
13

OpenQL: A Portable Quantum Programming Framework for

Quantum Accelerators

N. KHAMMASSI, I. ASHRAF, J. V. SOMEREN, R. NANE, and A. M. KROL, Quantum &

Computer Engineering Dept., Delft University of Technology, The Netherlands

M. A. ROL, Kavli Institute of Nanoscience, Delft University of Technology, The Netherlands

L. LAO, K. BERTELS, and C. G. ALMUDEVER, Quantum & Computer Engineering Dept., Delft

University of Technology, The Netherlands

With the potential of quantum algorithms to solve intractable classical problems, quantum computing is
rapidly evolving, and more algorithms are being developed and optimized. Expressing these quantum algo-
rithms using a high-level language and making them executable on a quantum processor while abstracting
away hardware details is a challenging task. First, a quantum programming language should provide an intu-
itive programming interface to describe those algorithms. Then a compiler has to transform the program into
a quantum circuit, optimize it, and map it to the target quantum processor respecting the hardware constraints
such as the supported quantum operations, the qubit connectivity, and the control electronics limitations. In
this article, we propose a quantum programming framework named OpenQL, which includes a high-level
quantum programming language and its associated quantum compiler. We present the programming inter-
face of OpenQL, we describe the different layers of the compiler and how we can provide portability over
different qubit technologies. Our experiments show that OpenQL allows the execution of the same high-level
algorithm on two different qubit technologies, namely superconducting qubits and Si-Spin qubits. Besides
the executable code, OpenQL also produces an intermediate quantum assembly code, which is technology
independent and can be simulated using the QX simulator.
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1 INTRODUCTION

Since the early formulation of the foundations of quantum computing, several quantum algorithms
have been designed for solving intractable classical problems in different application domains. For
instance, the introduction of Shor’s algorithm [45] outlined the significant potential of quantum
computing in speeding up prime factorization. Later, Grover’s search algorithm [17] demonstrated
quadratic speedup over its classical implementation counterpart. The discovery of these algorithms
boosted the development of different physical qubit implementations such as superconducting
qubits [52], trapped ions [32], and semiconducting qubits [53].

In the absence of a fully programmable quantum computer, the implementation of these algo-
rithms on real quantum processors is a tedious task for the algorithm designer, especially in the
absence of deep expertise in qubit control electronics. To make a quantum computer programmable
and more accessible to quantum algorithm designers similarly to classical computers, several soft-
ware and hardware layers are required [4]: At the highest level, an intuitive quantum programming
language is needed to allow the programmer to express the quantum algorithm without worrying
about the hardware details. Then, a compiler transforms the algorithm into a quantum circuit and
maps and optimizes it for a given quantum processor. Ultimately, the compiler produces an exe-
cutable code that can be executed on the target micro-architecture controlling the qubits. A mod-
ular quantum compiler would ideally not expose low-level hardware details and its constraints to
the programmer to allow portability of the algorithm over a wide range of quantum processors
and qubit technologies.

In this article, we introduce OpenQL,1 an open source2 high-level quantum programming
framework. OpenQL is mainly composed of a quantum programming interface for implementing
quantum algorithms independently from the target platform, and a compiler that can compile the
algorithm into executable code for various target platforms and qubit technologies such as super-
conducting qubits and semiconducting qubits.

The rest of the article is organized as follows. Section 2 provides a brief account of the related
work. The necessary background for the quantum accelerator model is given in Section 3. OpenQL
architecture is detailed in Section 4, followed by a discussion of the quantum programming inter-
face provided by OpenQL in Section 5. OpenQL compilation passes are presented in Section 6,
where it is shown how the quantum code is decomposed, optimized, scheduled, and mapped on
the target platform. Some of the works in which we utilized OpenQL to compile quantum algo-
rithms on different quantum processors using different qubit technologies, are briefly mentioned
in Section 7. Finally, Section 8 concludes the article.

2 RELATED WORK

Some of the initial work in the field of quantum compilation has been theoretical [9, 36, 37, 43,
56, 57]. Now that quantum computers are a reality, various compilation and simulation software
frameworks have been developed. A list of open source compilation projects is available at [12],
and a list of quantum simulators is available in Reference [30]. In the following, we provide a brief

1OpenQL documentation: https://openql.readthedocs.io.
2OpenQL source code: https://github.com/QE-Lab/OpenQL.
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list of recent active works in the field of quantum compilation in chronological order. The reader
is referred to a recent overview and comparison of gate-level quantum software platforms [27].

• ScaffCC has been presented as a scalable compilation and analysis tool for quantum pro-
grams [2, 19]. It is based on the LLVM compilation framework. ScaffCC compiles the Scaffold
language [1], which is a pure quantum language embedded into the classical C language.
• Microsoft proposed a domain-specific language Q# [49] and Quantum Development Kit

(QDK) to compile and simulate quantum programs. At the moment, QDK does not target
a real quantum computer, however, programs can be executed on the provided software
backend.
• ProjectQ [48] is an open source software framework that allows the expression of a quantum

program targeting IBM backend computers as well as simulators. ProjectQ allows program-
mers to express their programs in a language embedded in Python. Apart from low-level
gate descriptions, meta-instructions are provided to add conditional control, compute, un-
compute, and repeating sections of code a certain number of times.
• IBM’s Qiskit [3] is an open source quantum software framework that allows users to express

their programs in Python and compiles them to OpenQASM targeting the IBM Q Experi-
ence [18]. Qiskit allows users to explicitly allocate quantum and classical registers. Quantum
operations are performed on quantum registers, and after measurement, classical results are
stored in classical registers.
• Quilc [47] is an open source quantum compiler for compiling Rigetti’s Quil language [46].

The focus of the authors is on the noisy intermediate scale quantum programs, allowing
the programmers to compile quantum programs to byte code, which can be interpreted by
control electronics. This allows programmers to execute programs not only on a software
simulator but also on a real quantum processor.
• Amazon provides Braket [5] service to allow users to perform quantum computing in the

cloud. Amazon Braket provides a development environment that includes Amazon Braket
SDK [6], which is an open source library. This library helps developers express a quantum
program, compile it and run it on Braket-enabled software simulators and various quantum
computers.

OpenQL has some common characteristics with the compilers above, such as being an open
source, modular quantum compilation framework that is capable of targeting different hardware
backends. However, the distinctive and, at the same time, the primary motivation behind OpenQL
is that it is a generic and flexible compiler framework. These requirements directly translated into
the OpenQL design to support multiple configurable backends through its platform configuration
file (Section 5.3). Finally, OpenQL is one of the engines behind QuTech’s Quantum Inspire [38]
platform, where the user can gain access to various technologies to perform quantum experiments
enabled through the use of OpenQL’s plugin-able backends and its ability to generate executable
code (Section 6.5).

3 QUANTUM ACCELERATOR MODEL

Accelerators are used in classical computers to speed up specific types of computation that can take
advantage of the execution capabilities of the accelerator such as massive parallelism, vectorization
or fast digital signal processing. OpenQL adopts this heterogeneous computing model while using
the quantum processor as an accelerator and provides a programming interface for implementing
quantum algorithms involving both classical computation and quantum computation.
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Fig. 1. Shor’s algorithm is composed of both classical computations and quantum computations.

3.1 Heterogeneous Computing

Heterogeneous computing [40, 55] is a computing model where a program is executed jointly on
a general-purpose processor or host processor and an accelerator or co-processor. The general-
purpose processor is capable of executing not only general computations such as arithmetic, logic
or floating point operations, but also controlling various accelerators or co-processors. The ac-
celerators or co-processors are specialized processors designed to accelerate specific types of
computation such as graphics processing, digital signal processing and other workloads that can
take advantage of vectorization or massive thread-level parallelism. Therefore the accelerator can
speedup a part of the computation traditionally executed on a general purpose processor. The
computation is then offloaded to the accelerator to speed up the overall execution of the tar-
get program. Examples of accelerators are the Intel Xeon Phi co-processor [20], Digital Signal
Processors [50], Field Programmable Gate Array [51, 54] that can be also utilized as accelera-
tors to parallelize computations and speed up their execution. Finally General-Purpose Compu-
tation on Graphics Processing Units uses a GPU as an accelerator [29] to speed up certain types of
computations.

3.2 Quantum Processors as Accelerators

The OpenQL programming framework follows a heterogeneous programming model that aims to
use the quantum processor as a co-processor to accelerate the part of the computation that can
benefit from the quantum speedup. A quantum algorithm is generally composed of classical and
quantum computations. For instance Shor’s algorithm is a famous quantum algorithm for prime
number factoring. As shown in Figure 1 the algorithm includes classical computations such as the
Greatest Common Divisor computation that can be executed efficiently on a traditional processor,
and a quantum part such as the Quantum Fourier Transform, which should be executed on a
quantum processor.

OpenQL uses traditional host languages, namely C++ and Python, to define a programming
interface that allows the expression of the quantum computation and the communication with
the quantum accelerator: The quantum operations are executed on the quantum processor using a
dedicated micro-architecture and the measurement results are collected and sent back to the host
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Fig. 2. OpenQL compiler architecture.

program running on the classical processor. While non time-critical classical operations can be
executed on the host processor, time-critical classical operations that need to be executed within
the coherence time of the qubits, such as in error correction quantum circuits, can be offloaded to
the accelerator to provide fast reaction time and avoid communication overhead between the host
PC and the accelerator.

4 OPENQL ARCHITECTURE

Figure 2 depicts the OpenQL framework, which presents a high-level programming interface to
the user at the top. The compiler implements a layered architecture that is composed mainly of two
parts: a set of hardware-agnostic compilation passes that operate at the quantum gate level and
a set of low-level technology-specific backends that can target different quantum processors with
specific control hardware. The goal of those backends is to enable compiling the same quantum
algorithm for a specific qubit technology without any change in the high-level code and making
the hardware details transparent to the programmer. Moreover, this architecture allows the im-
plementation of new backends to extend the support to other qubit technologies and new control
hardware whenever needed. As the qubit control hardware is constantly evolving in the last years,
this flexibility and portability over a wide range of hardware is crucial. This enhances the produc-
tivity and ensures the continuity of the research efforts toward a full-stack quantum computer
integration.

The Quantum Assembly Code (QASM) is the intermediate layer that draws the abstraction
line between the high-level hardware-agnostic layers (gate-level compilation stages) and the low-
level hardware-specific layers. The low-level layers are implemented inside a set of interchangeable
backends each targeting a different micro-architecture and/or a different qubit technology.
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The OpenQL framework is composed mainly of the following layers:

• A High-level programming interface using a standard host language namely C++ or Python
to express the target quantum algorithm as a quantum program.
• A quantum gate-level compiler that transforms the quantum program into a quantum circuit,

optimizes it, schedules it and maps it to the target quantum processor to comply to the
different hardware constraints such as limited qubit connectivity.
• The last stage of the gate-level compilation produces a technology-independent Common

Quantum Assembly code (cQASM) [24], which describes the final quantum circuit while
abstracting away the low-level hardware details such as the target instruction set architec-
ture, or the quantum gate implementation, which differs across the different qubit technolo-
gies For now, our compiler targets Superconducting qubits and Si-Spin qubits but can be
easily extended to other qubit technologies. The produced QASM code complies with the
cQASM 1.0 syntax and can be simulated in our QX simulator [22] to debug the quantum
algorithm and evaluate its performance for different quantum error rates.
• At the lowest level, different executable QASM (eQASM) [14] backends can be used to com-

pile the QASM code into instructions that can be executed on a specific micro-architecture,
e.g., the QuMA micro-architecture described in Reference [16]. At this compilation level,
very detailed information about the target hardware setup, stored in a hardware configu-
ration file, is used to generate an executable code that takes into account various hardware
details such as the implementation of the quantum gates, the connectivity between the qubits
and the control instruments, the hardware resource dependencies, the quantum operation
latencies and the operational constraints.

5 QUANTUM PROGRAMMING INTERFACE

OpenQL provides three main interfaces to the developer, namely Quantum Kernel, Quantum Pro-
gram, and Quantum Platform.

5.1 Quantum Kernel

A Quantum Kernel is a quantum functional block that consists of a set of quantum or classical
instructions and performs a specific quantum operation. For instance, the kernel could be dedicated
to creating a bell pair while another could be dedicated to teleportation or decoding. In OpenQL
a Quantum Kernel can be created using Python, as shown in Code Example 1 where three kernels
are created: (i) the “init” kernel for initializing the qubits, (ii) the “epr” kernel to create a Bell pair,
and (iii) the “measure” kernel to measure the qubits. These kernels are then added to the main
program, and compiled while enabling the compiler optimizations and the As Late As Possible

(ALAP) scheduling scheme. In code Example 2, the same code is written in the C++ programming
language. Note that the programming API of C++ is identical to the Python API.

OpenQL supports standard quantum operations as listed in Table 1. For multi-qubit gates, first
qubit is the target qubit. To allow for further flexibility in implementing the quantum algorithms,
custom operations can also be defined in a hardware configuration file. These operations can either
be independent physical quantum operations supported by the target hardware or a composition
of a set of physical operations. Once defined in the configuration file of the platform, the new
operation can be used in composing a kernel as any other predefined standard operation. This
allows for more flexibility when designing a quantum algorithm or a standard experiment used
for calibration or other purposes.

5.2 Quantum Program

As the quantum kernels implement functional blocks of a given quantum algorithm, a “quan-

tum_program” is the container holding those quantum kernels and implementing the complete
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quantum algorithm. For instance, if our target algorithm is a quantum error correction circuit
that includes the encoding of the logical qubit, then the error syndrome measurement, the error
correction and finally the decoding, we can create four distinct kernels that implement these four
blocks, and we can add these kernels to our program. The program can then be compiled and
executed on the target platform.

1 impor t openq l as q l
2

3 # l o a d the hardware c o n f i g o f the t a r g e t p l a t f o r m
4 transmon = q l . quantum_pla t form ( ' transmon ' , ' h a r d w a r e _ c o n f i g . j s o n ' ) ;
5

6 # we c r e a t e the main quantum program
7 prog = program ( ' b e l l _ p a i r ' , 2 , transmon )
8

9 # c r e a t e i n i t k e r n e l t o p r e p a r e q0 and q1 i n z e r o s t a t e
10 k1 = k e r n e l ( ' i n i t ' ) ;
11 k1 . prepz ( 0 ) ;
12 k1 . prepz ( 1 ) ;
13

14 # c r e a t e a b e l l p a i r k e r n e l
15 k2 = k e r n e l ( ' epr ' ) ;
16 k2 . hadamard ( 0 ) ; # H q0
17 k2 . cno t ( 0 , 1 ) ; # CNOT q0 , q1
18

19 # c r e a t e measure k e r n e l
20 k3 = k e r n e l ( ' measure ' ) ;
21 k3 . measure ( 0 ) ;
22 k3 . measure ( 1 ) ;
23

24 # add k e r n e l t o the quantum program
25 prog . a d d _ k e r n e l ( k1 ) ;
26 prog . a d d _ k e r n e l ( k2 ) ;
27 prog . a d d _ k e r n e l ( k3 ) ;
28

29 # compi l e and o p t i m i z e the program
30 prog . compi l e ( o p t i m i z e = t rue , s c h e d u l e = ' ALAP ' ) ;

Code Example 1. OpenQL Python code creating a Bell pair.

5.3 Quantum Platform

A “quantum_platform” is a specification of the target hardware setup including the quantum pro-
cessor and its control electronics. The specification includes the description of the supported quan-
tum operations and their attributes such as the duration, the built-in latency of each operation and
the mathematical description of the supported quantum operation such as its associated unitary
matrix.

6 QUANTUM GATE-LEVEL COMPILATION

The first compilation stages of OpenQL are performed at the quantum gate-level while abstracting
the low-level hardware implementation on the target device as much as possible. The high-level
compilation stages include the decomposition of the quantum operations, the optimization and
the scheduling of the decomposed quantum circuit. The gate-level compilation layers can produce
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a technology-agnostic quantum assembly code called cQASM that can be simulated using the QX
Simulator [23].

1 # i n c l u d e < q l / openq l . h>
2

3 / / l o a d the hardware c o n f i g o f the t a r g e t p l a t f o r m
4 q l : : quantum_pla t form transmon ( ' transmon ' , ' h a r d w a r e _ c o n f i g . j s o n ' ) ;
5

6 / / c r e a t e quantum program
7 q l : : program prog ( ' prog ' , 2 , transmon ) ;
8

9 / / c r e a t e i n i t k e r n e l t o p r e p a r e q0 and q1 i n z e r o s t a t e
10 q l : : k e r n e l k1 ( ' i n i t ' ) ;
11 k1 . prepz ( 0 ) ;
12 k1 . prepz ( 1 ) ;
13

14 / / c r e a t e a b e l l p a i r k e r n e l
15 q l : : k e r n e l k2 ( ' epr ' ) ;
16 k2 . hadamard ( 0 ) ; / / H q0
17 k2 . cno t ( 0 , 1 ) ; / / CNOT q0 , q1
18

19 / / c r e a t e measure k e r n e l
20 q l : : k e r n e l k3 ( ' measure ' ) ;
21 k3 . measure ( 0 ) ;
22 k3 . measure ( 1 ) ;
23

24 / / add k e r n e l s t o the quantum program
25 prog . a d d _ k e r n e l ( k1 ) ;
26 prog . a d d _ k e r n e l ( k2 ) ;
27 prog . a d d _ k e r n e l ( k3 ) ;
28

29 / / compi l e and o p t i m i z e the program
30 prog . compi l e ( o p t i m i z e = t rue , s c h e d u l e = 'ALAP ' ) ;

Code Example 2. OpenQL C++ code creating a Bell pair.

6.1 Gate Decomposition

OpenQL supports decomposition of multi-qubit gates to 1 and 2 qubit gates, as well as control
decomposition of multiple gates that are controlled by 1 or more qubits. Gates that are expressed
as unitary matrices can also be decomposed to rotation and controlled-not gates.

6.1.1 Multi-qubit Gate Decomposition. In the first step, quantum gates are decomposed into a
set of elementary operations from a universal gate set. For instance, as shown in Figure 3, the
Toffoli gate can be decomposed into a set of single and two-qubit gates using different schemes
such as in Reference [34], Reference [8], or Reference [7].

The decomposition of gates with more than two qubit operands is necessary to enable the later
mapping stage, which can only deal with single and two-qubit gates that are available in the tar-
get physical implementation. Furthermore, this decomposition allows us to perform fine-grain
optimization through fusing operations and extracting parallelism using gate dependency anal-
ysis. When a physical target platform and its supported physical operations are specified in the
configuration file, by doing this decomposition the compiler makes sure that the remaining opera-
tions are the target primitive operations that are supported by the target platform. The hardware

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 13. Pub. date: December 2021.



OpenQL: A Portable Quantum Programming Framework for Quantum Accelerators 13:9

Table 1. Supported Quantum Gates

Gate Name Description Example

I Identity kernel.identity(3)

H Hadamard kernel.hadamard(0)

X Pauli-X kernel.x(1)

Y Pauli-Y kernel.y(3)

Z Pauli-Z kernel.z(7)

Rx Arbitrary x-rotation kernel.rx(0, 3.14)

Ry Arbitrary y-rotation kernel.ry(5, 1.75)

Rz Arbitrary z-rotation kernel.rz(2, 0.5)

X90 R_x(π/2) kernel.x90(7)

Y90 R_y(π/2) kernel.y90(5)

mX90 R_x(−π/2) kernel.mx90(2)

mY90 R_y(−π/2) kernel.my90(1)

S Phase kernel.s(3)

Sdag Phase dagger kernel.sdag(13)

T T kernel.t(2)

Tdag T dagger kernel.tdag(12)

CNOT CNOT kernel.cnot(3,5)

Toffoli Toffoli kernel.toffoli(3,5,7)

CZ CPHASE kernel.cz(1,2)

SWAP Swap kernel.swap(0,3)

Custom Custom gate kernel.gate(“name”,2)

Fig. 3. Toffoli gate decomposition.

configuration specification is detailed in Section 6.7. We note that we can disable this decompo-
sition stage when the QX simulator backend [22] is targeted as QX can simulate composite gates
such as the Toffoli gate or arbitrary controlled rotations that are not necessarily available in many
physical devices.

Multi-qubit controlled gates can also be decomposed to 2-qubit controlled gates as discussed in
Reference [34] based on the network implementingCn (U ) operation shown in Figure 4. For more
details, reader can refer to Figure 4.10 in Reference [34]. This generalized decomposition scheme
requires as many ancilla qubits as many control qubits. It is the responsibility of the user to specify
the ancilla qubits to be used for this control decomposition.

OpenQL further extends the facility of control decomposition to multiple gates (kernel). This is
achieved by generating a controlled version of a kernel by using the controlled () API as depicted
in Code Example 3 and then applying decomposition.

6.1.2 Unitary Gate Decomposition. It has been demonstrated that a universal quantum com-
puter can simulate any Turing machine [11] and any local quantum system [28]. A set of gates
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Fig. 4. Multi-qubit controlled decomposition.

1 . . .
2 k . g a t e ( " x " , [ 0 ] )
3 k . g a t e ( " y " , [ 0 ] )
4 k . g a t e ( " h " , [ 0 ] )
5 . . .
6

7 # g e n e r a t e c o n t r o l l e d v e r s i o n o f k .
8 # q u b i t 1 i s used as c o n t r o l q u b i t
9 # q u b i t 2 i s used as a n c i l l a q u b i t
10 ck . c o n t r o l l e d ( k , [ 1 ] , [ 2 ] )

Code Example 3. OpenQL Multi-qubit Controlled kernel.

is called universal if they can be used to construct a quantum circuit that can approximate any
unitary operation to arbitrary accuracy,

H =
1
√

2

[
1 1
1 −1

]
T =

[
1 0
0 eiπ /4

]
, (1)

X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
, (2)

CNOT =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3)

It has been proven that any unitary operation can be approximated to arbitrary accuracy by
using only single qubit gates such as given in Equations (1) and (2) and the CNOT gate, as given
in Equation (3), which belongs to the Clifford+T library [34].
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Fig. 5. Quantum shannon decomposition [44].

A unitary matrix is used to represent each quantum operation of our quantum circuit to enable
decomposition and fusing of quantum operations. The unitary matrix representation of gates is
a useful mathematical tool that allows the compiler to efficiently fuse quantum operations using
simple matrix multiplications and Kronecker product computations. Combining quantum gates is
particularly useful for reducing the number of quantum operations and thus the overall execution
time of a quantum algorithm to perform the largest possible number of quantum operations within
the coherence time of the qubits. For instance, combining a set of single qubit rotations can be
cancelled out if their fusion is equivalent to an identity operation that can be removed from the
quantum circuit.

Any quantum gate can be fully specified using a unitary matrix, and any unitary matrix can be
decomposed into a finite number of gates from some universal set. In OpenQL, this is achieved
using Quantum Shannon Decomposition [44] as show in Figure 5, which has been implemented
using the C++ Eigen library [13]. The universal set of gates used are the arbitrary y-rotation, the
arbitrary z-rotation and the controlled-not gate. The matrices for these are shown in Equations (3)
and (4),

Ry (θ ) =

[
cosθ/2 sinθ/2
−sinθ/2 cosθ/2

]
Rz (θ ) =

[
e−iθ /2 0

0 eiθ /2

]
. (4)

At each level of the recursion, a unitary gate U is decomposed into four unitary gates span-
ning one less qubit, and three uniformly controlled rotation gates. The latter are decomposed
using the technique from Reference [33], and the algorithm is called again on the smaller uni-
tary gates. This recursion continues until the one-qubit unitary gates can be implemented using
ZYZ-decomposition [8].

For an n-qubit unitary, the decomposition results in U (n) = 3/2 ∗ 4n − 3/2 ∗ 2n rotation gates
andC (n) = 3/4∗4n −3/2∗2n controlled-not gates. These gates are added to the circuit and passed
on to the next stages in the compilation.

6.2 Gate-Level Optimization

6.2.1 Gate Dependency Analysis. Once the quantum operations have been decomposed into a
sequence of elementary operations, the gate dependency is analyzed and represented in the form of
a Direct Acyclic Graph where the nodes represent the quantum gates and the edges the dependency
between them. We refer to this graph as the Gate Dependency Graph (GDG). Beside extracting
any parallelism from the quantum circuit, the GDG allows reordering the gates with respect to
their dependencies and helps with extracting local gate sequences that can be fused into smaller
sequence of operations or even cancelled out if equivalent to an identity gate. This allows reducing
the overall circuit depth and thus the algorithm execution time. The fidelity can also be greatly
improved as more operations can be executed within the qubit coherence time.

Figure 6 shows the gate dependency graph of a quantum circuit and a potential gate sequence op-
timization. We note that without gate dependency analysis, some optimization opportunities can
be missed as those gate sequences may be split into small scattered chunks that are not necessarily
specified back-to-back in the original algorithm.
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Fig. 6. Local optimization in gate-dependency graph: Local sequences of single qubit operations can be

merged into smaller sequences of elementary operations or cancelled-out when equivalent to an identity

gate. This can be done by using the unitary matrix representations of the gate and multiplying them to

obtain a unitary matrix that is equivalent to the combined gates. The later could be an identity and thus

removed or could be equivalent to a single gate that can replace the sequence of operations with that single

gate or a shorter equivalent sequence.

6.2.2 Gate Sequence Optimization. Gate sequence optimization uses the unitary representation
of quantum gates to approximate the overall unitary operation. For instance, the equivalent unitary
operation of a sequence of quantum gates operating on the same qubit can be obtained through
matrix multiplication. The equivalent operation could be (i) an identity that can be taken out of
the circuit, (ii) an operation that can be implemented using a shorter sequence of elementary gates,
and (iii) an operation that can be approximated using a shorter sequence of elementary operations.
To control the accuracy of the compilation process, the compiler computes the distance between
the target sequence of operation and the new set of elementary operations. The optimization will
take place if that distance is smaller than the allowed error, which is specified as a compilation
parameter that can be controlled by the user to achieve the desired accuracy.

OpenQL uses a sliding window over each sequence of gates to fuse locally quantum operations
whenever possible. The size of the sliding window is critical to the compilation complexity, which
grows linearly with the number of gates.

6.2.3 Gate Scheduling. Gate scheduling aims to use gate-dependency analysis to extract paral-
lelism and schedule the operations in parallel while respecting dependencies. It uses the knowledge
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of the duration of each gate as specified in the platform’s configuration file to determine the exact
time at which each gate can potentially start its execution.

The duration of each gate in the configuration file is specified in terms of a unit less number
that is required to execute that gate on the specific target. This and all other times are divided by
cycle_time and rounded up to convert these numbers in to clock cycles. A Clock cycle or a “click”
is the basic unit of time for a quantum computer. In short, from the point of view of the quantum
program developer, nothing happens in less than one clock cycle. The job of a compiler is to find
the exact cycle in which an operation can be carried out. This is done in such away that all the
dependencies are respected. Furthermore, as an optimization step, most of the time, compiler also
tries to reduce the number of cycles required to execute all the quantum operations to reduce the
total execution-time of the quantum program.

OpenQL gate scheduling can perform three types of scheduling: an As Soon As Possible

(ASAP), an ALAP or a Uniform ALAP.

• In an ASAP schedule, the cycle values are minimal but it may result in many gates being
executed at the start of the circuit and thus longer cycles between successive gates operating
on the same qubit, and thus a lower fidelity.
• At the other extreme, in an ALAP schedule the cycle values are maximal under the constraint

that the total execution time of the circuit is equal to that of an ASAP schedule of the same
circuit. But while at the start of the circuit relatively few gates are executed per cycle, at
the end many gates will get executed on average. That they are executed as late as possible
is good to get a higher fidelity but executing many gates per cycle may be more than the
control electronics of the quantum computer was designed for, potentially leading to buffer
overflows in that area and therefore to the requirement of a local feedback system to hold
more gates off, effectively making execution time of a circuit longer.
• The Uniform ALAP schedule aims to produce an ALAP schedule with a balanced number of

gates per cycle over the whole execution of the circuit. This scheduling scheme is based on
Reference [21]. It starts by creating an ASAP schedule and then performs a backward pass
over the circuit in an ALAP fashion: filling cycles with gates by moving them toward the
end while respecting the dependencies.

Each of these three types of schedulers, dependencies and gate duration primarily determine the
result. However, scheduler may need to respect more constraints, especially for the real targets.
These constraints are mainly hardware constraints, for example those of control electronics, that
limit the parallelism [25].

Using resource descriptions of those control electronics in the hardware configuration file, the
gate scheduler optionally produces an ASAP, an ALAP or a Uniform ALAP schedule that respects
these resource constraints. The main, and from a hardware design perspective, a crucial property
of the resulting schedules is that hardware can execute gates in the cycles determined by the
scheduler as in a Very Long Instruction Word processor, without the need of maintaining whether
gates are ready, and so on. This significantly reduces the complexity and size of the hardware.

6.3 Mapping of Quantum Circuits

The OpenQL compiler also includes the Qmap mapper [25] that is responsible for creating a version
of the circuit that respects the processor contraints. The main constraints include the elementary
gate set, the qubit topology that usually limits the interaction between qubits to only nearest-
neighbour and the control electronics contraints, e.g., a single Arbitrary Waveform Generator is
used to operate in a group of qubits.
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Fig. 7. Example of an ASAP scheduling of the 3-qubit grover algorithm.

To adapt the circuit to these quantum hardware characteristics, the Qmap mapper: (i) performs
an initial placement of the qubits in which virtual qubits (qubits in the circuit) are mapped to the
hardware qubits (physical qubits in the chip); (ii) it will move non-neighbouring qubits to adjacent
positions to perform a two-qubit gate; and (iii) it will re-schedule the quantum operations respect-
ing their dependencies and all hardware constraints. Note that it uses the hardware properties that
are described in the configuration file.

The mapper aims to find the best qubit placement. Ideally, qubits can be placed in a way that all
two-qubit interactions (two-qubit gates) present in the quantum program are allowed without need
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of any movement. However, this is rarely the case when the program is designed without consid-
ering the placement beforehand. Often qubit routing is required to perform two-qubit operations
between non-neighbouring qubits when the optimal placement does not allow direct interaction
between them. From this perspective, qubit routing can be considered as a critical component of
the qubit mapping, which allows OpenQL to resolve such conflicts.
OpenQL supports this by two algorithms, in sequence:

• Initial Placement: This first pass aims to find the optimal qubit placement in the target physi-
cal device to enable performing two-qubits operations at the lowest possible cost. Currently,
OpenQL can detect where constraints violations and thus illegal operations on such two-
qubit gates between non-neighbouring qubits appear. It tries to find a map of the qubits that
minimizes the overhead and enables qubit interactions. The mapper does this by using an
Integer Linear Programming algorithm as explained in Reference [26]. Such an approach
works perfectly on smaller circuits but takes too much execution time on longer circuits
because of exponential scaling.
• Qubit router: The second pass guarantees that two-qubit gate operations on non-

neighbouring qubits can be performed by inserting a series of gates, e.g., SWAP gates that
move qubits to neighbouring places. For each of such two-qubit gate operations, it deter-
mines the distance of those qubits and when too far apart, it evaluates all possible ways
to make those qubits nearest neighbour. To do so, it evaluates all possible shortest paths
and chooses the one that, for instance, results in the minimum increase of the circuit depth
(number of cycles). Then, the corresponding ‘move’ operations are inserted in the program.

Note that after mapping the number of gates and the circuit depth will increase, increasing the
failure rate thus reducing the algorithm’s reliability.

6.4 Technology-Independent Compilation: cQASM

After gate decomposition, quantum circuit optimization or gate scheduling, a cQASM compiler
is responsible for producing a technology-independent common quantum assembly code called
cQASM. Currently cQASM 1.0 [24] is used to describe the circuit at the gate level and allows the
user to simulate the execution of the quantum algorithm using the QX Simulator [22]. The simu-
lation allows the programmer to verify the correctness of the quantum algorithm or to simulate
and evaluate its behaviour on noisy quantum computing devices.

cQASM 1.0 aims to enable the description of a quantum circuit while abstracting away the
hardware details, for instance, H q[1] describes a Hadamard gate on qubit q[1] without specifying
the low level implementation of that quantum operation on a specific qubit technology. Besides
the description of common quantum operations, cQASM 1.0 allows the specification of parallelism
in the quantum circuit in the form of bundles (lists of gates starting in the same cycle) and SIMD

operations (a gate operating on a range of qubits). This allows the OpenQL scheduler to express
the parallelism that it found in cQASM 1.0.

cQASM 1.0 allows the naming of quantum circuit sections or “sub-circuits”; these sub-circuits
correspond to the names of the quantum kernels and allow the user to relate the produced cQASM
to its high-level algorithm written in Python or C++.

In the cQASM code Example 4, we see the scheduled code produced for the Grover search
algorithm.

6.5 Technology-Dependent Compilation: eQASM

After compiling the technology-independent QASM code, the compiler generates the eQASM,
which targets specific control hardware. The compiler uses different eQASM compilation
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1 v e r s i o n 1 . 0
2

3 # d e f i n e a quantum r e g i s t e r o f 9 q u b i t s
4 q u b i t s 7
5

6 # sub− c i r c u i t f o r s t a t e i n i t i a l i z a t i o n
7 . i n i t
8 prep_z q [ 0 : 6 ] # p r e p a r e a l l q u b i t s i n |0 >
9 x q [ 4 ] # o r a c l e q u b i t
10 h q [ 0 : 4 ] # p a r a l l e l hadamard g a t e s on q u b i t s 0 , 1 , 2 , 3 and 4
11

12 # c o r e s t e p o f Grover ' s a l g o r i t h m
13 # loop with 3 i t e r a t i o n s
14 . g r o v e r ( 3 )
15

16 # s e a r c h f o r | x> = |1011 >
17

18 # o r a c l e i m p l e m e n t a t i o n
19 x q [ 2 ]
20 { t o f f o l i q [ 0 ] , q [ 1 ] , q [ 5 ] | t o f f o l i q [ 2 ] , q [ 3 ] , q [ 6 ] }
21 t o f f o l i q [ 5 ] , q [ 6 ] , q [ 4 ]
22 { t o f f o l i q [ 2 ] , q [ 3 ] , q [ 6 ] | t o f f o l i q [ 0 ] , q [ 1 ] , q [ 5 ] }
23 x q [ 2 ]
24

25 # Grover d i f f u s i o n o p e r a t o r
26 { h q [ 0 ] | h q [ 1 ] | h q [ 2 ] | h q [ 3 ] } # p a r a l l e l g a t e s
27 { x q [ 0 ] | x q [ 1 ] | x q [ 2 ] | x q [ 3 ] }
28 h q [ 3 ]
29 t o f f o l i q [ 0 ] , q [ 1 ] , q [ 5 ]
30 t o f f o l i q [ 2 ] , q [ 5 ] , q [ 6 ]
31 cno t q [ 6 ] , q [ 3 ]
32 t o f f o l i q [ 2 ] , q [ 5 ] , q [ 6 ]
33 t o f f o l i q [ 0 ] , q [ 1 ] , q [ 5 ]
34 h q [ 3 ]
35 { x q [ 0 ] | x q [ 1 ] | x q [ 2 ] | x q [ 3 ] }
36 { h q [ 0 ] | h q [ 1 ] | h q [ 2 ] | h q [ 3 ] }
37 # d i s p l a y
38

39

40 # f i n a l measurement
41 . f i n a l _ s t a t e
42 h q [ 4 ]
43 d i s p l a y # d i s p l a y th e quantum s t a t e when s i m u l a t i n g i n QX
44 . m e a s u r e m e n t _ r e s u l t
45 m e a s u r e _ a l l
46 d i s p l a y

Code Example 4. Grover Algorithm showing several gates scheduled to execute in parallel.

backends depending on the target platform specified in the hardware configuration file. The
eQASM compiler can reschedule the quantum operations to exploit the available parallelism on
the target micro-architecture and map the quantum circuit based on the topology of the target
qubit chip and the connectivity of the control hardware.

6.6 Quantum Computer Micro-Architecture

OpenQL currently has several backends capable of generating eQASM for two different microar-
chitectures discussed in References [14, 16]. The backends convert the compiled cQASM code to
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a specific eQASM code for the target microarchitecture with respect to the hardware constraints
such as the available parallelism and the timing constraints.

6.6.1 Temporal Transformation: Low-level Scheduling. While the QASM-level scheduler pass ex-
tracts all the available gate-level parallelism, the target platform can have limited parallelism due
the control electronic constraints. After analyzing the quantum gate dependencies, the compiler
schedules the instructions either ALAP or ASAP with respect to the gate dependencies and cycle-
accurate durations of the different gates.

6.6.2 Spatial Transformation : Connectivity-Aware Mapping. The OpenQL compiler maps the
qubits with respect to the qubit plane topology which specifies the operation constraints such
as nearest neighbour interactions or operation parallelism limitations. The current version of
OpenQL relies on the two-qubit instruction specification in the hardware configuration file to
extract the constraints, but the mapping task is being shifted to the mapping layer at the gate
level, which will use a dedicated mapping specification in the hardware configuration file and
more advanced mapping techniques. The targeted topology specification should provide enough
abstraction to preserve the technology independence of the gate level compilation layers, and pro-
vide support for various technologies with different topologies.

6.6.3 eQASM Execution Monitoring. Tracing the various instruction executions and timings
of the signals controlling the qubits is critical for debugging and monitoring the hardware. The
OpenQL compiler generates auxiliary outputs for tracing purposes such as timed instructions and
a graphical timing diagram as shown in Figure 8. In this timing diagram, both the digital and analog
signals are shown with their respective starting time and duration. Each signal refers to both its
originating eQASM instruction and the originating cQASM instruction with the precise execution
clock cycle. When the compiler compensates for latencies in a given channel, both the original
and the compensated timing are shown.

6.7 Hardware Configuration Specification: Control Electronics

To compile the produced QASM instructions into executable instructions (e.g., eQASM), the com-
piler needs to know not only the instruction set supported by the target microarchitecture but also
the specification of all the constraints related the hardware resource usage, the operations timing
and the qubits connectivity, and so on.

The hardware specification file aims to provide this information in an abstract way to allow
describing different architectures and enable the compiler to adapt to their constraints and re-
quirements when producing the executable code. This allows extending the compiler support to
many architectures without fundamental changes in its upper technology-independent layers.

The hardware configuration file is specified in JSON format. A simplified example is shown
in Listing 5 that depicts the hardware setup and lists all the supported operations. These opera-
tions are also accompanied with their settings such as the number of qubits, the time scale, the
operations dependencies, their timing parameters, mathematical description, and associated in-
struction set.

The sections of the hardware configuration file are organized as follows:

• eqasm_compiler: This section specifies the eQASM compiler backend that should be used
to generate the executable code. The allows the compiler to target different microarchitec-
tures using the appropriate backend.
• instructions: In this section, the quantum operations supported by the target platform

are described by their duration, their latency in the control system, their unitary matrix
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Fig. 8. Instruction timing diagram generated by OpenQL.

representation, their type (microwave, flux or readout) and finally microarchitecture-specific
information to enable the compiler to generate the executable code.

— Instruction Properties

∗ duration (int): duration of the operation in ns
∗ latency (int): latency of operation in ns
∗ qubits (list): list of affected qubits by this operation (this includes the qubits that are

directly used or made inaccessible by this operation).
∗ matrix (matrix): the unitary matrix representation of the quantum operation.
∗ disable_optimization (bool): setting this field to True prevent the compiler from

compiling away or optimizing the operation.
∗ type (str): one of either ‘mw’ (microwave), ‘flux’, ‘readout’, or ‘none’.

— Microarchitecture Specific Properties

∗ qumis_instr (str): one of wait, pulse, trigger, CW_trigger, dummy, measure.
∗ qumis_instr_kw (dict): dictionary containing keyword arguments for the qumis

instruction.
• gate_decomposition: The gate decomposition section aims to describe the decomposition

of coarse grain quantum operations into the elementary operations defined in the previous
section. Each composite instruction in this section is defined by its equivalent quantum
gate sequence. For instance, a CNOT gate can be described as: “ry90 q1”,“cz q0,q1”,“ry90 q1”.
• resources: Describes the various hardware constraints that are used by the hardware

constrained scheduling algorithm
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• topology: Describes the qubit grid topology, i.e., qubits and their connnections for
performing two-qubit gates

1{
2 " eqasm_compiler" : "qumis_compiler",
3

4 " hardware_settings": {
5 "qubit_number": 2,
6 "cycle_time" : 5,
7 "mw_mw_buffer": 0,
8 "mw_flux_buffer": 0,
9 ...

10 },
11 "instructions": {
12 "rx180 q1" : {
13 "duration": 40,
14 "latency": 20,
15 "qubits": ["q1"],
16 "matrix" : [ [0.0,0.0], [1.0,0.0],
17 [1.0,0.0], [0.0,0.0] ],
18 " disable_optimization": false,
19 "type" : "mw",
20 "qumis_instr": "pulse",
21 " qumis_instr_kw": {
22 "codeword": 1,
23 "awg_nr": 2
24 }
25 },
26 "rx180 q0" : {
27 "duration": 40,
28 "latency": 10,
29 "qubits": ["q0"],
30 "matrix" : [ [0.0,0.0], [1.0,0.0],
31 [1.0,0.0], [0.0,0.0] ],
32 " disable_optimization": false,
33 "type" : "mw",
34 "qumis_instr": "codeword_trigger",
35 " qumis_instr_kw": {
36 " codeword_ready_bit": 0,
37 " codeword_ready_bit_duration " : 5,
38 "codeword_bits": [1, 2, 3, 4],
39 "codeword": 1
40 }
41 },
42 "prepz q0" : {
43 "duration": 100,
44 "latency": 0,
45 "qubits": ["q0"],
46 "matrix" : [ [1.0,0.0], [0.0,0.0],
47 [0.0,0.0], [1.0,0.0] ],
48 " disable_optimization": true,
49 "type" : "mw",
50 "qumis_instr": "trigger_sequence",
51 " qumis_instr_kw": {
52 " trigger_channel": 4,
53 "trigger_width": 0
54 }
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55 }
56 },
57

58 " gate_decomposition": {
59 "x q0" : ["rx180 q0"],
60 "y q0" : ["ry180 q0"],
61 "z q0" : ["ry180 q0","rx180 q0"],
62 "h q0" : ["ry90 q0"],
63 "cnot q0,q1" : ["ry90 q1","cz q0,q1","ry90 q1"]
64 },
65

66 "resources" : {
67 },
68

69 "topology" : {
70 }
71 ...
72}

The operation duration, latency and the target qubits are used by the eQASM backend to analyze
the dependencies of the instructions. This information is critical for different compilation stages,
for instance the duration of an instruction and its qubit dependency is crucial for the low-level
hardware-dependent scheduling stage that use these information to schedule the instructions.

The latency field is used by the backend compiler to compensate for the instruction latency by
adjusting the instructions starting times to synchronize different channels with different latencies.
Different latencies could exist in different control channels due to propagation delays through
different cables, control latencies in waveform generators or readout hardware.

7 OPENQL APPLICATION

OpenQL has been used to program several experiments and algorithms on various quantum com-
puter architectures and also on different qubit technologies, namely superconducting and semi-
conducting qubits.

7.1 Superconducting Qubit Experiments

We used OpenQL to compile quantum code and implement various experiments on several quan-
tum chips with 2, 5, and 7 qubits using two different microarchitectures, namely QuMA 1.0 [16]
and QuMA 2.0 [15], for controlling the qubits using two different instruction sets. Figure 9 shows
the flow used to demonstrate OpenQL capabilities on a superconducting qubit platform located
at QuTech in Delft. In particular, we implemented several standard experiments such as Clifford-
based Randomized Benchmarking RB [31], AllXY [39] and other calibration routines, such as Rabi
oscillation [39]. For each experiment, the same high-level OpenQL code has been reused on differ-
ent setups and devices without changes, only the hardware configuration file has been changed
to specify each target hardware setup and its constraints to instruct the compiler how to generate
the appropriate code for each platform. Apart from the above basic experiments, OpenQL has also
been used to compile code for the following applications:

(1) Net-zero two qubit gate [41]
(2) 3 qubit repeated parity checks [10]
(3) Variational quantum eigen solver [42]
(4) Calculating energy derivatives in quantum chemistry [35]
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Fig. 9. OpenQL demonstration flow on a superconducting qubit processor in QuTech, TU delft.

7.2 Semiconducting Qubit

To evaluate the portability of OpenQL over different qubit technologies, the AllXY experiment has
been reproduced on both superconducting qubit and semiconducting qubit devices using the same
code and different configuration files. We used a Si-Spin qubit device [53] controlled by different
control electronics, the hardware configuration file was changed to reflect the control setup and
enable the compiler to automatically adapt the generated code to the target system: the compiler
took into account the latencies of the different signal generators and measurement units involved
in the setup and rescheduled all the quantum operations accordingly to compensate for those
latencies and provide coherent qubit control.

8 CONCLUSION

In this article we presented the OpenQL quantum programming framework that includes a high-
level quantum programming language and its compiler. A quantum program can be expressed
using a C++ or Python interface and compiler translates this high-level program into a cQASM
to target simulators. This program can further be compiled for a specific architecture targeting
physical quantum computer. OpenQL has been used for implementing several experiments and
quantum algorithms on several quantum computer architectures targeting both superconducting
and semiconducting qubit technologies.
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