
Improving Building Segmentation Using
Uncertainty Modeling and Metadata Injection

Hanxiang Hao
Video and Image Processing Lab

(VIPER), Purdue University
West Lafayette, Indiana, USA

Sriram Baireddy
Video and Image Processing Lab

(VIPER), Purdue University
West Lafayette, Indiana, USA

Kevin LaTourette
Optical Payload Center of Excellence,

Lockheed Martin Space
Littleton, Colorado, USA

Latisha Konz
Optical Payload Center of Excellence,

Lockheed Martin Space
Littleton, Colorado, USA

Moses Chan
Advanced Technology Center,

Lockheed Martin Space
Sunnyvale, California, USA

Mary L. Comer
Video and Image Processing Lab

(VIPER), Purdue University
West Lafayette, Indiana, USA

Edward J. Delp
Video and Image Processing Lab

(VIPER), Purdue University
West Lafayette, Indiana, USA

ABSTRACT
Automatic building segmentation is an important task for satellite
imagery analysis and scene understanding. Most existing segmen-
tation methods focus on the case where the images are taken from
directly overhead (i.e., low o�-nadir/viewing angle). These methods
often fail to provide accurate results on satellite images with larger
o�-nadir angles due to the higher noise level and lower spatial
resolution. In this paper, we propose a method that is able to pro-
vide accurate building segmentation for satellite imagery captured
from a large range of o�-nadir angles. Based on Bayesian deep
learning, we explicitly design our method to learn the data noise
via aleatoric and epistemic uncertainty modeling. Satellite image
metadata (e.g., o�-nadir angle and ground sample distance) is also
used in our model to further improve the result. We show that with
uncertainty modeling and metadata injection, our method achieves
better performance than the baseline method, especially for noisy
images taken from large o�-nadir angles1.
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• Computing methodologies! Image segmentation.
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1An extended version of the this paper can be found at [6]
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Figure 1: Building segmentation results of the proposed
method for the small o�-nadir angle (�rst row) and large
o�-nadir angle (second row). Aleatoric and epistemic uncer-
tainty maps highlight the noisy regions, especially for the
case with large o�-nadir angle, in order to guide the model
ignoring these noisy regions during training.
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1 INTRODUCTION
Object segmentation for satellite imagery has been studied exten-
sively because of the availability of computational resources and
large-scale datasets [1, 4]. Although many existing methods achieve
accurate segmentation results, using them in real-world applica-
tions is still challenging. Unlike many segmentation tasks for nat-
ural images, real-world object segmentation for satellite imagery
often faces challenges in identifying small, visually heterogeneous
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objects (e.g., cars and buildings) with varying orientation and den-
sity in images [14]. For example, it is even hard for humans to
recognize the small buildings from the images in Figure 1, because
of the low lighting condition and image blur/noise. Furthermore,
due to changes in the satellite o�-nadir angle, the appearance of
target objects can vary dramatically, including changes in lighting
intensity, object resolution, and image noise level. The satellite o�-
nadir angle (i.e., viewing angle) is the angle between the nadir point
directly below the satellite and the center of the imaged scene [14].
As shown in Figure 1, from a small o�-nadir angle (�rst row) to a
large o�-nadir angle (second row), the overall image intensity and
image quality drops signi�cantly.

In order to address these challenges, we present a building seg-
mentation method with uncertainty modeling and satellite image
metadata injection. Our method is able to provide accurate segmen-
tation results when training with noisy images. More speci�cally,
based on Bayesian deep learning, the proposed method is designed
to capture both model and data uncertainty to ignore the image
regions with a higher uncertainty level. For example, as shown
in Figure 1, our uncertainty maps highlight the areas with larger
image noise (e.g., building boundaries or forest due to the image
noise). As the o�-nadir angle increases, the uncertainty level in-
creases, indicating a higher data noise. Furthermore, satellite image
metadata is also considered in our method. In this paper, we use
ground sample distance (GSD) and o�-nadir angle as input meta-
data. GSD describes the spatial resolution of the image and a larger
GSD usually indicates noisier images. As mentioned earlier, di�er-
ent o�-nadir angles can also cause changes in image quality. In this
paper, we propose two metadata injection methods in Section 2.2 to
show the e�ectiveness of using metadata in building segmentation.
The main contributions of this paper are summarized as follows:

• we design a building segmentation model that is able to
capture both model uncertainty (i.e., epistemic uncertainty)
and data uncertainty (i.e., aleatoric uncertainty);

• two metadata injection methods are developed for using
satellite image metadata to improve building segmentation;

• based on our experimental analysis, we show that the pro-
posed method is able to achieve a better performance than
the baseline method, especially for noisy images taken at
large o�-nadir angles.

2 METHOD
In this section, we will introduce our building segmentation method
with uncertainty modeling and satellite image metadata injection.
As shown in Figure 2, the proposed method is based on U-Net [12]
and has multiple outputs. As described in Section 2.1, modeling
uncertainty enables our method to ignore the noisy pixels that are
caused by blurry or noisy images. Injecting satellite image metadata
such as ground sample distance (GSD) and o�-nadir angle provides
the model with more information to improve its performance. We
will provide two metadata injection approaches in Section 2.2.

2.1 Modeling Uncertainty via Bayesian Deep
Learning

Unlike standard deep learning methods, Bayesian deep learning
(Bayesian DL) provides a model with the ability to ignore certain
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Figure 2: The block diagram of the proposed method with
uncertainty modeling and concatenation-based metadata in-
jection. @(, ) is the dropout variational distribution for mod-
eling epistemic uncertainty.

data points based on uncertainty. In Bayesian DL, there are two
types of uncertainty one can model:

• Epistemic Uncertainty describes the uncertainty that is caused
by the model ignoring some training data. For example, a
segmentation model might miss some building areas with
certain colors/textures. Usually, this type of uncertainty can
be reduced as more training data is made available.

• Aleatoric Uncertainty describes the uncertainty that is in-
herited from data (e.g., image/sensor noise). Aleatoric un-
certainty can be further categorized as homoscedastic uncer-
tainty, which is the uncertainty based on the entire dataset,
and heteroscedastic uncertainty, which is the uncertainty for
each input data point (i.e., each pixel in our case). In this
paper, we will consider heteroscedastic aleatoric uncertainty
to accurately model the data noise for di�erent input images.

Following the work [3], we use Monte Carlo dropout to model the
epistemic uncertainty (i.e., the dropout layers from the decoder in
Figure 2). For aleatoric uncertainty, as proposed in [8], we directly
output the uncertainty map from the last layer of our model as
shown in Figure 2 and use Gaussian corruption during training
to model the aleatoric uncertainty. Please refer to [3, 8] for the
implementation details of uncertainty modeling.

2.2 Metadata Injection
Satellite image metadata contains useful information to support
many computer vision tasks, such as using solar and satellite az-
imuth and elevation angles for shadow detection and building
height estimation [5, 11, 13]. In this paper, we consider two types of
metadata to improve the building segmentation result: (1) ground
sample distance (GSD); and (2) o�-nadir angle. GSD describes the
spatial resolution of the image; a larger GSD indicates blurrier
and noisier images due to lower image resolution. O�-nadir angle
describes the viewing angle of the satellite camera and a larger
o�-nadir angle can also cause lower image resolution. In the follow-
ing sections, we will provide two metadata injection approaches to
improve the baseline U-Net model.
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2.2.1 Metadata Injection via Feature Concatenation.

As shown in Figure 2, we �rst pass the metadata vector to multi-
layer perceptrons (MLP) to obtain the output vector (h 2 R⇡ ) for
feature extraction and dimension expansion. Then we combine the
metadata feature vector with the image features (v 2 R𝐻⇥, ⇥⇡ ) ob-
tained from the last CNN encoder layer. To combine metadata and
image features, we repeat the metadata feature vector to match the
shape of image features, getting h0 2 R𝐻⇥, ⇥⇡ . Then we concate-
nate the features along the channel dimension as hv 2 R𝐻⇥, ⇥2⇡ .
The �nal features can be obtained by linearly projecting the chan-
nel dimension back to the input channel dimension: o = F(hv) 2
R𝐻⇥, ⇥⇡ , where F : R2⇡ ! R⇡ is applied for each input element
and it can be implemented by a convolutional layer with kernel size
of 1. We refer to this concatenation-based approach as MetaCat.

2.2.2 Metadata Injection via A�ine Combination Module.

As described above, the previous concatenation-based metadata
injection method combines the metadata and image features by
channel-wise concatenation following a linear projection layer.
By doing so, we augment the image features using the metadata
features for every location in the 𝐻 and , dimensions evenly.
However, intuitively, not all image features need to be modi�ed.
For example, since we focus on building segmentation, a large forest
area should not be considered and modi�ed. To e�ectively locate
the desired regions that need to be modi�ed, we use the A�ne
Combination Module (ACM) [10] for metadata injection. As the
name indicates, ACM is based on a�ne transforms and can be
formulated as follows:

v0 = h �, (v) + 1 (v), (1)

where v is the image features obtained from the CNN encoder,
h is either the repeated metadata features h0 as described in Sec-
tion 2.2.1 or the features from the previous decoder layer, and, (·)
and 1 (·) are convolutional layers as proposed in [10]. Modi�ed
from Figure 2, we replace the concatenation operators from both
metadata injection (i.e., the concatenation operator that combines
the metadata feature with the encoder feature from the bottleneck
layer) and U-Net skip connections (i.e., concatenation operators that
combine the encoder features with decoder features) with multiple
ACMs. From Equation 1, we can consider the, (v) term as the
metadata-relevant information, since it can directly interact with
the metadata features (or the previous decoder features). The 1 (v)
term can be considered as a metadata-irrelevant information that
is not modi�ed by the metadata features (or the previous decoder
features). We refer to this ACM-based approach as MetaACM.

3 EXPERIMENT
3.1 Dataset and Experiment Setting
In this paper, we use the SpaceNet 4 dataset [14], which is designed
for building segmentation with a larger range of o�-nadir angles.
There are 1, 064 distinct locations in the dataset, with 27 images
captured at each location at o�-nadir angles ranging from −32.5◦
to 54◦, which totals to 28, 728 images. We partition the dataset into
training, validation, and testing sets with the ratio of 6 : 2 : 2. As
mentioned in [14], the building annotations from the SpaceNet 4

dataset are obtained from the images with the smallest (in magni-
tude) o�-nadir angle (−7.8◦), and the same annotations are used
for the other images with di�erent o�-nadir angles. This will cause
inaccurate annotations due to the changes in building appearance
caused by di�erent o�-nadir angles. To have an accurate evaluation,
we manually label the testing images with o�-nadir angles greater
than 40◦. Note that we do not relabel the training data in order to
evaluate if uncertainty modeling can handle the both image noise
and annotation noise.

To ensure fair comparison between the proposed method and the
baseline U-Net, all of our experiments used the same setting, which
we will now describe. The downsampling blocks (yellow blocks)
in Figure 2 are the residual blocks from a ResNet-34 model [7] pre-
trained on ImageNet [2]. The upsampling blocks (dark green blocks)
consist of bilinear upsampling ! convolution ! batch normaliza-
tion ! ReLU. The upsampling blocks with dropout (light green
blocks) consist of bilinear upsampling ! dropout ! convolution!
batch normalization ! ReLU. Following [8], the dropout rate is set
as 0.2. The MLP for metadata feature extraction consists of three
blocks, where each block is a fully-connected layer following by a
leaky ReLU layer with a slope of 0.2. During training, to allow for
a larger batch size as required by batch normalization, we resize
the input image to 256 with batch size as 64. ADAM optimizer [9]
with learning rate 0.0001 (linear decay) is used and all experiments
are trained for 1 million iterations. We use weight decay with the
factor of 0.0001 for all experiments. For the Monte Carlo integration
during inference, following [8], we set the number of samples as
50.

Figure 3: Testing F1 scores with di�erent o�-nadir angles.
The average F1 scores of all o�-nadir angles are shown in the
legend.

3.2 Experimental Result and Analysis
We start with evaluating the use of uncertainty modeling and meta-
data injection (we considerMetaCat �rst and then compareMetaCat
with MetaACM later). Figure 3 shows the F1 scores with di�erent
o�-nadir angles in the testing set. Compared with the baseline
U-Net, with uncertainty modeling, there is a slight improvement
across most of the o�-nadir angles. Adding the metadata injection
layer can further improve the performance, especially for the cases
with larger o�-nadir angles (> 40◦) and negative o�-nadir angles.
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As mentioned in [14], due to the data collection process, the images
with large negative o�-nadir angles have very di�erent lighting
conditions and shadows. Since most of the images are collected
from positive o�-nadir angles, the baseline method will su�er from
unbalanced data during training. With metadata injection and un-
certainty modeling, the proposed method is able to deal with the
changes of lighting and shadows.

Figure 1 shows the prediction di�erence of two images with same
scene but di�erent o�-nadir angles. Based on the ground truth, we
can see that the proposed method can accurately detect building
area even under this high noise-level condition. We can see that
overall, both uncertainty maps increase the highlighted areas from
small to large o�-nadir angles due to higher noise in the input
image. The aleatoric uncertainty has higher data noise around the
forest region compared to the building region. This is due to the
larger appearance variance of forests compared to buildings. Unlike
aleatoric uncertainty, epistemic uncertainty focuses more around
the buildings. It highlights the area where the predictions are not
reliable, such as the boundary of buildings, due to the image noise.

Table 1: F1 scores for ACM-based and concatenation-based
metadata injection. All of the listed experiments are based
on U-Net with uncertainty modeling of both aleatoric and
epistemic uncertainties. None means no metadata injection.

Experiment Nadir O�-Nadir Very O�-Nadir Overall

None 0.7752 0.7359 0.6347 0.7180
MetaCat 0.7822 0.7429 0.6415 0.7249
MetaACM 0.7758 0.7382 0.6419 0.7197

We compare the two metadata injection methods in Table 1. As
de�ned in [14], we group the images into three categories based
on the absolute o�-nadir angle. Overall, MetaCat achieves better
performance than MetaACM. Compared with the method with-
out metadata injection, MetaCat has signi�cant improvement for
all three o�-nadir angle categories. Although MetaACM does not
have a major improvement for the lower o�-nadir angle images, it
achieves the best performance under the Very O�-Nadir category. In
our experiments, MetaACM does not achieve a better performance
than MetaCat. As mentioned in Section 2.2.2, since MetaACM has
higher �exibility to modify the intermediate features in di�erent
spatial locations, we believe it has a greater potential to achieve
better segmentation performance than MetaCat. [6] provides more
results and analysis to show the e�ectiveness of MetaACM model.

4 CONCLUSION
In this paper, we propose a method that can provide accurate build-
ing segmentation despite the data noise that is caused by large
o�-nadir angles. Both aleatoric uncertainty and epistemic uncer-
tainty are modeled by our method to enable our model to learn from
noisy training data. Based on the level of predicted uncertainty, the
proposed method learns to ignore the area with larger uncertainty
and focus on the area with less uncertainty. Satellite image meta-
data is also considered to further improve the performance. We
propose concatenation-based and ACM-based metadata injection
methods to e�ectively use metadata for the building segmentation

task. With our experimental analysis, we show that the proposed
method is able to achieve a clear improvement compared to the
baseline method, especially for the noisy images taken from large
o�-nadir angles.
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