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ABSTRACT

Technology that matches buildings between dash cam images and
digital maps (GPS) assists in the identification of buildings. The
identification enables to collect city information as well as the
textures for 3D building models. However, the matching technology
has two challenges. First, GPS locations can be highly inaccurate
in cities that have tall buildings, which means the GPS sometimes
needs to be relocated to capture the correct building features for
matching. Second, it can be tricky to set the position and orientation
of the camera by making correspondence of certain features of
buildings in images and maps. In this work, we propose a method
of matching buildings in dash cam images and 2.5D maps that uses
the height information of the buildings equivalent to the LoD1 in the
CityGML format. For the first challenge, we relocated GPS locations
by using a map-matching method. For the second challenge, we
adjust positions and orientations by matching the building edges
in the images and maps after extracting the edges with a deep-
learning-based detection model. Tests using real-world datasets
demonstrated that our proposed method matched the buildings
better than the baseline.
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1 INTRODUCTION

Many urban development applications require dense datasets col-
lected from a wide city area. For example, surface textures are
required for modeling 3D buildings, and human traffic in a city is
analyzed to define popular paths for planning store locations. It is
difficult to collect data for such analyses using a limited number of
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Figure 1: Overview of proposed method. Camera position
and orientation are adjusted by matching buildings between
dash cam images and 2.5D maps. Map information in this
paper is from OpenStreet Map[6]

fixed cameras and people registered to perform the tracking. There-
fore, data needs to be collected from moving cameras (e.g., dash
cams) that film wide areas. Identifying and matching the buildings
in the dash cam videos with the buildings in the maps enables the
collection of texture information and analysis of the relationship
between human traffic information and the map.

In this paper, we discuss matching buildings in 2.5D maps, which
include the height information of structures and dash cam images.
Matching in this context means identifying the pixel-by-pixel cor-
respondence between buildings in an image and the same buildings
in a map (Figure 1) to estimate the texture information of every part
of the buildings. The 2.5D maps used in this research are defined in
the form of Level of Detail 1 (LOD1) in CityGML([5], a format for
managing urban information. Taking building height into account
improves the matching accuracy in urban areas where the buildings
are densely packed.

There are two challenges when it comes to matching 2.5D map
information with dash cam images: handling large camera position
errors and corresponding building features in images and maps
to adjust the position and orientation of a camera. Regarding the
first challenge, while GPS is the most popular location estimation
method, it is known to generate noise at around 10 to 20 meters. This
noise can be even stronger in a city with tall buildings. Regarding
the second challenge, most previous studies have used building
edges as a feature to match the buildings. They project building
edges, extracted from the building footprint of a map, onto images
and estimates the corresponding edges by image recognition for
the adjustment. However, many of these methods use simple image
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processing techniques such as image gradients[2, 4, 16], which tend
to suffer from misdetection when the building textures are complex.
Therefore, we propose a method that uses map matching for the
GPS error relocation, deep learning for the edge extraction, and a
rule-based method for the matching process.

2 RELATED WORK

First, we overview methods for correcting the position of dash cams.
Map matching is used to correct the GPS trajectory [8]. This method
utilizes the fact that the GPS route always goes along roadways.An-
other possible approach is to use the simultaneous localization
and mapping (SLAM) [10] technique to estimate the movement
trajectory of a camera from a captured image and then transform
it into a real-world coordinate system using the GPS trajectory
[13]. We utilize map matching for the position correction in our
method. SLAM position estimates are highly accurate when the
SLAM technique is successfully executed, we opted not to use it in
this study because its operation may be unstable depending on the
amount of sunshine and the surrounding geological objects at the
time of shooting.

Next, we discuss methods that match buildings between images
and maps. In most cases, matching is done with the detected edges
or another part related to the edges. Bansal et al.[4] used the con-
tour of the sky above buildings as the matching feature, but it is
difficult to obtain the exact corners because there are other areas
with large horizontal image gradients, e.g., from building textures
and obstacles. Yuan et al. [16] projected the edges of buildings on a
2D map from the camera position onto the image and searched for
the most likely combination of projections in an arbitrary range.
However, this is not a general-purpose method because it requires
most of the corners of the buildings in the image to be visible with-
out being covered by other geographic features (e.g., poles that
extend far vertically). As mentioned earlier, matching methods that
use simple image processing cannot easily handle real-world com-
plexity. Armagan et al. [1] utilized deep-learning-based semantic
segmentation to build edge extraction. However, since this method
extracts building edges as regions, it cannot directly make the edges
calculated from the images and the maps correspond; subsequent
correction must be performed by a supervised deep learning model,
which requires a lot of training data. There are some methods that
do not use edges, such as one by Liu et al. [9] that utilizes SLAM to
create a 3D point cloud from a video and matches it with a 2.5D map
to minimize the differences between the two. However, such meth-
ods that use 3D shapes cannot be used when there are obstacles
such as pedestrians and automobiles in cities.

3 PROPOSED METHOD

Figure 1 shows an overview of our method. First, a map matching
method is applied to narrow down the search area to the road.
We then detect building edges as building features from dash cam
images. The detected edges are used to adjust the position and
orientation with reference to the GPS and map information. Finally,
the position is adjusted by making the building edges between
images and maps correspond while considering building height.
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Figure 2: Illustration of proposed output variables of re-

gression prediction net (see Figure 4). Output variables
are (x,y,w,h, 3,52, 3,
width and height of the boundary box. e; = (%, %), ey =

(%, %) are relative positions of edge vertices in the bound-

ary box.

%). (x,y,w, h) are central coordinate,

3.1 MAP MATCHING

We used the fast map matching (FMM) method [15] to match the
GPS trajectory to the most probable road. Although FMM can cor-
rect a GPS trajectory, it relocates to the closest position of the most
probable road, which is not close enough to the correct position to
match the buildings. Therefore, for further adjustment, we propose
an edge detection model in Section 3.2 and use the edges to adjust
the position and orientation in Section 3.3.

3.2 EDGE DETECTION MODEL

In this section, we introduce a deep-learning-based edge detection
model. A CNN based object detection model is utilized as the base.
There are several object detection models [11, 12] we could use. We
added feature variables to its regression output layer to detect the
edges in a bounding box. We chose EfficientDet [14] (see Figure 4)
as the base model because it is a 1-stage model that is generally
faster than 2-stage models (e.g., Faster-RCNN) and more accurate
than models of similar size. In the regression net’s output layer, we
added variables ey, ey that are relative positions of the edge vertices
in its boundary box (see Figure 2). We derived edge coordinates
from the variables, the bounding box size, and the coordinates in
the post process. A class prediction net was utilized to infer the class
of the edges. GPS location errors occur mainly on the horizontal
plane, so we opted to classify vertical edges (see Figure 4): outside
of the building (red line) and inside of the building (green line).

3.3 EDGE-BASED ADJUSTMENT

We adjusted the camera position and orientation by searching for
the position that can minimize the distance between the edges
detected in images (Section 3.2) and projected from maps. The
building edges in a map were extracted from the corner of building
footprints. We searched for the position where the edges of the
images and the maps matched the most. None of the edges match
each other exactly due to detection errors and map errors; so we
searched for the actual camera position that would minimize the
distance between pairs with the most closely matched edges. We
used the Hungarian method [7] to search for the pair of edges that
minimized the average distance between the pairs. The search area
was limited to the roadway and the orientation direction, which are
dominant errors when projecting buildings from the maps. There
are three conditions related to building height. First, the detected
edges can be lower than those of the maps because of obstacles such
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as trees, but cannot be higher. Second, edges that do not overlap
in the height direction are not considered to match. Third, edges
should be close in height. As we assume that the majority of pairs
will be close in height, distances between each pair are weighted
by their height difference. The object function and conditions are
summarized below.

Object function
N . . . .
L= Wtk lhap)d (UL lnap) (1)
i
Conditions
H = ys(lmap) + @ > H - y+(le) (2
Ui (Imap) < y-(le), y-(lmap) > y+(le) (3

(H- y+(lmap)) 0.5
H = max(y+(le), y+(lmap))
le is the detected edge, Imqp is the edge projected from the maps,
H is the height of the image, « is the tolerance of the height, y is
the upper vertex of the edge, y_ is the lower vertex of the edge, and
function d is the distance between a pair of edges. Note that these
are treated in the image coordinate systems whose origin is in the
upper left corner of the image.

w(le, lmap) =( 4

4 EXPERIMENT

4.1 DATASET

We took footage in the Toyosu neighborhood of Tokyo with a dash
cam to evaluate the building matching accuracy. The dash cam was
sized 640 x 480 and faced out from the front of the vehicle. Images
taken at intervals of 20m were used. We took four routes and col-
lected a total of 221 images for the evaluation. Buildings in the test
images were annotated with their building ID in the map. We tilted
images 5 degrees anticlockwise since the dash cam was tilted at that
angle. We collected 2.5D map information from AW3D[3]. As we
want to treat this data as an LoD1 map, we altered the information
so that the height of each building was equal to the tallest height of
its element. We empirically set the FMM parameters to values that
are suitable for our GPS module. We used OpenStreetMap’s road
network[6] for the matching. To train the edge detection model,
we utilized 206 street view images filmed in Tokyo using the same
dash cam and annotated the buildings.

4.2 DATA OBSERVATION

Figure 3 shows the GPS location and images of the route with
building projection from maps based on GPS location. There were
several errors located off the road and nearly 50 meters off the
road at the crossroad. Even though the GPS error was not large,
it is still difficult to correctly establish the edge correspondence
when the buildings are densely packed. For example, buildings are
projected to the relatively correct position at the bottom left in
Figure 3,but it is difficult to create correct correspondences using
only the edge positions because there are so many buildings in
such a small area. Since the heights of buildings vary, it should be
possible to improve the accuracy of correspondence creation by
taking this into account.
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Figure 3: GPS location and images of route with building pro-
jection from maps based on GPS location. Red lines indicate
routes where the car with the dash cam droves. Blue pins
indicate raw GPS data.

Figure 4: Example results of edge detection model. Footprint
corner outside of building (red) and footprint corner inside
of building (green) are detected.

4.3 RESULTS

First we utilized FMM to relocate the GPS routes to the roadway.
Most of the routes were located close to the correct one, but we
observed one major error on one route. The starting point of this
route was located on the other road, hotel driveway, which was
consistently closer to the GPS trajectory. This tends to happen at
the beginning or the end of tracking, as the system does not know
the beginning and end positions and it could place them anywhere.

Figure 4 shows the results of the detected edges. Most of the edges
were detected correctly. The frequently mis-detected ones belonged
to buildings that were reflected on other buildings’ windows.

For the edge-based adjustment, we searched the position on the
roadway direction in the range of [-10m, 10m] with a step size of
2.5m. The orientation was searched by [-5degree, 5degree] with a
step size of 1degree. The estimated position might not be reliable
when there are pairs of edges whose distance is large or when
the average of the distance of all pairs is large. For this reason,
we set a threshold for the adjustment, namely, 80 pixels for the
distance of one pair and 40 pixels for the average of the distance of
all pairs. Compared to the outside edges of the building (red line
in figure 4), inside edges (green line) were relatively few that they
were strongly affected by mis-detected edges. For this reason, we
ignored the inside edges of the building and only used the outside
edges for the adjustment.

We compared our method, GPS location fixed by the FMM and
edge-based adjustment considering building height (DNN+ HEIGHT),
to projecting the buildings from the GPS location (baseline), having
the location fixed by the FMM (FMM), and having the location fixed
by the FMM and the edge-based adjustment without considering
building height (DNN). We also compared a model that detects
edges by image gradient for the edge-based adjustment (IMAGE-
GRADIENT). This model detects edges where the mean intensity
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Figure 5: Example results of building projection of each model. Each building is represented by distinct colors.
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Figure 6: Average of matching accuracy. (a):all section, (b):straight section, (c):curved section

gradient of the horizontal direction is over a certain threshold. Fig-
ure 5 shows a example result of each method. We can see here that
considering the building height leads to a better accuracy in the
area with dense buildings.

Next, to quantitatively assess the accuracy of our method, we
calculated the area of overlap between the projected buildings and
the ground truth, i.e. the Intersection over Union (IoU). We then
calculated the ratio of buildings that exceeded a certain IoU (=0.3, 0.4,
0.5) in each image. Note that this comparison with the ground truth
considers both the building segmentation and the building ID, as
our method is intended for building identification. This evaluattion
was done with buildings larger than 80x60 (i.e., 12.5%X12.5%) in
the image, as we are mostly interested in buildings that appear
large enough to observe in the image. Figure 6(a) shows the average
matching accuracy in all sections. Our method (DNN+HEIGHT) was
the most accurate method at every IoU threshold in this case. Figure
6(b) shows the average matching accuracy in straight sections.
Only our method reached 50% accuracy at IoU=0.4. The matching
accuracy significantly decreased at curved sections, as shown in
Figure 6(c). Since the scenery changes drastically at curved sections,
it is necessary to search with finer steps in both the position and
the orientation. One reason the matching accuracy did not reach
a high value at a higher IoU threshold (>0.5) is that the buildings
were also projected onto the objects located in front of them. To
limit the projection to only the visible building region, matching
the projection with instance segmentation may be a solution.

5 CONCLUSION

To match the buildings between dash cam images and maps, we
proposed a method that performs robust edge-aware matching for
complex textures and deals with positional noise by map matching
and edge-based correction. We demonstrated how difficult edge-
aware building matching is in dense urban areas by analyzing real
data. We also showed that height should be considered even after
correcting the map matching when buildings are close together.
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