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ABSTRACT

Bad smells have been defined to describe potential problems in code,

possibly pointing out refactoring opportunities. Several empirical

studies have highlighted that smells have a negative impact on com-

prehension and maintainability. Consequently, several approaches

have been proposed to detect and restructure them. However, stud-

ies on the inter-relationship of occurrence of different types of

smells in source code are still lacking, especially those focused on

the quantification of this inter-relationship. In this work, we aim at

understand and quantify the possible the inter-relation of smells

Large Class - LC, Complex Class - CC and Duplicate Code - DC. In
particular, we investigate patterns of LC and CC regarding the pres-

ence or absence of duplicate code. We conduct a quantitative study

on five open source projects, and also a qualitative analysis to mea-

sure and understand the association of specific smells. As one of

the main results, we highlight that there are "occurrence patterns"

among these smells, for example: either in Complex Class or in the

co-occurrence of Large Class and Complex Class, clones tend to be

more prevalent in highly complex classes than less complex classes.

The found patterns could be used to improve the performance of

detection tools or even help in refactoring tasks.
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1 INTRODUCTION

Software systems need to evolve continuously to cope with new

requirements and environment changes. High-quality source code

plays an important role in this context because the code itself is

required to be easy to understand, analyze, change, maintain, and

reuse [11]. However, software developers eventually produce sub-

optimal code (not at the highest standard), possibly introducing

design problems, i.e., they produce code structures that violate fun-

damental principles in software engineering, such as, high cohesion

and low coupling. Bad smells have been proposed as a metaphor for

sub-optimal code structures, and have gained attention after Fowler

and Beck [8] proposing that those structures could be refactored

in a systematic way to produce better quality code. On the other

hand, bad smells may not be as harmful as generally claimed, in

other words, they are not always associated with undesirable or

problematic situations [21]. For instance, Rahman et al. [17] report

that bugs are not significantly associated with Duplicated Code.
Also, in some situations, writing code with the presence of bad

smells is even the best option for developers [26].
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Despite the large body of knowledge already produced on code

bad smells, there is still room for investigating better this topic

[21]. There may be common sense knowledge that may not hold as

expected in real-world projects. An interesting example has been

shown by Tufano et al. [24], where their findings “contradict com-
mon wisdom, showing that most of the smell instances are introduced
when an artifact is created and not as a result of its evolution". In
our work, we start from the observation that smells seems to be a

fragmented metaphor for analyzing code entities because they are

defined to characterize a single sub-optimal structure in the code.

However, code entities do not manifest only a pure view of such

metaphors, i.e., an entity may manifest more than one kind of smell

simultaneously. So, in this work, we target a phenomenon that is

not much addressed in the literature: the co-occurrence of different

smell types in the same code entity. We aim at investigating the

inter-relation between multiple kinds of bad smells. In particular,

we study the inter-relation of smells Duplicate Code (DC), Large
Class (LC) and Complex Class (CC). For instance, we aim at verifying

the actual extent of common wisdom raised by Fowler and Beck [8],

when they explain the smell Large Class and suggest an interplay

with Duplicate Code: “...a class with too much code is prime breeding
ground for duplicated code...". Moreover, there could be other sce-

narios, for instance, where complex and large classes could contain

code snippets cloned in other also complex and large classes. This

potential pattern could be possibly useful for software engineers,

in particular, to improve their rules of code review (e.g., check the

possible existence of clones in complex and large classes to improve

three kinds of sub-optimal code structures simultaneously). Sum-

ming up, we expect that such possible inter-relationships could be

unveiled by analyzing how the co-occurrence of complex and large

class smells may actually affect the prevalence of clones.

The smells Duplicate Code, Large Class and Complex Class are the
focus of this paper because: i) these smells are recurrent in literature

but, to the best of our knowledge, no paper has investigated their

inter-relation; ii) those smells are commonly found in the source

code of several projects and the number of instances of them is large

enough to allow statistical analysis; iii) semantically there seems to

be a relationship between themselves, so we aim to investigate if

the following hypothesis actually holds: the complex entities with

many control flow statements could be prone to the occurrence of

clones, in particular, when a large number of conditional expres-

sions are present and perform the same code or slightly different

codes (differing only in their conditions)
1
. Moreover, there is still

the fact that the code smell metaphor has been proposed to deliver

a boolean value, e.g., a class is large or not. However, the intensity

of a smell may indicate its severity. For instance, Palomba et al. [16]

1
https://refactoring.guru/smells/duplicate-code
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have improved a bug prediction model adding the intensity of the

smell as a predictor. In this paper, we study the interplay of smells

according to their co-occurrence and intensity in different combi-

nations. The main contributions of the paper are: i) we expand the

knowledge about the prevalence of the co-occurrence of Duplicate
Code, Large Class and Complex Class. In particular, we investigate

patterns of LC and CC regarding the presence or absence of dupli-

cate code; ii) we reveal the occurrence of patterns among smells,

e.g., the prevalence of clones is much associated to the occurrence

of the smell Complex Class than to the isolated occurrences of Large
Class; iii) to the best of our knowledge, this is the first work to use

intensity of smells to finding patterns among several smells; iv) we

also introduce practical implications of our results on strategies

used to detect smells and on to refactoring planning.

Structure. The remainder of this paper is structured as follows:

in the next section, we present background information and review

the related work. The Section 3 describes the design of our empirical

study, while Section 4 reports the obtained results. Next, the Section

5 discusses and provides a qualitative perspective of our results. In

Section 6, we present the limitations and threats. Finally, in Section

7, our conclusions are drawn.

2 BACKGROUND AND RELATEDWORK

Next, we present some concepts used and discuss related work.

2.1 Background

We use the concept of interrelationship and intensity of smells.

First, we show different types of interrelationships, and then we

define a metric to measure how intense each smell instance is.

2.1.1 Interrelationship of smells.
Smells could be interrelated in several different manners. We

present three possible different forms of smell interrelationship: by
co-occurrence, by static dependency and by commit dependency. In
our work, we consider only the interrelationship by co-occurrence.

The class C1 (Figure 1) has three different kinds of smells (𝑆1𝐶 ,
𝑆2𝐶 , 𝑆3𝐶 ) and the class C2 show another kind of smell (𝑆4𝐶 ). These

two entities have four smells and they occur at the level of class.

In the method level, these classes have other three kinds of smells

(𝑆5𝑀 , 𝑆6𝑀 , 𝑆7𝑀 ). Observe that the methodM1 andM2 has the same

kind of smell (𝑆6𝑀 ).

Smells can be interrelated by the source code structure, either by

a co-occurrence or by a static dependency. The interrelationship by

co-occurrence considers the existence of smells only in one entity at

a time, e.g., the file of the class C1 have five smells (𝑆1𝐶 , 𝑆2𝐶 , 𝑆3𝐶 ,
𝑆5𝑀 , 𝑆6𝑀 ) and they can be grouped by the granularity of entity

(class/method). The interrelationship by static dependency takes

into account the coupling with other entities and the existence of

smells in them, e.g., the method M1 inside the class C1 invokes

the methods M2 and M3 of the class C2. Thus, these seven smells

(𝑆1𝐶 , 𝑆2𝐶 , 𝑆3𝐶 , 𝑆4𝐶 , 𝑆5𝑀 , 𝑆6𝑀 , 𝑆7𝑀 ) are interrelated by a static
dependency of the respective entities, and they can be grouped

by granularity of each entity. The change history of source code

could also be used to interrelate smells, in particular, using commits.
Considering the methods M2 and M3, there is no interrelationship

by the source code structure. Nevertheless, taking into account

commits, if those methods were possibly changed inside the same

commit, they would be commit-interrelated, meaning that possibly

smells 𝑆6𝑀 , 𝑆7𝑀 would have some impact on M3.
Considering that the smells can be interrelated in different forms,

we clarify that in this paper only the interrelationship of smells by

co-occurrence at the class level are studied.

60
Capítulo 4. Estudo Empírico Exploratório:

Co-estudo de Smells

Código 1 – Classe C1.

1 public class C1 { 𝑆1𝐶 , 𝑆2𝐶 , 𝑆3𝐶

2 void M1() { 𝑆5𝑀

3 M5();
4 M4();
5 }
6 void M2() { 𝑆5𝑀 ,𝑆6𝑀

7 M5();
8 M6();
9 }

10 void M3() { 𝑆8𝑀

11 M2();
12 M5();
13 }
14 }

Código 2 – Classe C2.

1 public class C2 { 𝑆4𝐶

2 void M4() { 𝑆6𝑀

3 ...
4 }
5

6 void M5() { 𝑆7𝑀

7 ...
8 }
9

10 void M6() {
11 ...
12 }
13

14 }

1 public class C1 { 𝑆1𝐶 , 𝑆2𝐶 , 𝑆3𝐶

2 public void M1() { 𝑆5𝑀 ,𝑆6𝑀

3 C2 obj = new C2();
4 obj.M2();
5 obj.M3();
6 // ...
7 }
8 }

1 public class C2 { 𝑆4𝐶

2 public void M2() { 𝑆6𝑀 , 𝑆7𝑀

3 // ...
4 }
5 public void M3() {
6 // ...
7 }
8 }

No exemplo acima, usando a estrutura do código, os smells podem ser inter-
relacionados por meio da: i) co-ocorrência: no caso da classe C1, os smells 𝑆1𝐶, 𝑆2𝐶,
𝑆3𝐶, 𝑆5𝑀 , 𝑆6𝑀 , 𝑆8𝑀 estão no mesmo arquivo e podem ser agrupados conforme sua
granularidade (classe/método); ii) Dependência/Associação: considerando as invoca-
ções realizadas pelo método M2, os smells 𝑆1𝐶, 𝑆2𝐶, 𝑆3𝐶, 𝑆4𝐶, 𝑆5𝑀 , 𝑆6𝑀 , 𝑆7𝑀 estão
inter-relacionados e também podem ser agrupados conforme sua granularidade (classe/-
método).

Outra forma de inter-relacionar os smells pode ser por meio do histórico de alterações
do código (commits). Observe que os smells dos métodos M3 e M4 não apresentam
inter-relacionamento pela estrutura do código. Contudo, ao analisar os históricos de
commits observamos que estes métodos foram alterados simultaneamente para corrigir
determinado bug. Assim, considerando a correção do bug, podemos inferir algum tipo de
relação semântica/sistêmica entre esses métodos, visto que a distância dos commits é
zero pelo fato de que estes métodos foram alterados no mesmo commit.

Pelos casos apresentados, podemos observar que há diversas formas de inter-relacionar
os smells. Em geral, as formas surgem a partir da inferência de algum tipo de relação
semântica e/ou sistêmica entre as entidades que apresentam instância(s) de tipos de smell.

Figure 1: Interrelationship of smells (co-occurrence & dependency).

2.1.2 Intensity of Smells.
Steidl and Eder [23] describes an approach to compute smell

intensity based on refactoring techniques (pull-up method, extract
method) used to remove the smells. They compute the smell in-

tensity, considering the size (LOC) and the number of parameters

necessary to complete the refactoring task. Fontana et al. [7] con-

sider the threshold of metrics used on smell detection to classify

the level of intensity of smells. On their approach, the more the

value of a given metric exceeds your threshold value, the greater is

the smell intensity. Based on the distribution of these metrics, they

classified the smell intensity in five range (Very-Low, Low, Mean,
High, Very-High).

We also consider the smell intensity on this study of interrelation-

ship of smells. The intensity of smells could possibly improve the

identification of patterns, e.g., as the smells become more critical,

they could possibly end up associating themselves with other types

of smells. Thus, in context of smell Complex Class, we can analyze

whether when complexity increases, the prevalence of other types

of smells also increases.

We use an approach similar that proposed by Fontana et al. [7] to

compute the intensity of smells, but we simplify on only two ranges

(Low or High). We decided not to use a continuous variable for

intensity because it would bemore difficult to find any pattern using

such representation, so a binary representation would have more

chances to explain possible patterns. Let 𝐸 = {𝑒1𝑆
1

, 𝑒2𝑆
2

, ..., 𝑒𝑛𝑆𝑛 }
be a set of distinct entities 𝑒𝑖𝑆𝑖 , where in each one co-occurs a set

𝑆𝑖 of different smells (1 ≤ 𝑖 ≤ 𝑛). Let 𝑆 =
⋃ 𝑛

𝑖=1 𝑆𝑖 be the set of

all distinct smells. Let 𝑠 𝑗 be a smell in 𝑆 . In order to compute the

intensity of a smell 𝑠 𝑗 in an entity 𝑒𝑖 , we extract a subset 𝐸𝑠 𝑗 of 𝐸

with all entities of 𝐸 occurring 𝑠 𝑗 , i.e., 𝐸𝑠 𝑗 = {𝑒𝑆′ | 𝑒𝑆′ ∈ 𝐸∧𝑠 𝑗 ∈ 𝑆 ′}.
Then, let the set 𝑀𝑗 contain the computed metrics

2 𝑚 𝑗 (𝑒) used to

identify this smell 𝑠 𝑗 in each 𝑒 ∈ 𝐸𝑠 𝑗 . Finally, for each entity 𝑒𝑖
(1 ≤ 𝑖 ≤ 𝑛) with smell 𝑠 𝑗 (1 ≤ 𝑗 ≤ 𝑆), we use the Equation 1 to

classify their intensities.

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑠 𝑗 (𝑒𝑖 ) =
{
𝐻𝑖𝑔ℎ, 𝑖 𝑓 𝑚 𝑗 (𝑒𝑖 ) ≥ 𝑚𝑒𝑑𝑖𝑎𝑛(𝑀𝑗 )
𝐿𝑜𝑤, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

2Complex Class = Cyclomatic Complexity, Large Class = Number of methods declared

+ Number of attributes declared, both used by DECOR. Duplicate Code = number of

tokens, used by PMD tool.
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2.2 Related Work

According to Oizumi et al. [13] each smell alone may represent

only a partial embodiment of a design problem. They suggest that

smells tend to "flock together" to realize a design problem. Thus,

they investigated whether and how smelly code relationships can

help developers to locate design problems. To achieve this purpose,

they propose a strategy to identify groups of inter-related smells.

This strategy is composed of syntactic and semantic forms used to

connect elements of a software, as example: two smells are syntacti-

cally related if their host program elements are connected through

method calls or inheritance relationships. Their analysis indicates

that certain forms to connect elements are consistent indicators

of both congenital and evolutionary design problems, with accu-

racy often higher than 80%. They also found the combined use of

syntactic and semantic forms to connect elements of a software

represents a more effective approach for locating design problems.

Recent studies suggest that developers should ignore smells oc-

curring in isolation. Instead, they should focus on analyzing smell

agglomerations, e.g., a entity affected by multiple smells. However,

there is limited understanding if developers can effectively identify

a design problem in stinkier code. Developers may struggle to make

a meaning out of inter-related smells affecting the same program

location. In this context, Oizumi et al. [14] applied an approach

to analyze if and how developers can effectively find design prob-

lems when a program location is affected by multiple smells. The

analysis revealed that only 36.36% of the developers found more

design problems when they explicitly use smell agglomerations

to identify design problems as compared to single occurrence of

smells. On the other hand, 63.63% of the developers reported much

lesser false positives. Developers reported that analyses of smell

agglomerations scattered in class hierarchies or packages are often

difficult, time consuming, and requires proper visualization support.

Moreover, it remains time-consuming to discard stinky program

locations that do not represent design problems.

Santana et al. [19] have also characterized co-occurrences as

agglomerations, i.e., when two or more bad smells occur in the same

snippet of code. They studied four kinds of bad smells: Large Class,

Long Method, Feature Envy and Refused Bequest using association

rules and found that classes with two or more smells are frequent

in the source code, even when the smells in a class are of the same

type. They also found that agglomerations are highly spread in the

source code having significant effect on modularity metrics.

Fontana et al. [6] focus their attention on the possible relations

existing among code smells and their co-occurrence (how many

entities are affected by more than one smell), with the aim to find

and detect some architecturally relevant code smells. They found

that a significant percentage of the detected instances has a relation

with other instances. For example, 26% of God Classes use at least a
Data Class, and that 53% and 70% of methods affected by Shotgun
Surgery and Dispersed Coupling, respectively, are called from (at

least) one class or method affected by a code smell. This observation

confirms other results and theories proposed in different studies,

suggesting that code smells tend to cluster together and interact

in many ways, and that clusters of smells have more effect on

maintainability than isolated smells.

According to Palomba et al. [15], there is little knowledge re-

garding which smell types tend to co-occur in code. To enlarge the

knowledge on the phenomenon, they provide a large-scale repli-

cation of previous studies, taking into account 13 smell types on

a dataset composed of 395 releases of 30 software systems. They

identified six pairs of code smells that co-occur very often, some

of these co-occurrences are quite expected (e.g., Long Method and

Spaghetti Code), others are not (e.g., Message Chains and Refused
Bequest), recalling the need for studying more deeply the reasons

behind their appearance and their apparent relationships.

Jaafar et al. [10] investigated the relationship between code

clones and 15 anti-patterns (smells) documented by Brown et al.

[2]. They conducted the study on three open-source systems and

results show that clones and anti-patterns is a frequent observation:

at least, more than 52% of anti-pattern classes have clones, while

59% to 78% of classes with clones are participating in anti-patterns.

They also observe that classes having clones and anti-patterns are

significantly more fault-prone than other classes. The analysis also

reveals that a high number of smell co-occurrence among classes in-

creases the risk of fault induction in software systems and decrease

their reliability. Finally, they suggest that the detection of smell

co-occurrence among classes helps to manage change commits and

to avoid faults induction during the maintenance activities.

Yamashita andMoonen [27] investigated interactions (e.g., smells

that were co-located in the same artifact) among twelve different

smells and how these interactions can lead to maintenance prob-

lems. Analyzing how developers conducted tasks on four different

systems, they found evidence that certain inter-smell relations were

associated with problems during maintenance, e.g.: i) artifacts con-

taining ISP Violation relates to the presence of inconsistent design;
ii) classes contained many methods that accessed data/methods

from different areas of the system (i.e., methods displaying Feature
Envy) are related to the faults because developers missed areas of

the code that needed to be consistently changed after changes were

done on the methods displaying Feature Envy.
Previous studies have not investigated the relation between the

smells Duplicate Code, Large Class and Complex Class. Moreover,

studies that take into account the intensity of these smells are

also lacking. Thus, in this study we sought to provide additional

evidence on the relationship between some kinds of smells.

3 STUDY SETTING

In this section we define the research questions of the study, ex-

plaining the process followed to assess them.

3.1 Research Questions

The goal of the study is to analyze the interplay of co-occurrence of
smellsDuplicate Code (DC), Large Class (LC) and Complex Class (CC).
The motivation for this analysis is to assess to which extent the

several combinations of smells LC and CC in different combinations

of (co-)occurrence associates with cloning in the respective entities.

To organize the analysis, the study has been divided into two parts:

i) analysis considering the absolute frequency of smells; ii) analysis

considering the intensity of smells.



SBES ’21, September 27-October 1, 2021, Joinville, Brazil Sobrinho E. V. P. and Maia M. A.

In the first part of our research questions, we investigate what

happens with the prevalence of clones as the frequency of CC and

LC smells co-occurring in a class changes.

RQ1.1 Is there a difference in the prevalence of clones comparing

the entities where only CC occur and those entities where

CC and LC co-occur? If so, how much this difference is

associated to the smells CC and/or LC?
As shown in Figure 2, we compare two groups of classes:

1) on the left, all classes with smells CC, not occurring the
smell LC and 2) on the right, all classes with co-occurrence

of smells CC & LC. In both groups, we have classes with

and without the smell DC.
RQ1.2 Is there a difference in the prevalence of clones comparing

the entities where LC and CC co-occur and those entities

where only LC occur? If so, how much this behavior is

associated to the smells LC and/or CC?
Similarly to the previous RQ as also shown in Figure 2,

we also compare two groups of classes: 1) on the left, all

classes with smells LC and that does not have the smell

CC and 2) on the right, all classes with co-occurrence of

smells CC & LC. Again, both groups have classes with

and without the smell DC.

Single Smell (CC | LC)

Classes 
with 

Clones

Classes 
without 
Clones

Classes 
with 

Clones

Classes 
without 
Clones

Classes 
with 

Clones

Classes 
without 
Clones

Classes 
with 

Clones

Classes 
without 
Clones

RQ 1.1 (CC) 
RQ 1.2 (LC)

Co-occurrence (CC & LC)

Figure 2: Diagram of RQ1.1 and RQ1.2.

In the second part of our research questions, we evaluate what

happens to the clone prevalence when the intensity of a smell or a

set of smells becomes more critical.

RQ2.1 Is there any association between the prevalence of clones

and the intensity of smell Complex Class?
This research question investigates the relationship be-

tween the occurrence of clones and entities classified as

less complex and those more complex. Figure 3 shows

that, for RQ2.1, we compare two groups of classes, 1) on

the left, all classes with only smell CC in Low intensity
and 2) on the right, all classes with this smell in High in-
tensity. In both groups, we have classes with and without

smell DC. Additionally, in these RQs, we do not consider

the co-occurrence of smells (CC & LC).

RQ2.2 Is there any association between the prevalence of clone

and the intensity of smell Large Class?
Similarly to the previous RQ2.1, but now for LC, this ques-
tion investigates the relationship between the occurrence

of clones and entities classified as Large Class only. This
relationship is compared under two levels of Large Class
intensity (Low and High).

RQ2.3 Is there any association between the prevalence of clone

and the intensity and co-occurrence of smells Large Class
and Complex Class?

Single Smell (CC | LC)
SmellLow SmellHigh

Classes 
with 

Clones

Classes 
without 
Clones

Classes 
with 

Clones

Classes 
without 
Clones

Classes 
with 

Clones

Classes 
without 
Clones

Classes 
with 

Clones

Classes 
without 
Clones

RQ 2.1 (CC)
RQ 2.2 (LC)

Figure 3: Diagram of RQ2.1 and RQ2.2.

This research question investigates the relationship be-

tween the occurrence of clones and co-occurrence of

smells Large Class and Complex Class, which are ana-

lyzed in two levels of intensity (Low vs. High). As shown
in Figure 4, we formulated two models based on smell

co-occurrence and intensity to analyze the impact of the

intensity of Large Class and Complex Class: 𝐶𝐶𝐿𝑜𝑤
& 𝐿𝐶

vs 𝐶𝐶𝐻𝑖𝑔ℎ
& 𝐿𝐶 and 𝐶𝐶 & 𝐿𝐶𝐿𝑜𝑤

vs 𝐶𝐶 & 𝐿𝐶𝐻𝑖𝑔ℎ
.

Complex Class (CC) & Large Class (LC)

CC & LCLow CC & LCHigh

CCLow & LC CCHigh & LC

co
m

pa
re

 m
od

el
s

Classes 
with 

Clones

Classes 
without 
Clones

Classes 
with 

Clones

Classes 
without 
Clones

Classes 
with 

Clones

Classes 
without 
Clones

Classes 
with 

Clones

Classes 
without 
Clones

RQ 2.3

RQ 2.3

Figure 4: Diagram of RQ2.3.

3.2 Study Variables

The dependent variables considered in our study, for all the re-

search questions, are the presence or absence of clones being ob-

served across different software. In other words, this variable is

dichotomous (𝑌𝐷𝐶 ) and denotes the presence of smell Duplicate
Code. The independent variables are the factors related to the

smell intensity (LC,CC), single occurrence of smell (LC,CC) and/or

co-occurrence of smells (LC,CC) and are defined according to the

research questions:

RQ1.1. We have a categorical variable with two possible values:

one denoting the occurrence of the smell Complex Class only and

another denoting the co-occurrence of smells Complex Class and
Large Class. The model is: 𝑌𝐷𝐶 = 𝛽0 + 𝛽1𝑋𝑆𝑖𝑛𝑔𝑙𝑒_𝐶𝑜-𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒

RQ1.2. Similar to the previous question, we also have a categor-

ical variable limited to two values: one denoting the occurrence of

the smell Large Class only and another denoting the co-occurrence

of smells Complex Class and Large Class.. Thus, the model also is

similar.

RQ2.1. For this research question, the categorical variable de-

notes the intensity of the smellComplex Class in two levels (𝐿𝑜𝑤 |𝐻𝑖𝑔ℎ).
The model may be represented as: 𝑌𝐷𝐶 = 𝛽0 + 𝛽1𝑋𝐿𝑜𝑤_𝐻𝑖𝑔ℎ .

RQ2.2. In this case, the categorical variable 𝑋 denotes the in-

tensity of the smell Large Class. Thus, the model is similar to the

previous question.
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Table 1: Studied open source projects.

Project Version

Java

File

LOC

Snippets

Cloned

Classes

With

Clones

Large

Class

Complex

Class

Co-occurrence

LC & CC

ArgoUML 0.34 1233 105795 214 79 63 37 119

Cassandra 3.11 2062 333211 760 31 38 44 110

Lucene 6.2.1 3848 533926 2255 137 54 100 160

Hadoop 2.6.0 1417 194518 605 25 26 25 68

Ant 1.8.2 1182 127042 170 33 10 33 96

RQ2.3. The categorical variable denotes the intensity (𝐿𝑜𝑤 |𝐻𝑖𝑔ℎ)
of two smells (Complex Class and Large Class). In particular, the

intensity of these smells are investigated when they co-occur in

the same class. Thus, we have two models: i) considering the in-

tensity of the smell Large Class (𝑌 ′
𝐷𝐶

= 𝛽0 + 𝛽1𝑋𝐶𝐶&𝐿𝐶𝐿𝑜𝑤_𝐻𝑖𝑔ℎ
),

and ii) based on the intensity of the smell Complex Class (𝑌 ′′
𝐷𝐶

=

𝛽0 + 𝛽1𝑋𝐿𝐶&𝐶𝐶𝐿𝑜𝑤_𝐻𝑖𝑔ℎ
).

3.3 Studied Systems and Data Extraction

The study consists of 5 Java open source software systems and

having different sizes and domains (see Table 1). ArgoUML is a

UML diagramming system in Java. Lucene is a a high-performance,

full-featured text search engine library. Cassandra is a database

management system. Hadoop is a tool for distributed computing.

Apache Ant is a build tool and library specifically conceived for

Java applications (though it can be used for other purposes).

To answer our research questions, we first need to detect the

smells of the studied systems. To this aim we use existing tools,

PMD
3
and DECOR

4
. The first tool is a token-based approach used

to detect Duplicate Code, in particular the type I
5
. The output of

PMD denotes which snippets of a class also exists in other parts of

the system. This output enables us to classify each clone according

to their locality: i) intra-class, the clones of a class occur only

inside the class itself; ii) inter-classes, a snippet of code classified

as clone occurs only between different classes; iii) mix-classes,

refers to clones occurring inter- and intra-class simultaneously. We

use this tool because it enables us to classify the locality of clones

and because Roy et al. [18] reports an extensive comparison of clone

detection tools and they reported that PMD is good at detecting

identical clones. Moreover, the tool DECOR identifies smells using

detection rules based on the values of internal quality metrics
6
. In

our paper, this tool is used identify the classes with the smells Large
Class and Complex Class. The choice of using DECOR is driven by

the fact that (i) it is a state-of-the-art smell detector having a high

accuracy in detecting smells [12]; and (ii) it applies simple detection

rules that allow it to be very efficient.

Thus, for each class of the analyzed systems, we identify whether

the smells Large Class, Complex Class and/or Duplicate Code are
present. For smelly classes, we also collect the numerical values

of metrics used to identify each smell, e.g., for Complex Class we
collect the Cyclomatic Complexity (McCabe) and for Large Class the
metric NMD (number of methods declared) and NAD (Number of

attributes declared), and for Duplicate Code the number of tokens

3
https://pmd.github.io/

4DEtection & CORrection — https://bitbucket.org/ptidejteam/

5Code are identical except for variations in whitespace, layout and comments [3].
6
An example of detection rule exploited to identify Blob classes can be found at [12].

of clone. These values are used to classify the intensity of smells

(see Equation 1).

3.4 Analysis Method

We build, for each object system and for each research question,

logistic regression models [9] relating a (dichotomous) dependent

variable - indicating the presence or absence of clones - with in-

dependent variables represented by the quality indicators (code

smells and their intensities).

Logistic regression assumptions relate to linearity, independence

of errors, multicollinearity that are assumptions to consider. Con-

sidering all models of our RQs, linearity is not violated, because

they use categorical predictors [5]. Considering that the classes

analyzed in our study are independent and unrelated, we can as-

sume the independence of errors. Multicollinearity is not violated,

because the models use only one categorical predictor. Regarding

the data, for any pair of categorical variables, it is useful to set up a

contingency table to show the cell frequencies. We need to check if

there are not more than 20% of cells with frequencies less than five,

and any of the frequencies equals zero. [5].

For each model we analyze the Odds Ratio (OR) (Schumacker

[20]) which is given by 𝑒𝛽𝑖 . The higher the OR for an independent

variable, the higher its ability to explain the dependent variable. The

interpretation of the OR for the model built using quality metrics

(smells), changes between the kinds of models due to the different

aims of each research question. In general, for our research ques-

tions, the OR for an independent variable indicates the increment

of chances for a class to be subject of clones in consequent of a

one-unit increase of the independent variable.

4 EMPIRICAL STUDY RESULTS

This section discusses the results of our study, aimed at addressing

the research questions. As explained, we performed a analysis of

the assumptions of each logistic regression model. The underlying

data used in this study is open and available [22].

4.1 The Number of Smells as a Factor

This part of our study is related to the research questions that

investigate the prevalence of clones in the (co-)occurrence of the

specific smells Large and Complex Class, not taking the intensity of

these smells into account.

RQ1.1: Is there a difference in the prevalence of clones comparing
the entities where only CC occur and those entities where CC and LC
co-occur? If so, how much this difference is associated to the smells
CC and/or LC?

https://pmd.github.io/
https://bitbucket.org/ptidejteam/
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Table 2: Logistic Regression - RQ1.1.

Project

𝛽0

(SE)

𝛽1

(SE)

AIC R
2

IC for 𝛽1 Significance
of

Predictor
Lower

(5%)
OR

Upper

(95%)

ArgoUML

-0.383
♦

(0.33)

-0.297
♦

(0.38) 205.91 0.003 0.394 0.742 1.415 𝜒2(1)=0.59, 𝑝=0.444

Cassandra

-1.504
▽

(0.39)

-0.127
♦

(0.46) 143.77 0.001 0.415 0.880 1.962 𝜒2(1)=0.07, 𝑝=0.787

Lucene

-0.364
△

(0.20)

0.238
♦

(0.25) 360.55 0.002 0.832 1.269 1.944 𝜒2(1)=0.86, 𝑝=0.353

Hadoop

-1.992
⊳

(0.61)

0.893
♦

(0.67) 98.82 0.021 0.873 2.444 8.496 𝜒2(1)=2.00, 𝑝=0.157

Ant

-1.504
▽

(0.45)

0.291
♦

(0.51) 138.64 0.002 0.595 1.337 3.274 𝜒2(1)=0.33, 𝑝=0.564

Significance of Coefficients (R® ): 0.001
▽
; 0.01

⊳
; 0.05

⊲
; 0.1

△
; 1
♦
.
⊗
Significant Predictor: 𝑝 < 𝛼 .

This research question aims at comparing the prevalence of

clones between the classes that Complex Class does not co-occur
with Large Class and those which these smells co-occur. The model

to answer this research question has a predictor variable and this is

a categorical variable that describes two categories of smell Complex
Class. Before building the logistic regression model, we performed

a assumptions analysis of statistical test. In particular, we verify the

possible frequency problems related to the dataset. This analysis

reveals that the dataset of all projects satisfy those requirements.

The next step of our analysis verifies the significance of the pre-

dictor variable (see Table 2). For this research question, the 𝑝-value

of 𝜒2 test of all projects is not less than 0.10. Thus, we can not reject

the null hypothesis that the predictor variable and the prevalence

of clones (dependent variable) are independent. Therefore, for these

software samples, there is no statistically significant evidence that

the prevalence of clones in classes that exhibit only the smell Com-
plex Class is different from the prevalence of clones occurring in the

classes where the smells Large Class and Complex Class co-occur.

RQ1.2: Is there a difference in the prevalence of clones comparing the
entities where LC and CC co-occur and those entities where only LC
occur? If so, how much this behavior is associated to the smells LC
and/or CC?

Table 3: Logistic Regression - RQ1.2.

Project

𝛽0

(SE)

𝛽1

(SE)

AIC R
2

IC for 𝛽1 Significance
of

Predictor
Lower

(5%)
OR

Upper

(95%)

ArgoUML

-0.485
△

(0.25)

-0.195
♦

(0.32) 239.68 0.002 0.483 0.822 1.407 𝜒2(1)=0.36, 𝑝=0.548

Cassandra

-1.887
▽

(0.47)

0.255
♦

(0.54) 131.64 0.002 0.550 1.291 3.387 𝜒2(1)=0.23, 𝑝=0.633

Lucene

-0.452
♦

(0.27)

0.326
♦

(0.32) 297.35 0.004 0.821 1.386 2.367 𝜒2(1)=1.05, 𝑝=0.306

Hadoop

-1.435
⊳

(0.49)

0.336
♦

(0.57) 105.93 0.004 0.568 1.400 3.807 𝜒2(1)=0.36, 𝑝=0.549

Ant

7.1𝐸 − 15
♦

(0.63)

-1.213
△

(0.67) 121.21 0.026 0.095 0.297 0.922 𝜒2(1)=3.09, 𝑝=0.079⊗

Significance of Coefficients (R® ): 0.001
▽
; 0.01

⊳
; 0.05

⊲
; 0.1

△
; 1
♦
.
⊗
Significant Predictor: 𝑝 < 𝛼 .

This research question is similar to the previous (RQ1.1), however,

we investigate the prevalence of clones between the classes that

Large Class does not co-occur with Complex Class and those which

these smells co-occur.

Based on our protocol of analysis, for each project, we observed

that this dataset has neither assumption nor frequency problems

(see Subsection 3.4). Thus, we can build the logistic regressionmodel.

Analyzing the significance of predictor of models (see Table 3), we

observe that only for the Ant project the predictor variable and the

prevalence of clones are associated. Thus, for other projects, the

dependent and independent variables are not associated.

Considering only the logistic regression model of Ant project,

we note that the coefficient 𝛽1 also is significant and that the OR is

less than one (0.29). This indicates that the prevalence of clones is

more related to the isolated occurrence of smell Large Class than the
co-occurrence of smells Large Class and Complex Class. This means

that when we compare the chances of clones between classes that

have the isolated occurrence of smell Large Class and those which

the smells Large Class and Complex Class co-occur, the isolated

occurrence of smell Large Class increase in 29% the chances of the

class being involved with smell Duplicate Code. However, for this
case, only 2.6% of the variability of the data can be explained by the

model. Thus, this indicates that there are other factors that help to

explain the prevalence of clones.

4.2 The Intensity of Smells as a Factor

We investigate what happens to the prevalence of clones when the

intensity of the smells Large and/or Complex Classe become more

critical.

RQ2.1: Is there any association between the prevalence of clones and
the intensity of smell Complex Class?

Table 4: Logistic Regression - RQ2.1.

Project

𝛽0

(SE)

𝛽1

(SE)

AIC R
2

IC for 𝛽1 Significance
of

Predictor
Lower

(5%)
OR

Upper

(95%)

ArgoUML

-0.810
⊲

(0.42)

1.370
⊲

(0.75) 50.51 0.069 1.166 3.937 14.512 𝜒2(1)=3.44, 𝑝=0.064⊗

Cassandra

-1.609
▽

(0.44)

0.510
♦

(0.93) 45.44 0.007 0.307 1.666 7.251 𝜒2(1)=0.29, 𝑝=0.592

Lucene

-0.465
△

(0.24)

0.331
♦

(0.44) 138.81 0.004 0.672 1.393 2.882 𝜒2(1)=0.57, 𝑝=0.452

Significance of Coefficients (R® ): 0.001
▽
; 0.01

⊳
; 0.05

⊲
; 0.1

△
; 1
♦
.
⊗
Significant Predictor: 𝑝 < 𝛼 .

This research question investigates the prevalence of clones

between the classes where the smell Complex Class occur at the low
level of intensity and those that have this smell occurring at the

high level of intensity. Observe that for this RQ, we do not consider

the classes that have the co-occurrence of smells Large Class and
Complex Class, which are investigated in RQ2.3.

In order to answer this RQ, firstly we checked the assumptions of

logistic regression. Considering the contingency table of all projects,

we observe that most part (77%) of classes with smell Complex
Class𝐿𝑜𝑤 does not have clones. Calculating the expected frequen-

cies, we observe that the Hadoop and Ant project do not satisfy the

necessary conditions of the statistical test. Thus, these projects will

not be analyzed.
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Table 4 denotes the output of logistic regression models for three

projects. We observe that only for ArgoUML project, we reject

the null hypothesis that the predictor variable and the prevalence

of clones (dependent variable) are independent. Additionally, the

significance of coefficient 𝛽1 to the model of ArgoUML also is sig-

nificant (𝑝−value < 𝛼). Thus, the value of Odds Ratio indicates the

chances of the prevalence of clones to be associated with the inten-

sity of smell Complex Class. In particular, the OR denotes that the

classes with smell Complex Class𝐻𝑖𝑔ℎ
have 3.93 times more chance

to participate in clones than classes that have the smell Complex
Class𝐿𝑜𝑤 . However, for this case, only 6.9% of the variability of the

data can be explained by the model. This means that in addition to

the intensity of this smell there are another factor(s) that help to

explain the prevalence of clones.

RQ2.2: Is there any association between the prevalence of clone and
the intensity of smell Large Class?

Analogously to the RQ2.1, we analyze the prevalence of clones

into the class that have the smell Large Class. Specifically, we in-
vestigate what happens with the prevalence of clones when the

class have a low level of intensity of smell Large Class or when the

intensity of this smell is high.

The first step before building the logistic regression models is

verify the numerical problems. Thus, we construct the contingency

tables and calculate their expected frequencies. From contingency

table, we observe that the most part (67%) of classes with the smell

Large ClassLow does not have clones. Analyzing the expected fre-

quencies, we observed that three projects (Cassandra, Hadoop and

Ant) violate the assumptions related to the numerical problems

(see Subsection 3.4). Thus, these projects are not considered in the

following analysis.

According to the Table 5, the chi-square test is not significant for

any projects. In other words, we do not have any evidence that the

predictor variable and prevalence of clones are dependent/related.

Thus, considering the five projects, we can not found any evidence

of the association between the prevalence of clones and the intensity

of smell Large class. Observe that this analysis does not consider
the co-occurrence of smells Large class with other smells. This will

be considered on the next research question.

Table 5: Logistic Regression - RQ2.2.

Project

𝛽0

(SE)

𝛽1

(SE)

AIC R
2

IC for 𝛽1 Significance
of

Predictor
Lower

(5%)
OR

Upper

(95%)

ArgoUML

-0.405
♦

(0.27)

-0.693
♦

(0.86) 87.03 0.008 0.099 0.5 1.883 𝜒2(1)=0.70, 𝑝=0.402

Lucene

-0.485
♦

(0.31)

0.149
♦

(0.66) 76.12 0.001 0.375 1.16 3.456 𝜒2(1)=0.05, 𝑝=0.823

Significance of Coefficients (R® ): 0.001
▽
; 0.01

⊳
; 0.05

⊲
; 0.1

△
; 1
♦
.
⊗
Significant Predictor: 𝑝 < 𝛼 .

RQ2.3: Is there any association between the prevalence of clone and
the intensity and co-occurrence of smells Large Class and Complex

Class?
This research question investigates the relation of the prevalence

of clones with respect to the co-occurrence of smells Large Class and

Complex Class. In particular, we examined whether the intensity

of these smells can be associated to the presence of clones. This

means that we can build two models for each project, i) the first

we considering the intensity of smell Large Class and ii) the other

taking into account the intensity of smell Complex Class. In order

to choose the better model we should evaluate each one of them.

As the first step, in order to obtain the expected frequencies, we

construct the contingency table of each model for each project. For

the model based on the intensity of smell Complex Class, all projects
satisfy the assumptions related to the numerical problems and we

also observed that the most part of clones occurs when the class

has the smell Complex Class at the 𝐻𝑖𝑔ℎ level of intensity. In other

words, the models denoted by "
★
" in Table 6, should be evaluated.

We also had a similar result for the models based on the intensity

of smell Large Class (represented by "
⊘
" in Table 6). Thus, both

models should be analyzed.

Next, we should choose the best model for our dataset. Thus we

analyze the significance of predictors of all models. Whether two

different models are significant for the same project, we use the

Akaike Information Criterion (AIC) values. According to Field et al.

[5], AIC is a measure of fit and can be used to deciding which of two

models fits the data better. The lower the AIC, the better is the fit of

the model. Table 6 shows three projects with predictors significant

(ArgoUML, Cassandra and Lucene) but we have only one situation

where two different models are significant. This occurs with Lucene

project and the analysis of AIC reveals that the best model is those

based on the intensity of smell Complex Class. Interesting to note

that for ArgoUML and Cassandra, the best model also is those

taking into account the intensity of smell Complex Class. Thus,
as resulting of this step, we conclude that the best model for all

significant projects is based on Complex Class intensity (represented
by "

★
" in Table 6) and the model denoted as "

⊘
" in Table 6, was not

relevant for any project.

Table 6: Logistic Regression - RQ2.3.

Project

𝛽0

(SE)

𝛽1

(SE)

AIC R
2

IC for 𝛽1 Significance
of

Predictor
Lower

(5%)
OR

Upper

(95%)

ArgoUML

★
-1.178

▽

(0.33)

0.822
⊲

(0.41) 151.79 0.027 1.169 2.275 4.561 𝜒2(1)=4.16, 𝑝=0.041⊗

⊘
-0.356

♦

(0.35)

-0.462
♦

(0.42) 154.75 0.008 0.315 0.629 1.265 𝜒2(1)=1.20, 𝑝=0.274

Cassandra

★
-2.970

▽

(0.72)

1.772
⊲

(0.77) 94.715 0.075 1.886 5.886 26.881 𝜒2(1)=7.33, 𝑝=0.007⊗

⊘
-2.197

▽

(0.52)

0.810
♦

(0.60) 100.06 0.02 0.877 2.25 6.663 𝜒2(1)=1.98, 𝑝=0.159

Lucene

★
-1.321

▽

(0.32)

1.776
▽

(0.38) 200.28 0.113 3.206 5.906 11.35 𝜒2(1)=24.90, 𝑝=0.000⊗

⊘
-0.510

⊲

(0.25)

0.636
△

(0.32) 221.39 0.017 1.103 1.888 3.267 𝜒2(1)=3.79, 𝑝=0.051⊗

Hadoop

★
-1.658

⊳

(0.54)

0.822
♦

(0.63) 78.686 0.023 0.834 2.275 7.043 𝜒2(1)=1.79, 𝑝=0.181

⊘
-1.609

⊳

(0.54)

0.740
♦

(0.63) 79.04 0.019 0.767 2.096 6.499 𝜒2(1)=1.44, 𝑝=0.230

Ant

★
-1.312

⊳

(0.42)

0.149
♦

(0.51) 107.26 0.001 0.503 1.16 2.814 𝜒2(1)=0.08, 𝑝=0.773

⊘
-1.550

▽

(0.41)

0.545
♦

(0.51) 106.18 0.011 0.755 1.72 4.158 𝜒2(1)=1.16, 𝑝=0.281

Significance of Coefficients (R® ): 0.001
▽
; 0.01

⊳
; 0.05

⊲
; 0.1

△
; 1
♦
.
⊗
Significant Predictor: 𝑝 < 𝛼 .

⊘
Model considering the intensity of the smell Large Class (𝑌 ′) .

★
Model based on the intensity of the smell Complex Class (𝑌 ′′

).
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Therefore, we take into account only the projects ArgoUML,

Cassandra, Lucene, and their models marked with "
★
" in Table 6.

Odds Ratio varies between 2.2 and 5.9, indicating that when smells

Large Class and Complex Class co-occur in a class, the chances

of that class has clone is 2.2—5.9 times larger in classes that has

Complex Class𝐻𝑖𝑔ℎ
than classes with Complex Class𝐿𝑜𝑤 . However,

only 2.7%—11.3% of the variability of the data can be explained by

themodel, indicating that there are other factors that help to explain

the prevalence of clones and these considerations are consistent

with those presented in the previous research questions

5 DISCUSSION

This section provides a qualitative perspective of our results. In

particular, we discuss the statistically significant models in terms

of their coefficients and predictors. For each one of these models,

we examine the classes of projects that exhibit fragments of clones

and have at least one of the smells of interest (Large Class and/or
Complex Class). For instance, in the qualitative analysis of RQ2.1,

we inspect the Java classes of ArgoUML that have clones and the

smell Large Class. In this case, we inspect only ArgoUML project

because the model of this project is the only statistically significant.

5.1 The Number of Smells as a Factor

This part of the discussion is related to the analysis of smells con-

sidering only their frequencies, namely RQ1.1 and RQ1.2.

RQ1.1. We studied the prevalence of clones in classes classified as

Complex Class and they are organized into two groups according

to their smells (only CC and co-occurrence of LC/CC). The results,

for all projects, showed that the single occurrence of smell CC is

not significant to the prevalence of clones. This observation is also

valid for classes that have the co-occurrence of smells LC and CC.

Moreover, the frequency of classes with co-occurrences of LC/CC

is more than twice (×2.31), in average, the occurrence of CC only,

indicating that although CC tends also to be LC, the fact of being
large does not increase their chance to have clones.

RQ1.2. Its similar to the previous but the smell Large Class is used
to organize the classes into groups. Statistical analysis has shown

that the prevalence of clones is more associated to the single oc-

currence of smell Large Class than the co-occurrence of Large &
Complex Class (𝛽1 = −1, 213,𝑂𝑅 = 0, 29). However, this observation

is valid only for Ant project and we observe that classes with LC

and CC are almost the triple (×2.9 in average) than LC-only classes.

So, we observe that the fact of being large does not increase their

chance to have clones, and in Ant was the inverse. Thus, the re-

sults are project-specific. Moreover, to understand why Ant had

LC-only classes with higher chances to have clones than LC-CC

classes, we performed a qualitative analysis in the 10 classes classi-

fied as LC-only, where 50% of them also have the smell Duplicate
Code. From these classes with clones, we observed that the 80%

are "derivations" of the same entity, e.g., CCMklbtype has defined
different attributes from those defined inside the class CCMkattr,
but these classes shares: i) fully cloned methods (e.g., getComment-
Command, getVersionCommand); ii) partially cloned methods (e.g.,

execute, checkOptions) and iii) other methods (ex. getVOB, get-
TypeValueCommand). This is an indication that these clones are

practically the same, and they are distributed across several entities,

suggesting that these classes provide little variability of data.

These clones could be avoided if adequate object-oriented prac-

tices (design patterns) had been adopted within those entities. An-

alyzing commits in these classes, we have observed that changes

applied in one of these classes are commonly applied to others,

where adaptations are minimal, reinforcing that object-oriented

principles were not adequately followed. In the end, this finding

could be helpful to indicate that when the system has high number

of larges classes with high prevalence of clones those classes would

deserve special attention.

5.2 The Intensity of Smells as a Factor

This subsection discuss qualitatively the results on the association

of prevalence clones and the smells intensity of Large Class and
Complex Class (RQ2.1, RQ2.2 and RQ2.3).

RQ2.1. The statistical results revealed that from the three analyzed

projects (ArgoUML, Cassandra and Lucene), only one (ArgoUML)

provide evidence for the association between the prevalence of

clones and the intensity of Complex Class. In this case, we observed

that classes with Complex Class𝐻𝑖𝑔ℎ
are more clone-prone than

other smelly classes affected by Complex Class𝐿𝑜𝑤 . Specifically, the
measure OR reveals that the chances are 3.93 times bigger. For this

project, we have 15 classes with clones, where eight are classified as

Complex ClassLow and the rest as Complex ClassHigh. We examined

these 15 classes, and report the main observations.

1 . . .

2 @Override

3 public boolean stillValid (ToDoItem i, Designer dsgr) {

4 if (! isActive () ) {

5 return false ;

6 }

7 ListSet offs = i . getOffenders () ;

8 Object f = offs . get (0) ;

9 if (! predicate ( f , dsgr) ) {

10 return false ;

11 }

12 ListSet newOffs = computeOffenders(f) ;

13 boolean res = offs . equals (newOffs);

14 return res ;

15 }

Code 1: Clone with low complexity (CrUnconventionalAttrName – ArgoUML).

Analyzing clone fragments from CC
𝐿𝑜𝑤

classes, most of them

(91%) are simple and/or small clones. For example, the class CrUn-
conventionalAttrName have three simple clone fragments, and one

of them is partially in Code 1. This clone refers to a low complexity

functionality. For clones CC
𝐿𝑜𝑤

, we still observe that the used code

template may influence the size of clones. Other examples excep-

tion handling and/or undesired condition with similar handling.

This is highly prevalent in clones having nested throw/try/catch.
On the other side, clone fragments of CC

𝐻𝑖𝑔ℎ
classes have shape,

size and/or complexity different from those in CC
𝐿𝑜𝑤

classes. In

CC
𝐻𝑖𝑔ℎ

classes, we found no clones with complete functionality as

the one in Code 1. In these classes clones are smaller fragments in

a large sized functionality. For example, the method parseAttribute
in the class AttributeNotationUml has 229 lines (Long Method), and
has internally two different clones. Moreover, clones in CC

𝐻𝑖𝑔ℎ
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classes also correlate with the class itself having more control flow

structures, i.e., are more complex too.

The average size of clones in CC
𝐻𝑖𝑔ℎ

classes is larger compared

to size of clones in CC
𝐿𝑜𝑤

, and they are concentrated in the longer

methods.

From the qualitative analysis, we conclude that for ArgoUML,

the high complexity of a class is associated with the shape, size and

complexity of the clones, corroborating with the statistical result.

RQ2.2. This analysis is focused only on LC classes which are not

also CC. Statistical analysis has shown that the intensity of LC in

these classes is not a relevant factor to explain the prevalence of

clones. For all systems, there are just a few (12.6%) LC
𝐻𝑖𝑔ℎ

classes,

and most of them are LC
𝐿𝑜𝑤

. Because one of the classes is highly

dominant against the other, no significant effect could be observed.

RQ2.3. In this question, we consider only entities where LC and

CC co-occur. Statistical models were significant for ArgoUML, Cas-

sandra and Lucene, which are used in this discussion. Odds ratio

indicated chance of clones being found in CC
𝐻𝑖𝑔ℎ

to be 2.2-5.9

higher than being found in CC
𝐿𝑜𝑤

.

In this part, we investigated how those clones found in ArgoUML,

Cassandra and Lucene, could be classified over the type intra-class,

inter-class ou mixed (both intra and inter). We manually analyzed

each clone fragment of classes that manifest one or more LC/CC.

In ArgoUML, from classes with clones, 15 classes have CC-only,

24 have LC-only and 40 have both CC and LC co-occurring. The

clones of classes CC-only or LC-only are almost all inter-class

clones (95.8%). The clones of classes where CC and LC co-occur

have also a high rate of inter-class clones (72.3%). We also analyzed

Cassandra clones, which were similar to ArgoUML. In Lucene, inter-

class clones in classes CC-only or LC-only correspond to 70.9% of

clones and clones of classes where CC and LC co-occur have an

even smaller rate of inter-class clones (36.2%), indicating that there

are inherent project-specific design factors that induce the type of

cloning (inter or intra) developers adopt.

We have observed that mixed clones (intra and inter class) have

a very low frequency. The analysis of this RQ has shown that (i)

clones occurring in entities having smells CC and LC co-occurring

tend to be localized in entities with that same characteristic; (ii)

the isolated occurrence of LC or CC does not prevent inter-class

clones; (iii) the typical type of clone (intra or inter-class) seems

to be related to project-specific decisions. These observations are

valid only for systems (ArgoUML, Cassandra, Lucene) where the

association is significant.

5.3 Practical Implications

The results for RQ2.3 have shown that clone fragments of large

and complex classes are mostly restricted to that kind of class, i.e.,

clones occurring in classes where smells LC and CC co-occur are

typical clones confined in other classes where smells LC and CC

also co-occur. In other words, it is not likely that clones occur, at

the same time, in large and complex classes, and also in a class that

is not large and complex. This finding could be used to optimize the

detection of Duplicate Code, that is, the detection algorithm could

prune the search space for finding clones, in the sense, that large

and complex class could be clustered to define a search space to

look for clones.

Another practical implication is related to refactoring planning.

As we have discussed, a reasonable part of clone fragments that

occur in classes with just one of the smells (CC or LC) are inter-

class clones. Also, inter-class clones are also highly prevalent in

CC-LC classes, except for Lucene (36.2%). The implication is that

removing this kind of clone would require a more sophisticated

operation, e.g., the application of Extract Superclass or Extract Class,
and thus making this process more risky and laborious. On the

other hand, intra-class clones would be simpler to be removed

applying the Extract Method refactoring. So, this kind of refactoring,

in general, would be easier to be applied because it is local to just

one class, i.e., it does not require investigating multiple classes. The

implication is that this kind of refactoring could be applied more

quickly, and could also be assigned for less experienced members

of the development team, or those members of the team that do

not have a broader knowledge of the system. However, this is just

a hypothesis that should be further confirmed by other empirical

study with human subjects.

6 THREATS TO VALIDITY

This section discusses the threats that could affect the validity of

our study. Some threats should be considered in the analysis of the

presented results. In this context, the internal validity examines

whether the findings of an investigation are aligned with the study

population. On the other hand, external validity refers to the extent

to which research results can be generalized to other conditions.

One of the threats to external validity occurs because our results

can not be generalized to other object-oriented programming lan-

guages, it because all the analyzed projects were developed in Java.

To generalize this study, it is necessary to evaluate projects from

other languages that also use the object-oriented paradigm. Fur-

thermore, our empirical study only considers open source projects
and the most part of them (80%) are maintained by Apache Foun-
dation. Another threat is related to the sample size (five projects

of software). However, the sample of three or more software is

usual in exploratory studies. This type of study is characterized by

the production of preliminar evidence that would support more

comprehensive and extensive studies.

With respect to the internal validity, the analysis in this study

does not include test classes (e.g., classes related to the JUnit test
cases). These classes have different characteristics from those used

in production (e.g., a preliminary analysis of our data revealed that

they have larger clones in terms of LOC). We think that developers

and/or researchers are more interested in the occurrence of smells

on the production classes than the occurrence of smells in test

classes. For classes of test cases, we found specifics studies [1, 25]. In

general, our sample is aligned with the interests of the community.

The process of detecting the smells also is a threat to internal

validity. According to de Mello et al. [4] performing ad-hoc manual

identification of smells does not assure more effective results, so

manually validating the detected smells would still not eliminate the

threat. They observed that different context factors may influence

on the conclusion about the incidence of a code smell. These factors

are addressed to human aspects, such as the interaction among

individuals and their professional roles. Moreover, DECOR is a

state-of-the-art smell detector having a high accuracy in detecting
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smells, according to Moha et al. [12] this tool has up to 88% of

Precision and 100% of Recall. PMD also is good to detecting identical

clones [18].

Finally, another threat to the internal validity is related to the

scope and type of clones. This study considers only the clones of

type I that occurred in smelly classes (Large Class and/or Complex
Class). Nevertheless, there are clones in classes that have not been

classified with these smells and these clones may present in a totally

different way from those that we analyzed. However, the focus of

this study is investigate the interaction of clones of type I and the

smells LC and/or CC. Therefore, the investigation of other types of

clones and/or the possible occurrence of them with other smells or

classes without smells should be carried out in future works.

7 CONCLUSION

We investigated if the occurrence of smells Large Class and Complex
Class could impact on the occurrence of clones. We considered

different ways on how clones and these smells could interact: clones

occurring in large-only classes, clones occurring in complex-only

classes and clones occurring in classes that are simultaneously large

and complex. Moreover, we investigate if the intensity of the LC

and/or CC smells also plays a role in the prevalence of clones.

Our results have shown that conclusions are project-specific,

i.e., they are not valid for all studied systems. In particular, only

for Ant that the prevalence of clones is more associated to the

co-occurrence of the smell Large Class and Complex Class than
to the isolated occurrences of Large Class (see Table 3). So, the

general hypothesis of prevalence of clones being associated with

co-occurrence of LC and CC does not hold.

However, as we consider the intensity of smells in entities that

have both the smells Large Class (LC) and Complex Class (CC), our
data indicates that clone prevalence may be associated to the 𝐻𝑖𝑔ℎ

intensity level of smell CC, either in CC only classes (ArgoUML),

or CC co-occurring with LC (ArgoUML, Cassandra, Lucene), which

in fact, may suggest a difference conclusion compared to that of

Fowler and Beck [8] quote that “...a class with too much code is prime
breeding ground for duplicated code...". We would prefer to say that

a class with highly complex code, and with too much code, would

be prime breeding ground for duplicated code. On the other side,

independently on how our studies on smells have been carried out,

they explain only a small part of clone occurrence, i.e., there are

other factors that would help to explain the occurrence of clones

in LC and/or CC classes.

We also observed that the class complexity and the intensity of

the LC and CC smells influence some characteristics of the clone:

shape (complete functionality or partial functionality clone), type

(intra-inter clone), locality (clones restricted only to classes with

specific configuration of smells), and size (LOC) of clones.

Future work includes i) replicating our study on proprietary

systems, ii) enlarge the sample size, iii) investigate the influence

of other smells on the prevalence of clones and iv) empirically

investigate the practical implications.
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