
frames to fine-adjust the predicted boundaries. We call this method
scene-guided alignment (SGA). We follow [1] to extract all frames
with scene probability greater than 0.1 for each given video. For each
predicted boundary, if the temporal error between it and its nearest
scene frame is less than 0.5 second, we will move the boundary to
the position of its nearest scene frame.

2.4 Proposal Tagging

Proposal Located Embedding. To incorporate proposal tempo-
ral information for proposal tagging, we introduce proposal located
embedding before the Inception modules. Specially, given a pro-
posal prop;;, the input of Inception module changes from Y to
Y? = {[vo; ag] +to, ..., [Um—1; @m—-1] + tm—1}, where t;. is a trainable
randomly initialized embedding to indicate proposal location if
i < k < j otherwise t; is another trainable randomly initialized
embedding to indicate non-proposal location. After obtaining multi-
modal representation of video-audio from multi-modal encoder, we
get the final vector v;; by mean pooling over the location of the
proposal prop;;. Finally, we leverage the final vector for proposal
tagging in a multi-task manner.

Classification. The proposal tagging task can be formulate as
a multi-label classification problem. We use a fully connected layer

with sigmoid activation for classification, and adopt binary cross
entropy as loss function. The probabilities of classification for the
proposal prop;; are denoted as pf}s.

Proposal Re-ranking. To make proposal more accurate, we
introduce a re-ranking task in the classifier. The task aims to re-
rank generated proposals, which will improve the precision of
generated proposals. Specially, we use a fully connected layers with
sigmoid activation to predict Intersection over Union (IoU) score
for each generated proposal prop;;, denote as pl?;?”.

Proposal Retrieval. For video ads content structuring task, it
would have more application value if it can be salable to some
new scenes or categories. Inspired by Yang et al. [16], we propose
to utilize multi-modal representation v;; of the proposal prop;;
to retrieve top 10 most similar segments using cosine similarity.
We denote labels and similarity score of these retrieved segments
as {9?1’911]" . g?j} and {c?j, c}j, c?j}, respectively. The retrieved
result is calculated by weighted summing retrieved labels:

9k k
D=0 ij9ij

ret _
Pij =59 & 4)
k=0 “ij
In the inference phase, the probability distribution pf]‘.” of cate-
gories of the proposal prop;; is calculated as:
* i ro,
pz?jat = Pij 'P;;'m P‘fj ? ®)

where p;.“j can be pf;s , pir;t , or the combination of them.



3 EXPERIMENTS
3.1 Experiments Setup

Dataset. We evaluate our proposed approach on the dataset of
Multi-modal Ads Video Understanding in ACM Multimedia 2021
Grand Challenge. The dataset consists of 5,000 videos. Each video
is split into one or several clips by annotators. Each video clip is
annotated by at least one categories. The total number of category
is 82. When performing evaluation, the task constraints that pre-
dicted proposals can not have overlap with each other. To avoid
redundancy prediction, the task also limits that a proposal only
produce 20 category labels.

Training Detail. All our experiments are conducted on one
NVIDIA Tesla V100-32G GPU. We use AdamW optimizer with 1e-4
learning rate to train all models for 10 epochs and evaluate the
model using 5-fold cross-validation.

Evaluation. The goal of temporal segmentation is to generate
high quality proposals to cover ground truth segments with high
recall and high temporal overlap. To evaluate proposal quality, we
follow Lin et al. [8] to use AUC under IoU thresholds [0.5 : 0.05 : 0.95]
as a metric. Beyond that, we also use F1-score between predicted
and ground truth boundaries as another metric to evaluate the
precision of proposals. Given a prediction of a video, if a predicted
boundary can match any ground truth boundaries within 0.5s error,
it will be consider as a true positive prediction, and otherwise will
be consider as a false positive prediction. Note that one ground
truth boundary will be only matched once. Finally, the overall
performance of generated proposals is the product of AUC and F1-
score. To evaluate the performance of proposal tagging, we follow
Caba Heilbron et al. [2] to use mAP@][0.5:0.05:0.95] as the metric.

3.2 Evaluation on Temporal Segmentation

Model | Video | Audio | Text | AUC | F1 | Overall
BMN[8] | 721 | 787 | 567
v 74.8 79.0 59.1
Ours v v 75.1 78.6 59.0
v v v 74.4 80.9 60.2

Table 1: Results on video temporal segmentation task.

We take the state-of-the-art model in temporal action detection
as our baseline, i.e. BNN [8]. The difference between our segment
model and the baseline includes: (1) We add the last term to indicate
the approximate probability of no existing boundary in the middle
of the proposal in Equation 3. (2) we leverage multi-modal content.

Table 1 show experiment results on temporal segmentation task.
We can see that our approach achieve a 3.5 gain of overall score,
which significantly outperforms the baseline. From Table 1, we find
that incorporating the audio feature improves the AUC score by 0.3
but will hurt the F1-score, which shows that audio feature may not
have much effect on temporal segmentation task. After leveraging
text information, we can see that the interaction with text bring 1.1
gain of overall score compared with the model that only leverages
video, which reveals the importance of multi-modal representation.

Model Video | Audio | Text | mAP
Inception [13] w/o PLE v 27.3
Vv 27.9

Ours v v 28.1

v v v 29.5

Table 2: Results on proposal tagging task.

3.3 Evaluation on Proposal Tagging

We report the experiment results on proposal tagging task in Table 2.
In this experiment, we take Inception [13] without proposal located
embedding (Inception w/o PLE) as a baseline, which only use
video feature and remove PLE in classification module. For fair
comparison, all settings in Table 2 use the same generated proposals
generated by best model in Table 1.

When only leveraging the same video feature in Table 2, we can
see that incorporating PLE into the Inception bring 0.6 gain of mAP
score, which demonstrates that the proposal located embedding
could help proposal tagging. After levering multi-modal content
like speech and caption, results show that our multi-modal encoder
significantly outperforms the model that only uses single-modal,
which shows the effectiveness of our multi-modal representation.

3.4 Classification-Vs. Retrieval-based Classifier

Classifier mAP
Classification-based method | 29.8
Retrieval-based method 30.3
Ensemble method 31.7

Table 3: Results of various classifiers.

In real application scenario, the category number may be up-
dated frequently. Retrieval-based method that retrieves similar ex-
amples from training dataset and infers probability distribution
of categories of the proposal may bring more application value.
In the Table 3, we show the performance of various classifiers.
The probability distribution of categories of the proposal prop;; in

classification-based method is calculated as pf}s described in Sec-
ret
ij
method is calculated by retrieving similar proposal as Equation 4.
We can find that, the retrieval-based method can achieve compa-
rable result with the classification-based method. To achieve higher
evaluation score, we ensemble the results from both classification-
based and retrieval-based methods, and find that the ensemble
model brings further improvements with 1.4% absolute gain.

tion 2.4, while the probability distribution p!¢* in retrieval-based

4 CONCLUSION

In this paper, we propose a multi-modal encoder to learn multi-
modal representation from video advertisements by interacting
between video-audio and text. Experiments show that multi-modal
representation significantly improve temporal segmentation and
proposal tagging tasks. Based on multi-modal representation, we
present an efficient framework for the task of video ads content
structuring. The framework achieves Rank 1 on the task of Multi-
modal Ads Video Understanding in ACM Multimedia 2021 Grand
Challenge. In future work, we would like to explore how to pre-train
a powerful multi-modal encoder using video ads for empowering
video ads content analysis.
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