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ABSTRACT
VideoVisualRelationDetection (VidVRD), has received significant
attention of our community over recent years. In this paper, we
apply the state-of-the-art video object tracklet detection pipeline
MEGA [7] and deepSORT [27] to generate tracklet proposals. Then
we perform VidVRD in a tracklet-based manner without any pre-
cutting operations. Specifically, we design a tracklet-based visual
Transformer. It contains a temporal-aware decoder which performs
feature interactions between the tracklets and learnable predicate
query embeddings, and finally predicts the relations. Experimental
results strongly demonstrate the superiority of our method, which
outperforms other methods by a large margin on the Video Rela-
tion Understanding (VRU) Grand Challenge in ACM Multimedia
2021. Codes are released at https://github.com/Dawn-LX/VidVRD-
tracklets.
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1 INTRODUCTION
The Video Visual Relation Detection (VidVRD) task aims to detect
visual relations between objects in videos, which are denoted by a
set of <subject, predicate, object> triplets. Compared to visual
relation detection in still images (ImgVRD) [6], VidVRD is techni-
cally more challenging: (1) The relationship between objects incor-
porates temporal informations. Some relationships (e.g., towards,
move-past) can only be detected by utilizing temporal context. (2)
Relations between two specific objects often changes overtime.
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Inspired from ImgVRD approaches, early VidVRDmodels [17, 20,
22, 25] are all segment-based approaches. Specifically, they first di-
vide the whole video intomultiple short segments. Then, they detect
all tracklets and their pairwise relationships in each short segment.
Lastly, they merge relationship triplets among adjacent segments
with association methods. Although these segment-based VidVRD
approaches achive sound performance on standard benchmarks,
this framework inherently fails to utilize the long-term temporal
context in other segments. To avoid this inherent limitation, one
of the latest VidVRD model STGCN [14] performs VidVRD in a
tracklet-basedmanner. Instead of pre-cutting the input video into
multiple segments in advance, STGCN directly detects all object
tracklets, and runs sliding windows with different scales to obtain
numerous tracklet proposals. Then, STGCN predicts the tracklet
classes and their pairwise relationships.

In this paper, we follow STGCN [14] to first detect all the object
tracklets in a video. Then we design a tracklet based visual Trans-
former to perform interactions between tracklet features and finally
detect the relations. Specifically, Our model is a Transformer-family
encoder-decoder model [26], where the inputs for the encoder
and decoder are initial tracklet features and learnable predicate
query embeddings, respectively. The encoder aims to extract con-
textual features for object tracklets, and the decoder intends to
enhance predicate queries with all tracklets. We use each predicate
query to represent a relationship instance, and it has two types
(i.e., subject/object) of links to tracklets. The final output of our
model are the enhanced predicate queries, which will be fed into a
multi-layer perceptron (MLP) for predicate classification, and the
attention matrix from the last encoder layer, which will be binarized
to obtain the links to subject/object for each predicate query.

We will describe our method in two main steps: 1) object detec-
tion and tracking (Section 2), which returns a set of object tracklet
proposals, and 2) relation detection (Section 3), which detects the
visual relations among the pre-obtained tracklet proposals.

2 OBJECT DETECTION AND TRACKING
Object tracklet detection determines the ceiling of the video visual
relation detection performance. Different from previous works, we
useMEGA [7] with ResNet-101 [9] to detect frame-level objects, and
then use deepSORT [27] to associate them into tracklet proposals.

Our detector was trained on the training and validation set of
MS-COCO[13] and the training set of VidOR [19]. For MS-COCO,
we selected the same 80 object categories as that in VidOR. For
VidOR, considering the redundancy of adjacent frames, we sample
key frames every 32 frames for each video. After all, the training
set consists around 311k images.

We run the above trained detector on each frame of the video to
obtain the frame-level object detection results, where each result
contains box coordinates, visual appearance features, and the object
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Figure 1: The pipeline of our method. Note that each predicate query is assigned with a pre-defined temporal anchor, and the
positional embeddings (PosEmb) are calculated based on these anchors through a learnable projection matrix.

classification logits. Then we adopt the object tracking method
deepSORT [27] to generate object tracklets, denoted as {𝑇𝑖 }𝑛𝑖=1.
Each tracklet 𝑇𝑖 with length (number of frames) 𝑙𝑖 is characterized
by its time slots (𝑠𝑖 , 𝑒𝑖 ), box coordinates {𝒃𝑖, 𝑗 ∈ R4 | 𝑗 = 1, 2, . . . 𝑙𝑖 },
appearance features 𝒇𝑎

𝑖
∈ R𝑙𝑖×𝑑𝑎 , and the object category 𝑐𝑖 ∈ Cobj,

where Cobj is the set of all object categories for VidOR. We fix all
the box coordinates {𝒃𝑖, 𝑗 } and object categories {𝑐𝑖 } as the final
predictions. In addition, we reserve the classification probabilities
from the detection backbone for each tracklet, denoted as 𝒑𝑖 ∈
R |Cobj | , for the final relation prediction.

3 RELATION DETECTION
The overall pipeline of our model is shown in Figure 1. It uses
a fixed set of 𝑚 predicate queries {𝑞 𝑗 }𝑚𝑗=1, with learnable query
embeddings, denoted as 𝑸 ∈ R𝑚×𝑑𝑞 . Each query is responsible for
each of the final predicate prediction, which is characterized by its
links to subject/object and its category 𝑐𝑞

𝑗
∈ Crel, where Crel is the

set of all relation categories for VidOR.

3.1 Tracklet Feature Initialization
For each tracklet 𝑇𝑖 , we consider both the static coordinates {𝒃𝑖, 𝑗 }
and the dynamic features {Δ𝒃𝑖, 𝑗 } for its spatial feature, where

Δ𝒃𝑖, 𝑗 = 𝒃𝑖, 𝑗+1 − 𝒃𝑖, 𝑗 , 𝑗 = 1, . . . , 𝑙𝑖 − 1. (1)

The spatial feature 𝒔𝑖 ∈ R𝑙𝑖×8 is obtained by stacking {𝒃𝑖, 𝑗 }𝑙𝑖𝑗=1 and
{Δ𝒃𝑖, 𝑗 }𝑙𝑖𝑗=1. Then, the appearance feature 𝒇

𝑎
𝑖
and spatial feature 𝒔𝑖

are fed into two MLPs and their outputs are concatenated as the ini-
tial tracklet feature 𝒇𝑖 ∈ R𝑙𝑖×𝑑 , where 𝒇𝑖 = [MLP𝑣 (𝒇𝑎𝑖 ); MLP𝑠 (𝒔𝑖 )].

3.2 Encoder-Decoder Feature Interactions
Encoder. Since the size of each tracklet feature is different, we first
use a pooling operation to transform tracklet feature 𝒇𝑖 ∈ R𝑙𝑖×𝑑 to
a fixed size feature 𝒇𝑖 ∈ R𝑙×𝑑 , and flatten it into a vector, followed
by a MLP to reduce the dimension, resulting in a vector 𝒉𝑖 ∈ R𝑑 .
Then, we stack all tracklet features {𝒉𝑖 } into matrix 𝑯 ∈ R𝑛×𝑑 , and
feed 𝑯 into a Transformer encoder, i.e., 𝑯 = Transformerenc (𝑯 ),
where the outputs 𝑯 ∈ R𝑛×𝑑 are contextualized tracklet features
Decoder. In contrast to the standard Transformer decoder, we
design a temporal-aware decoder that considers different temporal
RoIs of the tracklet features {𝒇𝑖 }. To naturally differentiate each

query embedding, we assign each query 𝑞 𝑗 with a temporal anchor
(𝑠𝑎
𝑗
, 𝑒𝑎
𝑗
). The time slot of 𝑞 𝑗 is regressed with respect to (𝑠𝑎

𝑗
, 𝑒𝑎
𝑗
) in

each decoder layer, denoted as (𝑠𝑞
𝑗
, 𝑒
𝑞

𝑗
), based on which we perform

RoI pooling for each tracklet-query pair:

𝒇 roi𝑖, 𝑗 = RoIPool
(
𝒇𝑖 , (𝑠𝑖, 𝑗 , 𝑒𝑖, 𝑗 )

)
, s.t. (𝑠𝑖, 𝑗 , 𝑒𝑖, 𝑗 ) ≠ ∅. (2)

where (𝑠𝑖, 𝑗 , 𝑒𝑖, 𝑗 ) = (𝑠𝑖 , 𝑒𝑖 ) ∩ (𝑠𝑞
𝑗
, 𝑒
𝑞

𝑗
),

where RoIPool is a one-dim RoI pooling operation, 𝒇 roi
𝑖, 𝑗

∈ R𝑙roi×𝑑
is the RoI feature of tracklet 𝑇𝑖 for the query 𝑞 𝑗 . Zero-padding is
utilized for those tracklet-predicate pairs that have no temporal
overlap. After obtaining {𝒇 roi

𝑖, 𝑗
}, we flatten them and use a MLP to

reduce the dimension:

𝒗𝑖, 𝑗 = MLProi (Flatten(𝒇 roi𝑖, 𝑗 )) ∈ R
𝑑𝑣 . (3)

We stack {𝒗𝑖, 𝑗 }𝑛𝑖=1 into 𝑽𝑗 ∈ R𝑛×𝑑𝑣 , corresponding to the value
matrix of the cross-attention operation in the Transformer decoder.

However, in contrast to the vanilla cross-attention where a single
value matrix is used, our temporal-aware cross-attention 1) con-
structs separate value matrix 𝑽𝑗 for each query 𝑞 𝑗 , which considers
different temporal information of tracklet-query pairs, and 2) de-
signs role-specific attention matrices for subject (𝑨𝑠 ) and object
(𝑨𝑜 ), respectively. Specifically,

𝑨𝑟 = 1/
√
𝑑 (𝑸𝑾𝑄

𝑟 ) (𝑯𝑾𝐾
𝑟 )T, (4)

where 𝑟 ∈ {𝑠, 𝑜} represents semantic roles, 𝑸 is the query matrix
after self-attention, 𝑯 is the output of the encoder (served as the
key matrix), and 𝑾𝑄

𝑟 , 𝑾𝐾
𝑟 are learnable weights. In our setting,

we assume each predicate query can only link to one tracklet in
each role and each tracklet-predicate pair has one type of roles at
most. Thus, we stack 𝑨s and 𝑨o as 𝑨 ∈ R2×𝑚×𝑛 , and normalize it
through:

𝑨[𝑟, 𝑗, 𝑖] = exp(𝑨[𝑟, 𝑗, 𝑖])∑𝑛
𝑖′=1 exp(𝑨[𝑟, 𝑗, 𝑖 ′]) ×

exp(𝑨[𝑟, 𝑗, 𝑖])∑2
𝑟 ′=1 exp(𝑨[𝑟 ′, 𝑗, 𝑖])

. (5)

Thereafter, our temporal-aware cross-attention is performed as

𝒒̃ 𝑗 =
∑2
𝑟=1𝐹𝑟 (𝑨[𝑟, 𝑗, :]𝑽𝑗 ) ∈ R1×𝑑𝑞 , 𝑗 = 1, . . . ,𝑚, (6)

where 𝑨[𝑟, 𝑗, :] ∈ R1×𝑛 and 𝐹𝑟 : R𝑑𝑣 → R𝑑𝑞 is a role-specific MLP
that introduces role-wise distinction into 𝒒̃ 𝑗 .

Finally, we stack {𝒒̃ 𝑗 }𝑚𝑗=1 as the enhanced query embedding ma-
trix of shape𝑚 × 𝑑𝑞 . The enhanced query embeddings are further



utilized to regress the offset w.r.t temporal anchors through an
extract MLP, which will be used in the next decoder layer. Other op-
erations such as feed-forward network (FFN), residual connections
and layer normalization [2] are also used in our temporal-aware
decoder as that in the standard Transformer decoder.

3.3 Relation Prediction
Given the attentionmatrix𝑨 ∈ R2×𝑚×𝑛 and the enhanced predicate
queries {𝒒̃ 𝑗 }𝑚𝑗=1 output from the last decoder layer, we perform
relation prediction through two steps of linking prediction and
predicate classification.

For linking prediction, we binarize 𝑨 to obtain the links of each
role (subject/object). Specifically, for each query in each channel (i.e.,
each 𝑨[𝑟, 𝑗, :]), the tracklet of the max attention score is selected.

For predicate classification, we use the enhanced query embed-
ding 𝒒̃ 𝑗 , the subject/object classeme features, and the frequency
bias (i.e., prior information) in the VidOR training set.

Specifically, we use GloVe embeddings [16] to represent the
words of object categories, and stack them as the embedding matrix
𝑬 ∈ R |Cobj |×𝑑𝑤 , where 𝑑𝑤 is the dimension of word embedding.
The classeme feature for each tracklet proposal is calculated as
𝒇𝑐
𝑖

= 𝑬T𝒑𝑖 ∈ R𝑑𝑤 . Then, we concatenate the predicate query
with the classeme features of its corresponding subject-object pair,
denoted as 𝒒̃′

𝑗
= [𝒒̃ 𝑗 ;𝒇𝑐𝑖 𝑗,𝑠 ;𝒇

𝑐
𝑖 𝑗,𝑜

] ∈ R𝑑𝑞+2𝑑𝑤 , where 𝑖 𝑗,𝑠 , 𝑖 𝑗,𝑜 index
the subject and object tracklets for query 𝑞 𝑗 , respectively.

For frequency bias, we construct a dictionary 𝑩 to store the
log-probability of predicate category for a given category pair of
subject-object pair [29], where 𝑩 : Cobj × Cobj → R |Crel | . Finally,
the predicate classification is performed as

𝑝 𝑗 (𝑐𝑞) ∼ softmax(MLP𝑞 (𝒒̃′𝑗 ) + 𝑩[𝑐𝑖 𝑗,𝑠 , 𝑐𝑖 𝑗,𝑠 ]), (7)

where 𝑐𝑖 𝑗,𝑠 (𝑐𝑖 𝑗,𝑜 ) is the object category of 𝑖 𝑗,𝑠 -th (𝑖 𝑗,𝑜 -th) tracklet,
and 𝑝 𝑗 (𝑐𝑞) is the probability of predicate category 𝑐𝑞 .

3.4 Training Objectives
Because we fix all the tracklet proposals from the detection back-
bone as the final predictions, we only consider the training loss
between predicates and their ground-truths. Let us denote by 𝑞 =

{𝑞 𝑗 }𝑚𝑗=1 the set of𝑚 predicate predictions. Let 𝑞∗ be the ground-
truth predicate set of size𝑚 padded with ∅ (background). We adopt
one-to-one label assignment by finding a bipartite matching be-
tween 𝑞 and 𝑞∗. Specifically, we search for a permutation of 𝑚
elements 𝜎̂ by optimizing the following cost:

𝜎̂ = argmin
𝜎

∑𝑚
𝑗=1Lmatch (𝑞∗𝑗 , 𝑞𝜎 ( 𝑗) ). (8)

This matching problem is computed efficiently with the Hungarian
algorithm [15], following prior work [4]. The matching cost con-
siders both predicate classification and linking prediction. Because
each predicate is characterized by its category and two links, we de-
note 𝑞∗

𝑗
= (𝑐𝑞∗

𝑗
, 𝒂∗
𝑗
), where 𝑐𝑞∗

𝑗
is the predicate category (which may

be ∅) and 𝒂∗
𝑗
∈ {0, 1}2×𝑛 is the 𝑗-th row of 𝑨∗ (binarized ground-

truth attention matrix) for two channels. Note that 𝒂∗
𝑗
[𝑟, 𝑖] = 0

when the 𝑖-th tracklet has no ground-truth to match (tracklet as-
signment is based on vIoU and the criterion is similar to that in
Faster-RCNN [18]). For the predicted predicate with index 𝜎 ( 𝑗),

we define the linking prediction as 𝒂𝜎 ( 𝑗) ∈ R2×𝑛 . With the above
notations, the matching cost is defined as

Lmatch (𝑞∗𝑗 , 𝑞𝜎 ( 𝑗) ) = −1{𝑐𝑞∗
𝑗
≠∅}𝜆cls log𝑝𝜎 ( 𝑗) (𝑐

𝑞∗
𝑗
) (9)

+1{𝑐𝑞∗
𝑗
≠∅}𝜆attLatt (𝒂∗𝑗 , 𝒂𝜎 ( 𝑗) ),

where 𝜆att and 𝜆att are hyperparameters, and Latt is defined as a
binary-cross entropy (BCE) loss.

After obtaining 𝜎̂ , the final predicate loss L consists of two parts:
the matching loss between the matched <𝑞∗

𝑗
, 𝑞𝜎̂ ( 𝑗)> pairs, and the

background classification loss for other predicate predictions, i.e.,

L =
∑𝑚
𝑗=1Lmatch

(
𝑞∗
𝑗
, 𝑞𝜎 ( 𝑗)

)
− 𝜆cls

∑
𝑐
𝑞∗
𝑗
=∅ log𝑝𝜎 ( 𝑗) (∅) . (10)

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
We evaluated our method on the VidOR dataset [19]. It consists of
10,000 videos collected fromYFCC100M [24], which covers 80 object
categories and 50 predicate categories. We used official splits [19],
i.e., 7,000 videos for training, 835 videos for validation (VidOR-val),
and 2,165 videos for test (VidOR-test).

We use the official evaluation metrics [1, 20] of the VRU Chal-
lenge, including Relation Detection (RelDet) and Relation Tagging
(RelTag). Quantitative metrics includes Average Precision (mAP)
and Recall@K (R@K, K=50,100) for RelDet, and Precision@K (P@K,
K=1,5,10) for RelTag.

4.2 Implementation Details
Temporal Anchor Settings. The time slots of temporal anchors
(aswell as the time slot of tracklets) are normalized into (0, 1) with re-
spect to the video length. Since we assign each query with a unique
temporal anchor, we have total𝑚 anchors. Specifically, the𝑚 an-
chors are associatedwith𝑚𝑐 different center points and𝑚𝑑 different
durations, which are (1/𝑚𝑐 , 2/𝑚𝑐 , . . . , 1) and (1/𝑚𝑑 , 2/𝑚𝑑 , . . . , 1), re-
spectively. We set𝑚𝑐 =16,𝑚𝑑=12. Typically, the number𝑚 =𝑚𝑐𝑚𝑑
is set to be larger than the number of most of predicates in a video.
Parameter Settings. The frame-level appearance feature dimen-
sion 𝑑𝑎 = 1024. The dimension of word embdding 𝑑𝑤 = 300. The
hidden dimension 𝑑, 𝑑𝑞 and 𝑑𝑣 were set to 512. The output lengths
of pooling operations were set as 𝑙 = 4, 𝑙roi = 7. All the MLPs are
two-layer fully-connected networks with ReLU and with hidden
dimension of 512. All bounding boxe coordinates are normalized to
the range between (0, 1) with respect to video size. The number of
encoder/decoder layers are set as 𝐿𝑒 = 6 and 𝐿𝑑 = 4, respectively.
The loss factors were set as 𝜆cls = 1.0, and 𝜆adj = 30.0. For train-
ing, we trained our model by Adam [12] with total 50 epochs. The
learning rate was set to 5e-5 and the batch size was set to 4.
Inference Details. At inference time, we keep top-10 predictions
for each predicate [20]. The time slot of each relation triplet is calcu-
lated as the intersection of the two corresponding tracklets. During
experiments, we found that several predicate queries with same cat-
egory are sometimes linked to the same tracklet pair, which causes
repeated predictions in the top-K candidates. Thus, we performs
a filtering operation on the final set of triplet predictions: For all
triplets with the same predicate category and tracklet pair, we only
keep the one with the highest score.



Team name Grade Detector Tracker Features RelDet RelTag
mAP R@50 R@100 P@1 P@5 P@10

RELAbuilder [32] 2nd-2019 VGG-16 + R-Det GTG + T-NMS I3D+RM+L 0.546 — — — 23.60 —
MAGUS.Gamma [23] 1st-2019 FGFA Seq-NMS + KCF RM+L 6.31 — — — 42.10 —

ETRI_DGRC 2nd-2020 — — — 6.65 — — — — —
colab-BUAA [28] 1st-2020 S-101 + C-RCNN iSeq-NMS V+L+RM+Msk 11.74 10.02 12.69 71.36 56.30 44.59

EgoJ 3rd-2021 — — — 5.93 — — — — —
Planck 2nd-2021 — — — 6.69 — — — — —

Ours (Ens-5) 1st-2021 R-101 + MEGA deepSORT V+L 9.48 8.56 10.43 63.46 54.07 41.94
Table 1: Performance (%) on VidOR-test (VRU Challenges) of SOTA methods. We list all of their detector/tracker/features if
available. I3D denotes the I3D [5] features of object tracklets. RM denotes the pair-wise relative motion features of subject-
object tracklet pairs.Msk is the location mask feature. V and L are visual and language features of tracklets, respectively.

Category mAP Category mAP Category mAP
turtle 95.61 sheep/goat 55.53 faucet 26.87
adult 84.51 kangaroo 53.26 scooter 17.75
bird 81.81 bus/truck 51.49 cellphone 14.77

motorcycle 75.13 watercraft 47.62 cattle/cow 7.11
baby 66.98 vegetables 43.13 fruits 1.81

suitcase 61.61 oven 40.74 stop_sign 0.01
Table 2: Frame-level object detectionmAP (%) on VidOR-val.

Method mAP Position mAP
MAGUS.Gamma [23] 8.82 16.64
colab-BUAA [28] 14.59 —

Ours 12.48 23.71

Table 3: Tracklet mAP (%) on VidOR-val.

4.3 Component Analysis
Frame-level Object Detection. Table 2 presents the detection
mAP (IoU=0.5) on VidOR validation set of our trained MEGA in
several categories. Common categories with more samples show
better performance than rare categories with few samples. The
overall mAP of all categories is 41.21%.
Object Tracklet Detection. Our tracklet proposals on VidOR val-
idation set achieve a tracklet mAP (vIoU=0.5) of 11.67% and an
upper bound of 23.08%, as shown in Table 3, suppressing MA-
GUS.Gamma [23]. The tracklets of colab-BUAA [28] have higher
mAP than ours, due to their heavier detection backbone Cascade
R-CNN (C-RCNN) [3] with ResNeSt101 (S-101) [30].
Relation Prediction. We analyze the effects of different compo-
nents (i.e., classeme features (Clsme) and predicate frequency bias
(Bias)) on relation prediction, the results are shown in Table 4. It
shows that the model with both Clsme and Bias achieves the high-
est mAP and Tagging Precision, while the model with only Bias
performs slightly better on Recall in RelDet. We choose the model
consisting both Clsme and Bias as our final model.

We also consider model ensembling in Table 4, where Ens-𝑘
represents the results of ensembling 𝑘 models. Ens-5 has the highest
performance in all metrics except a slightly lower mAP than Ens-3.
So we use Ens-5 as our final model in the VRU Challenge.

4.4 Comparisons with State-of-the-Arts
We compare our model with other state-of-the-arts (SOTA) meth-
ods on VidOR test set (i.e., the VRU Challenges [11]), and the results

Model Clsme Bias RelDet RelTag
mAP R@50 R@100 P@5 P@10

Ens-1
8.06 7.02 7.96 49.78 38.60

✓ 8.36 7.25 8.18 50.73 39.22
✓ ✓ 8.67 7.10 8.14 51.49 39.38

Ens-2 ✓ ✓ 9.06 7.79 9.12 52.37 40.11
Ens-3 ✓ ✓ 9.36 8.14 9.68 52.56 40.97
Ens-5 ✓ ✓ 9.33 8.35 10.21 52.73 41.14

Table 4: Component analysis of our model on VidOR-val.

are shown in Table 1. We outperform all other teams, except for
colab-BUAA [28]. Though colab-BUAA performs slightly better
than our method, the detection backbone used in their method is
C-RCNN with S-101, which is very heavy, compared to our MEGA
with ResNet-101 (R-101). Besides, their features contain realative
motivion feature of tracklet pairs (RM) and the location mask fea-
ture (Msk), which are also of high complexity.

We also analyze the detection backbones used in different meth-
ods in Table 1. Different detectors have a great influence on the final
relation results. In [32], the detector is RefineDet (R-Det) [31] with
VGG-16 [21], and the tracking algorithm is greedy tracklet grner-
ation (GTG) with tracklet-NMS (T-NMS). This backbone returns
tracklets with relatively poor quality. In contrast, better detectors
and trackers (such as FGFA [33], Seq-NMS [8], improved Seq-NMS
(iSeq-NMS) [28] and KCF [10]) provide higher quality tracklets
and improve the relation detection performance, while introducing
more computational complexity.

5 CONCLUSIONS
In this paper, we introduce a novel video visual relation detection
method, which consists object tracklet detection and visual rela-
tion detection. Specifically, we use MEGA [7] and deepSORT [27]
to detect object tracklets, and we propose a tracklet-based visual
Transformer for relation detection, in which a temporal-aware de-
coder is spatially designed. The experiment results demonstrate the
superiority of our method, which outperforms other SOTAmethods
in the VRU Challenge of ACM Multimedia 2021.
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