
Discovering Mixture-Based Best Regions of Arbitrary Shapes
Dimitrios Skoutas

Athena R.C., Greece

dskoutas@athenarc.gr

Dimitris Sacharidis

Université Libre de Bruxelles

dimitris.sacharidis@ulb.be

Kostas Patroumpas

Athena R.C., Greece

kpatro@athenarc.gr

ABSTRACT

Given a collection of geospatial points of different types, mixture-

based best region search aims at discovering spatial regions exhibit-

ing either very high or very low mixture with respect to the types

of enclosed points. Existing works for this problem are limited in

the shape of regions they can discover, typically supporting only

fixed-shape regions, such as circles or rectangles. However, this

is in contrast to interesting regions occurring in real-world data,

which often have arbitrary shapes. In this paper, we formulate the

problem of mixture-based best region search for arbitrarily shaped

regions. Our formulation introduces certain desired properties to

ensure the cohesiveness and completeness of detected regions. We

then observe that computing exact solutions to this problem has

exponential cost with respect to the number of points, making it

infeasible in practice. To overcome this issue, we propose anytime

algorithms that efficiently search the space of candidate solutions to

produce high-scoring regions under any given time budget. Our ex-

periments on several real-world datasets show that our algorithms

can produce high-quality results even within time constraints that

are suitable for near-interactive data exploration.

1 INTRODUCTION

A wide range of devices and applications, such as social networks,

smart phone applications, sensors, generate an abundance of geospa-

tial data, offering a wealth of information about locations and hu-

man activities [11]. Among these, Points of Interest (POIs) refer to

a broad variety of geolocated entities, such as businesses, amenities,

public services, tourist attractions, and constitute the cornerstone

of many applications in the domains of geomarketing, navigation,

logistics, mobile advertisement, urban planning and others [4]. An-

alyzing and mining POI data can reveal important insights about

regions of particular interest within a study area.

Several works have focused on detecting areas of interest, propos-
ing and applying various criteria to distinguish regions that exhibit

some particular property. Typical examples include methods to

detect spatial hotspots using measures of global and local spatial

autocorrelation [3] or applying density-based clustering [12]. Other

methods combine spatial distance criteria with keyword search to

find groups of POIs that are located close to each other and collec-

tively cover a set of user-defined keywords [6, 7, 9, 10]. Another

line of research focuses on the Maximizing Range Sum (MaxRS)

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGSPATIAL ’21, November 2-5, 2021, Beijing, China
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

problem and its variants [8, 13, 16–18]. In that case, the goal is to

find the best rectangular region of user-specified width and height

that maximizes the number or total weight (or some other mono-

tone objective function) of the points enclosed in it. Moreover, other

methods have focused on detecting regions that exhibit interesting

spatial mixture patterns [15, 19].

In this paper, we focus on the latter problem, aiming to detect

regions that are characterized by either very high or very low

diversity with respect to the types of points they contain. Spatial

mixture patterns provide useful insights for decision making in

various applications. For instance, high mixture regions may be

more attractive to customers seeking to purchase or rent a new

residence, as they offer a larger variety of amenities and services.

On the other hand, low mixture patterns reveal areas that emphasize

on specific activities or functions, such as a business district or a

nightlife hotspot. Identifying spatial mixture patterns also has an

impact on biodiversity applications; e.g., as pointed out in [19],

regions with low mixtures of tree genera have been found to be

more vulnerable to various tree diseases.

A common characteristic of existing approaches for discovering

spatial mixture patterns is that they scan the area of study by

exhaustively enumerating candidate regions of a certain shape,

typically a circle or a square [15, 19]. Although this method for

candidate enumeration is attractive due to its simplicity, such fixed-

shape regions may not be well-aligned with the actual, arbitrary

shapes of high or low mixture regions that occur in the real world.

In practice, such regions are expected to form arbitrary shapes
imposed by various natural barriers (e.g., lakes, rivers) or man-

made structures (e.g., pedestrian streets).

Figure 1(a) shows a motivating example using a synthetic dataset,

comprising points belonging to three different categories, depicted

with different colors. Blue and orange points are uniformly dis-

tributed in space, whereas green points are clustered in a certain

area. This resembles common situations in real-world POI data, e.g.,

in the case of a commercial street with many shops along each side.

Assume that we are interested in low mixture regions. Intuitively,

we would expect the algorithm to detect the region corresponding

to the cluster of green points. Figure 1(b) shows the region detected

by an algorithm that scans the input area using a regular geometric

shape (e.g., circle as detailed in Section 4.1). Clearly, the detected

region includes only a small portion of the desired region. The

reason is that if the circle is enlarged further, besides including a

larger portion of the green points this will also introduce many

blue and orange points, thus producing a region that no longer

exhibits low mixture. In contrast, as shown in Figure 1(c), another

algorithm that detects arbitrarily shaped regions (see Sections 4.2

and 4.3) accurately discovers the desired mixture pattern, focusing

almost exclusively on the green points and including only a few

blue and orange points that exist around them.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

SIGSPATIAL ’21, November 2-5, 2021, Beijing, China Dimitrios Skoutas, Dimitris Sacharidis, and Kostas Patroumpas

(a) Input containing points of three different

types.

(b) Result produced by algorithm detecting

fixed-shape (circular) regions.

(c) Result produced by algorithm detecting ar-

bitrarily shaped regions.

Figure 1: Motivating example illustrating the detection of a low-mixture region on a synthetic dataset.

However, when the assumption of a fixed, predefined region

shape is lifted, it becomes challenging how to formulate the prob-

lem and to design efficient and effective algorithms that can detect

arbitrarily shaped regions. To address this issue, we propose a graph-

based approach that allows the formation of arbitrarily shaped

regions and we design several anytime algorithms employing alter-

native strategies to efficiently and effectively scan the search space.

Given a set of geolocated POIs, each one belonging to a certain cate-

gory, our method first constructs an underlying spatial connectivity

graph, where edges exist between pairs of POIs that are within a

user-defined distance threshold from each other. A region of in-

terest is then defined as a subgraph in this graph. To obtain valid

(i.e., meaningful) regions, we introduce a set of constraints that

ensure the cohesiveness and completeness of each region. We also

define the interestingness score of a region, based on the entropy

of a feature vector representing the distribution of the POI types it

encloses, as well as its size. The latter is used to favor larger regions

over smaller ones, since patterns involving only a few points may

also occur by chance.

Based on the above formulation, we show that an exact solution

to the problem of finding the best region exhibiting a high or low

mixture pattern is infeasible in practice, due to the exponential num-

ber of subgraphs to be enumerated and the fact that the entropy

score of a region does not exhibit monotonicity with respect to its

size. Following this observation, we focus on greedy algorithms,

and in particular on anytime algorithms, i.e., algorithms that aim

at finding the best possible solution under any given time budget.

Our starting point is to enhance a baseline method that enumer-

ates fixed shape regions with additional post-processing steps that

allow it to produce valid regions under our graph-based formula-

tion. Then, we describe an algorithm that enumerates subgraphs

according to certain expansion criteria and uses a priority queue

to explore the search space of candidate regions under the given

time budget. Based on this, we discuss the impact of the number

of seeds used for subgraph expansion, as well as the resolution of

the expansion criteria, on the time versus quality tradeoff for the

detected regions. These observations lead us to design more effec-

tive search strategies that are able to better balance the exploration

and exploitation of candidates in the search space, thus optimizing

the utilization of the available time budget. Our experiments on

several real-world POI datasets show that the introduced flexibility

of detecting arbitrarily shaped regions allows the discovery of re-

gions with higher scores compared to those found by methods that

only detect fixed-shape regions. Moreover, our employed strategies

to prioritize the enumeration and evaluation of candidates in the

search space actually decrease the time required to discover high-

scoring regions, leading to anytime algorithms that are suitable for

data exploration.

In summary, our contributions are as follows:

• To the best of our knowledge, we are the first to formulate

and study the problem of mixture-based best region search

for arbitrarily shaped regions.

• We adapt a commonly used algorithm from spatial scan

statistics to detect valid regions under our graph-based for-

mulation.

• We introduce an algorithm based on subgraph expansion to

enumerate and prioritize the generation and evaluation of

arbitrarily shaped candidate regions.

• We extend our approach with additional search strategies

that more effectively prioritize the exploration of the search

space of candidate regions, thus leading to more optimal

utilization of the available time budget.

• We conduct an extensive experimental evaluation using sev-

eral real-world datasets to compare the proposed algorithms

and study the effects of the involved parameters.

The remainder of the paper is structured as follows. Section 2

reviews related work. Section 3 formally defines the problem of

mixture-based best region search for arbitrarily shaped regions.

Section 4 presents the proposed algorithms. Section 5 discusses our

experimental evaluation, and Section 6 concludes the paper.

2 RELATEDWORK

Detecting areas of interest in geospatial data has attracted significant
research interest and several methods have been proposed over the

years, investigating various criteria to discover regions that exhibit

some particular property. In the following, we review related works

in different lines of research.

Spatial mixture patterns. The closest work to our setting is a

recently proposed approach for detecting spatial mixture patterns of

interest [19]. Its main objective is to identify regions that have signif-

icantly high or low mixture of points of different types in a fashion

that overcomes two intricate issues in previous studies. Firstly, the

effect of natural randomness yielding spurious results with regions

qualifying by sheer chance (e.g., a homogeneous region consisting

of few points). Secondly, the inherent mixture patterns in real-world

Discovering Mixture-Based Best Regions of Arbitrary Shapes SIGSPATIAL ’21, November 2-5, 2021, Beijing, China

data due to increased variety in point categories (e.g., regions of het-

erogeneous POIs in city centers). Unlike multi-nomial scan statistic

methods like [15] that detect sub-regions with different mixture

patterns than their surrounding area, it introduces a Spatial Mixture

Index (SMI) to rank and select candidate regions. The proposed

algorithm enumerates candidate circular regions around uniformly

sampled seed points, computes their score according to the SMI,

and picks the one with the maximum score for significance testing.

Evaluation also involves a dual-level Monte-Carlo estimation: first

on candidate-level around same-sized regions around the chosen

seeds, and then on data-level to get the maximum score achieved

in each random subset of the data. However, the basic constraint

of this method is that returned regions are bound by a circular

shape, as all candidate regions are generated with incremental radii

around the initial seeds.

Spatial clusters. Detecting spatial hotspots [3] employs mea-

sures of global and local spatial autocorrelation to assess how in-

dividual locations contribute to the overall trend. Density-based

clustering methods like DBSCAN [12] measure density using dis-

tances between data points to identify clusters of various shapes

and separate them from noise (i.e., points not assigned to any clus-

ter). Integrating statistical significance to DBSCAN was suggested

in [20] to eliminate candidate clusters that are most likely formed

by chance, while still finding clusters of varying shapes and densi-

ties. A recent survey [21] offers a taxonomy and in-depth review of

models and algorithms for statistically robust clustering. Although

density-based clustering can detect arbitrarily shaped regions, it is

not straightforward how to apply such algorithms when the desired

criterion is high or low mixture patterns instead of high density.

Maximizing Range Sum. TheMaximizing Range Sum (MaxRS)

problem [8] focuses on rectangular areas with fixed width and

height. It aims at finding the optimal placement of a fixed-size rec-

tangle that maximizes the total weight of points therein. An (1−𝜖)-
approximate solution to the MaxRS problem was proposed in [18].

To tackle continuous MaxRS monitoring in a streaming context, the

generic framework in [2] employs a branch-and-bound approxima-

tion algorithm with worst-error guarantees. The MaxRS problem

has also been generalized as Best Region Search (BRS) in [13], relax-

ing the restriction that scores be based on count or sum of weights

of the enclosed points, and allowing any submodular monotone

function for score estimates. The algorithm considers each point as

the center of a fixed-size rectangle and identifies the regions that

are maximal intersections of these rectangles. The 𝑘-Best Region

Search (𝑘-BRS) problem [17] progressively returns the next best

result to compile a ranked list of the top-𝑘 best rectangles. To avoid

overlapping rectangles within the top-𝑘 results, the 𝑘-Best Region

Search with Marginal Gain (𝑘-BRS-MG) problem is also studied

to offer diversified results. Moreover, parallel and distributed algo-

rithms for 𝑘-BRS have been proposed in [16].

Spatial-keyword search. From a different perspective, other

approaches combine spatial distance with keyword search to find

groups of closely located POIs that collectively cover a set of user-

defined keywords. Among them, the length-constrained maximum-

sum region (LCMSR) problem in [7] finds a spatial-network region

located within a broader area of user’s interest, containing up to a

maximum number of POIs that best match query keywords, and

also maximizing the total weight of such POIs w.r.t. the keywords.

Table 1: Notations

T Set of categories used in point classification

D Point dataset; each point classified to a category from T
𝑀 Maximum region size (count of points)

𝜖 Distance threshold

𝐺 Spatial Connectivity Graph w.r.t. distance threshold 𝜖

𝑆 Set of seed points chosen from D
𝑅∗ Best region consisting of at most𝑀 points

𝑇 Time budget allocated to find the best possible region

𝑁𝑣 Neighborhood of points w.r.t. point 𝑣

𝜎 (𝑅) Interestingness score assigned to region 𝑅

𝛾 Weight of the size factor in score computations

Given a query location and a set of keywords, the algorithms in

[6] retrieve groups of spatio-textual objects that collectively meet

user’s preferences, but the returned objects are also close to each

other to indicate an area of interest. Similarly, the spatial keyword

cover problem (SK-COVER) [9] finds the group of objects that cov-

ers all query keywords and minimizes a distance cost function;

as a result, fewer collocated objects are contained in the returned

group. Besides, the Best Keyword Cover problem [10], finds objects

that apart from covering the query keywords and minimum dis-

tance among themselves, also includes the keyword rating during

evaluation. In all such cases, the user must specify a query with

various criteria (e.g., location, keywords, max number of POIs); in

contrast, we treat our problem as a data discovery problem without

specifying locations or categories of interest.

3 PROBLEM DEFINITION

In this section, we introduce the basic concepts and notations

used throughout the paper, and we formally define the problem of

mixture-based best region search. Basic notations are in Table 1.

Assume a collection D of points in a 2-dimensional space with

each point 𝑝 ∈ D belonging to a certain class 𝜏 ∈ T from a given

set of classes T . We represent each point as a tuple 𝑝 = (𝑥,𝑦, 𝜏),
where (𝑥,𝑦) denotes its coordinates and 𝜏 denotes its type.

A region 𝑅 is a subset of points in D. Before we introduce the

properties that constitute a valid region for our problem, we first

discuss how to assign a score to a given region 𝑅 that quantifies

how interesting it is from the point of view of the diversity of the

types of its enclosed points.

Region score. Let 𝜙 : 𝑅 → [0, 1] be a function that assigns a

score to a given region 𝑅 based on the type of points it contains.

We are interested in regions that have high values of 𝜙 , while also

preferring larger regions compared to smaller ones, since mixture

patterns involving just a few points may occur merely by chance.

To combine these two criteria, we define the interestingness score

of a region 𝑅 as follows:

Definition 1 (Region Score). The interestingness score of a
region 𝑅 is defined as:

𝜎 (𝑅) = 𝜙 (𝑅) · (|𝑅 |/𝑀)𝛾 (1)

where 𝜙 (𝑅) ∈ [0, 1] is a score computed based on the mixture of types
of points in 𝑅,𝑀 is the maximum allowed size of a region, and 𝛾 is a
parameter that determines the weight of the size factor.

Notice that 𝜎 (𝑅) ∈ [0, 1]. To measure the diversity of types

within a region, we use Shannon’s entropy, which is also frequently

SIGSPATIAL ’21, November 2-5, 2021, Beijing, China Dimitrios Skoutas, Dimitris Sacharidis, and Kostas Patroumpas

used in biodiversity studies to measure the richness of species

within the area under consideration [5, 19]; however, other mea-

sures could be used as well. Given the types of points in a region 𝑅,

Shannon’s entropy is defined as follows:

𝐻 (𝑅) = −
∑
𝜏 ∈T

𝜌𝜏 (𝑅) · log 𝜌𝜏 (𝑅) (2)

where 𝜌𝜏 is the portion of points in 𝑅 belonging to type 𝜏 , i.e.,

𝜌𝜏 (𝑅) =
|{𝑝 : 𝑝 ∈ 𝑅 & 𝑝.𝜏 = 𝜏}|

|𝑅 | (3)

Recall that the maximum value of Shannon’s entropy for a set of

classes T is 𝐻𝑚𝑎𝑥 = log |T |.
We can now define function 𝜙 based on the above. In particular,

we introduce two alternative variants, 𝜙𝐻 and 𝜙𝐿 , depending on

whether we are interested in regions having a high or low mixture,

respectively:

𝜙𝐻 (𝑅) = 𝐻 (𝑅)/𝐻𝑚𝑎𝑥 (4)

𝜙𝐿 (𝑅) = 1 − 𝐻 (𝑅)/𝐻𝑚𝑎𝑥 (5)

Valid regions. Our goal is to discover interesting regions that

have arbitrary shapes, as opposed to existing methods in the litera-

ture that rely on a regular shape (typically, circle or rectangle) to

define a region. Since now the shape of the region cannot be used

to define candidate regions, we need to introduce other criteria

to ensure that discovered regions are meaningful. To that end, we

introduce two properties, cohesiveness and completeness, which a

valid region must satisfy.

Cohesiveness ensures that the points forming a valid region are

spatially close to each other. More specifically, each point should be

within a user-defined distance threshold 𝜖 from at least one other

point in the region. Note that, in the case of regular-shaped regions,

this property is to some extent implied by the fact that all points in

the region are enclosed within the chosen fixed shape (e.g., circle or

rectangle); nevertheless, this does not necessarily prevent the case

that certain points are relatively far away from others (i.e., having

much “dead space” within the circle or rectangle).

Completeness ensures that any point in the dataset that is spa-

tially close (i.e., within distance 𝜖) to a point in the region is also

part of the region, with an exception in the case of the so-called

border of the region. Intuitively, this implies that all points enclosed

within the border of a region should also be considered as members

of that region; otherwise, one could trivially “hand-pick” subsets of

points from the study area to form “regions” that artificially exhibit

a high or low mixture pattern.

To evaluate both cohesiveness and completeness when searching

the space of valid regions, we represent the collection D with an

underlying spatial connectivity graph 𝐺 . Formally:

Definition 2 (Spatial Connectivity Graph). Given a collec-
tionD of points, a distance function 𝑑 , and a distance threshold 𝜖 , the
spatial connectivity graph𝐺 is a graph𝐺 = (𝑉 , 𝐸), where𝑉 is the set
of points and 𝐸 is the set of edges such that (𝑢, 𝑣) ∈ 𝐸 if 𝑑 (𝑢, 𝑣) ≤ 𝜖 .

In our setting, we deal with points in 2-dimensional space and we

assume Euclidean distance; nevertheless, the spatial connectivity

graph is generic and could be applied in different settings as well,

e.g., using the connections between points in an underlying road

network. Since we only deal with valid regions, in the sequel we

refer to valid regions simply as regions.

We can now formally define the concept of a (valid) region as

follows.

Definition 3 (Region). Given a spatial connectivity graph 𝐺 , a
(valid) region 𝑅 is a subgraph𝐺𝑅 = (𝑉𝑅𝐶 ∪𝑉𝑅𝐵

, 𝐸𝑅) of𝐺 , where𝑉𝑅𝐶
and 𝑉𝑅𝐵

comprise the core and border nodes of 𝑅, respectively, such
that the following conditions are satisfied:

(1) The set of core points 𝑉𝑅𝐶 forms a connected subgraph in 𝐺 ,
i.e., each core node 𝑣 ∈ 𝑉𝑅𝐶 is reachable from any other core
node 𝑢 ∈ 𝑉𝑅𝐶 via a path containing other core nodes.

(2) Each border point is connected to at least one core point, i.e.,
for any border node 𝑣 ∈ 𝑉𝑅𝐵

there exists at least one core node
𝑢 ∈ 𝑉𝑅𝐶 such that (𝑣,𝑢) ∈ 𝐸𝑅 .

(3) All neighbors of a core point are also part of the region, i.e., for
any core node 𝑣 ∈ 𝑉𝑅𝐶 if 𝑢 is a neighbor of 𝑣 (i.e., (𝑣,𝑢) ∈ 𝐸𝑅)
then 𝑢 ∈ 𝑉𝑅𝐶 ∪𝑉𝑅𝐵

.

In the above definition, conditions (1) and (2) are introduced to

ensure the cohesiveness of a region, while condition (3) refers to

the criterion for completeness.

Problem Statement. We can now formally define the problem

addressed in this paper.

Problem 1 (Mixture-Based Best Region Search (M-BRS)).

Given a spatial connectivity graph 𝐺 representing a collection of
points D belonging to different types T , and a maximum region size
𝑀 , find the region with the maximum score 𝜎 (𝑅), i.e.,

𝑅∗ = argmax

𝑅⊆𝐺, |𝑅 | ≤𝑀
𝜎 (𝑅) (6)

Our approach. A key observation is that, in our problem, the

score of a region does not exhibit monotonicity with respect to

its size. In other words, whenever a region is expanded with addi-

tional points, its score may either increase or decrease, depending

on whether the newly introduced points have types that increase

or decrease the total entropy of types distribution in the resulting

region. For instance, the score of a candidate region may decrease

after a single expansion but may then increase again if the new re-

gion is expanded even further. This lack of monotonicity prevents

the use of algorithms similar to those proposed for best region

search [13, 17] or Apriori-like algorithms [1]. On the other hand,

exhaustively enumerating all subgraphs of 𝐺 to identify and eval-

uate candidate regions is clearly infeasible for large, real-world

datasets. Consequently, to address this problem, we focus on de-

signing anytime algorithms, i.e., algorithms that aim at detecting

regions of as high score as possible under any given time budget 𝑇 .

4 ALGORITHMS

In this section, we present several anytime algorithms for address-

ing the mixture-based best region search problem defined above.

We start with a baseline algorithm that enumerates candidate re-

gions relying on a fixed geometric shape. Then, we introduce an

algorithm that performs subgraph expansion in the spatial connec-

tivity graph to detect arbitrarily shaped regions. Finally, we present

how the anytime characteristic of this algorithm can be improved

by more effectively exploring the search space.

Discovering Mixture-Based Best Regions of Arbitrary Shapes SIGSPATIAL ’21, November 2-5, 2021, Beijing, China

4.1 Fixed-shape Scan

As a baseline, we consider an algorithm, called CircularScan,

which enumerates candidate regions by scanning the study area

with a fixed geometric shape, in particular a circle. We enhance this

process with necessary adaptations to ensure that valid regions are

produced at each step, according to Definition 3.

Candidate enumeration.Candidate enumeration is performed

by scanning the area with a regular geometric shape (in our case, we

choose a circle). This is typical in spatial scan statistics [14, 15], and

is also adopted by the current state-of-the-art method for detecting

spatial mixture patterns [19]. According to this method, candidate

regions are generated by exhaustively enumerating all circles (up to

a maximum size) having a point 𝑝 ∈ D as their center and another

point 𝑝 ′ ∈ D on their circumference. As pointed out in [19], to avoid

repeatedly executing multiple range queries for each considered

center point 𝑝 , it is possible to first sort all other points by increasing

distance to 𝑝 and then incrementally expand the circle by adding

the next nearest neighbor at each step. Moreover, if the number of

points in D is large, it is possible to select only a subset 𝑆 ⊆ D of

them as centers, e.g., using uniform sampling.

Adaptations. Next, we enhance the above candidate enumera-

tion method with two adaptations. The first adaptation allows the

CircularScan algorithm to run in an anytime fashion, similarly

to the other approaches presented next in Sections 4.2 and 4.3. No-

tice that the basic enumeration method described above visits the

selected center points in a random order and fully enumerates all

candidate circles around each one before moving on to the next.

This means that it may take a long time until a high-scoring region

is detected, thus possibly failing to detect regions of high quality if

the given time budget is limited. In the GraphExpand algorithm

(presented in Section 4.2), this is addressed by introducing a priority

queue that maintains the currently active candidate regions, and

prioritizes their expansion based on their current score. Thus, we

modify CircularScan to adopt the same technique, i.e., to replace

the sequential evaluation of candidates with one determined by

a priority queue. Queue 𝑄 is initialized with scores of candidate

regions consisting of their center and its nearest neighbor from

dataset D for each region. Typically, after a region is examined for

expansion, it may be pushed back to 𝑄 with its updated score, as

long as its current size does not exceed the maximum size𝑀 .

The second adaptation involves some additional processing re-

quired to obtain a valid region (according to Definition 3) from

the set of points enclosed in a candidate circle produced by the

enumeration process. Specifically, we need to ensure that regions

produced by CircularScan meet the cohesiveness and complete-

ness requirements for valid regions. To satisfy cohesiveness, when

enumerating circles around a center point 𝑝 , we check whether

the next neighbor 𝑝 ′ lies within distance 𝜖 from at least one of the

points in the current region 𝑅 formed around 𝑝 . If not, then point

𝑝 ′ is skipped, and does not become part of region 𝑅. Moreover, if

𝑑 (𝑝, 𝑝 ′) − 𝑑 (𝑝, 𝑝𝑙𝑎𝑠𝑡) > 𝜖 , where 𝑝𝑙𝑎𝑠𝑡 refers to the last point that

was used to extend the circumference of the circle, then the circle

is not expanded further, since no newly found points can be within

distance 𝜖 from existing points in 𝑅. Eventually, the accumulated

points constitute the set of core points of 𝑅, which has been ensured

to form a connected subgraph. Also, to satisfy the completeness

property, any neighbor of a core point that is not already part of 𝑅

is retrieved; these points form the border of 𝑅. If 𝑅 has higher score

than the best region 𝑅∗ found so far at a previous iteration, then 𝑅

itself becomes the current best region 𝑅∗.

4.2 Graph Expansion

In this section, we present our algorithm, called GraphExpand,

which is based on subgraph expansion in the spatial connectivity

graph𝐺 to detect the best arbitrarily shaped region 𝑅∗ of maximum

size𝑀 under a given time budget 𝑇 . We first present an overview

of the algorithm and then describe its main parts in more detail.

Overview. The main steps of GraphExpand are outlined in

Algorithm 1, and comprise two main phases, namely initialization
and expansion. The initialization phase (Lines 1–3) involves select-

ing a set of seed points 𝑆 , initializing their respective regions, and

using these regions to populate a priority queue 𝑄 that is used to

prioritize candidate enumeration in the expansion phase. In our

implementation, to select the set of seeds 𝑆 , we select 𝜌 · |𝑉𝐺 | nodes
of the spatial connectivity graph 𝐺 uniformly at random, where

𝜌 ∈ (0, 1] is a parameter of the algorithm. We examine the impact

of 𝜌 , i.e., the number of seeds, in our experiments.

Next, the expansion phase (Lines 4–11) iterates over the candi-

date regions in the priority queue 𝑄 until either there are no more

remaining entries in𝑄 or the time budget𝑇 is exhausted. Whenever

a new entry is retrieved from𝑄 , the region is expanded to generate

a new candidate 𝑅. If the size of 𝑅 does not exceed the maximum

allowed region size𝑀 , then we check whether its score is higher

than the score of the currently known best region 𝑅∗, and if so, 𝑅∗

is replaced by 𝑅. Also, if the border of 𝑅 is not empty, 𝑅 is pushed

to 𝑄 to be further expanded in a future iteration.

Initialization. The algorithm GraphExpand relies on a prior-

ity queue to prioritize the evaluation of the enumerated candidate

regions. Each generated candidate region, both during the initial-

ization and the expansion phase, is inserted in this queue according

to its score. In this way, instead of fully expanding all candidate

regions around a seed node before moving on to the next one, the

Algorithm 1: GraphExpand

Input: Spatial Connectivity Graph 𝐺 , Max Region Size𝑀 ,

Time Budget 𝑇

Output: Best Region 𝑅∗

⊲ Phase I: Initialization

1 𝑅∗ ← ∅ ⊲ initialize top region

2 𝑆 ← 𝑝𝑖𝑐𝑘_𝑠𝑒𝑒𝑑𝑠 (𝐺) ⊲ select a subset of𝑉𝐺 as seeds

3 𝑄 ← 𝑖𝑛𝑖𝑡_𝑞𝑢𝑒𝑢𝑒 (𝐺, 𝑆) ⊲ initialize priority queue

⊲ Phase II: Expansion

4 while 𝑒𝑙𝑎𝑝𝑠𝑒𝑑_𝑡𝑖𝑚𝑒 < 𝑇 and |𝑄 | > 0 do

5 𝑅 ← 𝑄.𝑝𝑜𝑝 () ⊲ get the next candidate region

6 𝑅 ← 𝑒𝑥𝑝𝑎𝑛𝑑_𝑟𝑒𝑔𝑖𝑜𝑛(𝐺, 𝑅) ⊲ expand the region

7 if |𝑅 | ≤ 𝑀 then ⊲ check max size

8 if 𝑅.𝑠𝑐𝑜𝑟𝑒 > 𝑅∗ .𝑠𝑐𝑜𝑟𝑒 then ⊲ update top region

9 𝑅∗ ← 𝑅

10 if |𝑉𝑅𝐵
| > 0 then ⊲ add to queue if border not empty

11 𝑄.𝑝𝑢𝑠ℎ(𝑅, 𝑅′.𝑠𝑐𝑜𝑟𝑒)
12 return 𝑅∗

SIGSPATIAL ’21, November 2-5, 2021, Beijing, China Dimitrios Skoutas, Dimitris Sacharidis, and Kostas Patroumpas

Algorithm 2: Procedure InitQueue()

Input: Spatial Connectivity Graph 𝐺 , Set of Seed Nodes 𝑆

Output: Priority Queue 𝑄

1 𝑄 ← ∅ ⊲ priority queue

2 foreach 𝑣 ∈ 𝑆 do

3 𝑅 ← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑟𝑒𝑔𝑖𝑜𝑛(𝐺, 𝑣) ⊲ create region 𝑅 with 𝑣 as core point

4 𝑅 ← 𝑟𝑒 𝑓 𝑖𝑛𝑒_𝑏𝑜𝑟𝑑𝑒𝑟 (𝐺, 𝑅) ⊲ check if certain border points are core

5 if |𝑅 | ≤ 𝑀 and |𝑉𝑅𝐵
| > 0 then ⊲ check max size and border

6 𝑄.𝑝𝑢𝑠ℎ(𝑅, 𝜎) ⊲ add region to queue

7 return 𝑄

Algorithm 3: Procedure CreateRegion()

Input: Spatial Connectivity Graph 𝐺 , Node 𝑣

Output: Initial Region 𝑅

1 𝑉𝑅𝐶 ← {𝑣} ⊲ add 𝑣 as core

2 𝑉𝑅𝐵
← ∅ ⊲ initialize border

3 𝐸𝑅 ← ∅
4 𝑁𝑣 ← 𝑔𝑒𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝐺, 𝑣) ⊲ retrieve the neighbors of 𝑣

5 foreach 𝑢 ∈ 𝑁𝑣 do

6 𝑉𝑅𝐵
← 𝑉𝑅𝐵

∪ {𝑢} ⊲ add𝑢 as border point

7 𝐸𝑅 ← 𝐸𝑅 ∪ {(𝑣,𝑢)} ⊲ connect border point𝑢 to core point 𝑣

8 𝑅.𝑠𝑐𝑜𝑟𝑒 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑐𝑜𝑟𝑒 (𝑅) ⊲ compute score according to Eq. 1

9 return 𝑅

Algorithm 4: Procedure ExpandAll()

Input: Spatial Connectivity Graph 𝐺 , Current Region 𝑅

Output: Expanded Region 𝑅

1 foreach 𝑣 ∈ 𝑉𝑅𝐵
do ⊲ expand all border points

2 𝑅 ← 𝑒𝑥𝑝𝑎𝑛𝑑_𝑝𝑜𝑖𝑛𝑡 (𝐺, 𝑅, 𝑣)
3 𝑅 ← 𝑟𝑒 𝑓 𝑖𝑛𝑒_𝑏𝑜𝑟𝑑𝑒𝑟 (𝐺, 𝑅) ⊲ check if certain border points are core

4 return 𝑅

algorithm picks the next candidate region to expand in decreasing

order of their current score. Notice that, although this increases

the total execution time, due to the added overhead of maintaining

the priority queue, it enables the algorithm to run in an anytime

manner, i.e., it increases the likelihood of detecting high scoring

regions as early as possible.

The process to initialize the priority queue is described in Algo-

rithm 2. Each seed point is visited to create its corresponding valid

region (Lines 2–6). Specifically, as detailed in Algorithm 3, given

a seed node 𝑣 , this region comprises 𝑣 as its core point and all the

neighbors of 𝑣 as its border points. Also, the score of the region is

computed according to Equation 1. Notice that the creation of a

region 𝑅 is followed by a post-processing step (Line 4) to refine its

border (pseudo-code omitted for brevity). This procedure iterates

over each border point, retrieves its neighbors, and checks whether

all of these neighbors already belong to 𝑅. If so, then this point is

removed from the set of border points and added to the set of core

points. Although this process is not necessary to ensure the correct-

ness of the algorithm, detecting border points that are actually core

points and removing them from the border set of the region avoids

unnecessary computations during the expansion phase. Finally, if

𝑅 does not exceed the maximum allowed size 𝑀 and the region

border is not empty, 𝑅 is inserted to the queue (Lines 5–6).

Algorithm 5: Procedure ExpandBest()

Input: Spatial Connectivity Graph 𝐺 , Current Region 𝑅

Output: Expanded Region 𝑅′

1 𝑅𝑏𝑒𝑠𝑡 ← 𝑅 ⊲ initialize new region

2 foreach 𝑣 ∈ 𝑉𝑅𝐵
do ⊲ iterate over all border points

3 𝑅′ ← 𝑒𝑥𝑝𝑎𝑛𝑑_𝑝𝑜𝑖𝑛𝑡 (𝐺, 𝑅, 𝑣) ⊲ expand this border point

4 if |𝑅′ | ≤ 𝑀 and 𝑅′.𝑠𝑐𝑜𝑟𝑒 > 𝑅𝑏𝑒𝑠𝑡 .𝑠𝑐𝑜𝑟𝑒 then

5 𝑅𝑏𝑒𝑠𝑡 ← 𝑅′ ⊲ update new best region

6 𝑅𝑏𝑒𝑠𝑡 ← 𝑟𝑒 𝑓 𝑖𝑛𝑒_𝑏𝑜𝑟𝑑𝑒𝑟 (𝐺, 𝑅𝑏𝑒𝑠𝑡) ⊲ check if certain border points are

core

7 return 𝑅𝑏𝑒𝑠𝑡

Algorithm 6: Procedure ExpandPoint()

Input: Spatial Connectivity Graph 𝐺 , Current Region 𝑅,

Border Point 𝑣 to Expand

Output: Expanded Region 𝑅′

1 𝑅′ ← 𝑅 ⊲ initialize new region

2 𝑉𝑅′
𝐵
← 𝑉𝑅′

𝐵
\ {𝑣} ⊲ remove 𝑣 from border

3 𝑉𝑅′
𝐶
← 𝑉𝑅′

𝐶
∪ {𝑣} ⊲ add 𝑣 to core

4 𝑁𝑣 ← 𝑔𝑒𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝐺, 𝑣) ⊲ retrieve the neighbors of 𝑣

5 foreach 𝑢 ∈ 𝑁𝑣 do

6 𝑉𝑅′
𝐵
← 𝑉𝑅′

𝐵
∪ {𝑢} ⊲ add𝑢 as border point

7 𝐸 ′
𝑅
← 𝐸 ′

𝑅
∪ {(𝑣,𝑢)} ⊲ connect border point𝑢 to core point 𝑣

8 𝑅′.𝑠𝑐𝑜𝑟𝑒 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑐𝑜𝑟𝑒 (𝑅) ⊲ compute score according to Eq. 1

9 return 𝑅′

Expansion. Next, we discuss the expansion process. Assume a

current candidate region 𝑅 that is retrieved from 𝑄 . 𝑅 corresponds

to a subgraph in the spatial connectivity graph𝐺 . The purpose of

the expansion process is to expand 𝑅, generating one or more new

candidate regions, whose nodes are a superset of 𝑅. The expansion

works by selecting one or more border points of 𝑅 to be expanded,

according to some selection criterion. These border points become

core points, and all their neighbors are retrieved and added to the

set of border points of the newly formed region. The question is

how many and which border points to expand. We consider two

selection criteria: (a) select all border points (procedure ExpandAll

in Algorithm 4), and (b) select the border point which leads to the

highest scoring region once expanded (procedure ExpandBest in

Algorithm 5). Notice that both expansion strategies generate exactly

one new candidate region out of an initial one (or zero, if no further

expansion is possible, due to themaximum size limit𝑀). This choice

is preferred as it ensures that the size of the priority queue is non-

increasing, i.e., 𝑄 only grows during the initialization phase and

then at each iteration its size remains the same or decreases by one.

It is straightforward to implement several alternative expansion

strategies, e.g., to expand each border point and push the new

region to the priority queue, or to expand the 𝑘-best border points;

however, our experimentation with such alternative criteria has

shown that these choices incur a significant increase in the size of

𝑄 , while also generating candidate regions that are quite similar to

each other, thus eventually slowing down rather than speeding up

the discovery of highly scoring regions.

Discovering Mixture-Based Best Regions of Arbitrary Shapes SIGSPATIAL ’21, November 2-5, 2021, Beijing, China

Both procedures ExpandAll and ExpandBest internally employ

procedure ExpandPoint (see Algorithm 6), which expands a cur-

rent region 𝑅 with a given border point 𝑣 . This is performed by mov-

ing 𝑣 from the set of border points to the set of core points, adding

all neighbors of 𝑣 to the border set of 𝑅, and eventually comput-

ing the score of the new region. The difference is that ExpandAll

expands the entire set of border points, whereas ExpandBest ex-

amines each border point individually and eventually selects only

one of them to expand (i.e., the one leading to the expanded region

with the highest score). Either of these two procedures can be used

in Line 6 of Algorithm 1 to expand a given region.

Discussion. As mentioned above, both procedures ExpandAll

and ExpandBest receive as input one region and produce as output

(atmost) one new candidate. Therefore, the size of the priority queue

𝑄 is bound by the number |𝑆 | of selected seeds during initialization.
Moreover, at each expansion, at least one new point is added to the

current region; hence, the number of expansions that may occur for

each seed is at most𝑀 . Finally, during an expansion, each border

point of the current region has to be considered. Consequently, the

time complexity of algorithm GraphExpand is𝑂 (|𝑆 | ·𝑀 ·𝑑), where
𝑑 is the average node degree in 𝐺 .

In practice, ExpandAll and ExpandBest offer a different trade-

off between expansion speed and granularity. In ExpandAll, the

entire border is expanded in each iteration, hence the maximum

region size 𝑀 will be reached much faster, i.e., the expansion for

each given seed will terminate faster. On the other hand, in Ex-

pandBest, regions grow at a slower pace, but the algorithm can

select to expand only favorable border points. Intuitively, assum-

ing that both expansion strategies are given the same time budget,

ExpandAll can utilize it to examine a larger set of seed points,

whereas ExpandBest can examine fewer seed points but more thor-

oughly. Regardless of this difference, both strategies suffer from

a common drawback, which is the fact that seed selection takes

place in advance. These seeds are used to populate the priority

queue, which drives the execution of the algorithm from that point

onward; hence, adding or modifying the set of seeds dynamically

is not straightforward.

4.3 Adaptive Seed Prioritization

As explained above, the main drawback of both ExpandAll and

ExpandBest is that they rely on the a priori selection of a fixed

set of seed points. Yet, as also confirmed by extensive experiments

(indicative ones reported in Section A.2), effectively managing the

placement of seeds is crucial when operating under a limited time

budget. Failing to choose appropriate seeds for expansion leads the

algorithm to detecting suboptimal regions. When the time budget is

limited, the problem cannot be trivially tackled by simply increasing

the number of selected seeds, since this also means higher execution

time. Instead, the number of utilized seeds needs to be maintained

at low levels; hence, their allocation needs to be managed more

effectively.

The above observations lead us to designing alternative search

strategies that are based on selecting seeds dynamically and adap-

tively during execution of the algorithm. Specifically, in this section,

we present two such algorithms, based on the same basic idea: in-

stead of basing the search on seed points, we use seed areas. More

specifically, instead of drawing all seeds at once from the entire

study area, we use a few seeds as starting points to gain some initial

knowledge about the dataset, and then dynamically adapt the selec-

tion of subsequent seeds accordingly. The difference between the

two algorithms described next lies mainly on how these seed areas

are defined. In the first method, they are candidate regions pro-

duced using the ExpandAll strategy around initial seeds, whereas

in the second they are the cells of a uniform grid. Nevertheless,

other such alternative search strategies can be designed as well,

following similar ideas and the same underlying rationale.

Adaptive Hybrid. The first algorithm is called AdaptiveHy-

brid because it combines ExpandAll and ExpandBest in a two-

step process. In the first step, a small number of starting seeds is

randomly selected. Each seed is examined sequentially. First, its

corresponding region is initialized, using procedure CreateRegion,

and then this region is iteratively expanded, using procedure Ex-

pandAll, until the maximum size𝑀 is reached or no new neighbor

nodes exist. The best region found by each initial seed is marked

as a seed area and is pushed to a priority queue sorted by its region

score. Hence, the result of this first step is a priority queue of seed

areas, each one comprising a set of points. In the second step, seed

areas are extracted from the queue according to their score. When-

ever an area is popped, one of its points is selected randomly, and is

treated as a new seed. The intuition is that seeds drawn from areas

already having a relatively high score are more likely to lead to

high-scoring regions. This seed is then expanded, using procedure

ExpandBest which searches the space more thoroughly, until the

maximum size 𝑀 is reached or no more neighbors exist. At the

end, the selected seed is removed from the set of points of that

area, and the area is pushed back to the queue, with an updated

priority score, which is the one found during the expansion process

with ExpandBest. Hence, if the seed selected from that area has

produced a high-scoring region, additional seeds will be drawn

from the same area, examining it more exhaustively; otherwise, the

priority of that area will become lower, leading the algorithm to

draw seeds, and thus explore, an alternative one that may turn out

to be more promising.

Adaptive Grid. The second algorithm, called AdaptiveGrid,

also combines ExpandAll and ExpandBest in a two-phase process.

In the first phase, a low-granularity grid is constructed on the space.

Then, a small number of seeds is considered by first picking a grid

cell uniformly at random, and then choosing a point within the

cell also uniformly at random. The grid serves two purposes: (i)

to locate seeds that are uniformly distributed in space and thus

avoid oversampling/undersampling a dense/sparse area; and, more

importantly, (ii) to identify good seed areas. At each selected seed,

ExpandAll is executed, and the resulting score is attributed to the

cell where the seed belongs. After the first phase is completed, the

cells with the 𝑘 highest scores are qualified as the seed areas to

be examined in the second phase. In the second phase, a higher

granularity grid is constructed within each qualified seed area.

Then, a series of seed probes is performed until the time budget is

exceeded. Each seed probe entails three steps, the selection of a seed

area, the selection of a cell within the high-granularity grid of the

seed area, and the selection of a point within that cell; all selections

are done uniformly at random. A seed selected in this phase will

be expanded more thoroughly using procedure ExpandBest.

SIGSPATIAL ’21, November 2-5, 2021, Beijing, China Dimitrios Skoutas, Dimitris Sacharidis, and Kostas Patroumpas

(a) CS – low mixture (b) GG – low mixture (c) CS – high mixture (d) GG – high mixture

Figure 2: Indicative best regions discovered in Athens (same map scale per mixture mode).

Table 2: POI datasets used in the experiments.

Dataset # points avg. degree
Athens 20,848 92

London 85,178 79

New York City 38,843 80

Table 3: Parameters used in the experiments.

Parameter Values
max region size𝑀 100, 200, 300

size weight 𝛾 0, 0.5, 1, 2

time budget𝑇 20, 60

type of mixture high, low

5 EXPERIMENTAL EVALUATION

5.1 Experimental Setup

Datasets. We have conducted experiments using three real-world

datasets containing POIs belonging to 15 different categories (e.g.,

transport, shop, food, education, tourist, etc.) extracted from Open-

StreetMap
1
. These datasets cover the metropolitan areas of Athens,

London and New York, and are listed in Table 2, where the last col-

umn refers to the average node degree in the spatial connectivity

graph 𝐺 . The latter was constructed with 𝜖 = 0.003◦ to also cover

areas outside the city center, where POIs are sparser.

Parameters. In the conducted experiments, we have tested the

effect of several parameters involved in the performance of the

algorithms. These include: (i) the maximum region size 𝑀 ; (ii) the

weight 𝛾 of the region size in Equation 1; (iii) the time budget 𝑇

for the execution of each algorithm; and (iv) the type of mixture

(high/low) we are interested in. Table 3 lists the range of parameter

values tested, with default values shown in bold.

Methods. We compare the following methods: (i) CS – the al-

gorithm CircularScan, described in Section 4.1; (ii) GA – the al-

gorithm GraphExpand configured to use the ExpandAll strategy

(see Section 4.2); (iii) GB – the algorithm GraphExpand config-

ured to use the ExpandBest strategy (see Section 4.2); (iv) GH –

the algorithm AdaptiveHybrid in Section 4.3; and (v) GG – the

algorithm AdaptiveGrid also described in Section 4.3. For each

dataset and mixture mode, we select the best parameterization of

each method with a tuning process discussed in Appendix A.2.

All algorithmswere implemented in Python, and the experiments

were executed on a server with AMD Ryzen Threadripper 3960X

24-Core processor and 256 GB RAM running Ubuntu 20.04.

1
https://www.openstreetmap.org/

5.2 Qualitative Results

Before comparing the performance of the different algorithms, we

present indicative results to qualitatively assess the detected re-

gions. We present map plots of indicative best regions detected from

algorithms in the various datasets under the default parameter and

configuration settings. More specifically, we visually compare re-

gions discovered by the baseline CS with those identified by GG.

We discuss the findings from Athens here, and defer discussion

about the other datasets in Appendix A.1. As depicted in Figure 2a,

the low mixture region returned by CS contains much less than

𝑀 = 200 POIs scattered in a small area around one of the initial

seeds. Instead, the region found by GG (Figure 2b) has a non-convex

shape and covers a much greater area (both maps are in the same

scale). Similar observations can be drawn regarding high-mixture
regions: the compact region detected by CS (Figure 2c) is small in

size and extent, while the region issued by GG (Figure 2d) includes

POIs along a highway and several districts nearby.

These differences are due to the fact that CS detects regions using

a fixed shape (circle), so usually it cannot significantly enlarge the

extent of a candidate region without compromising the quality of

its mixture pattern. Instead, in GG, the region can adapt its shape

to better capture the underlying mixture pattern, thus detecting

larger areas while still satisfying cohesiveness and completeness.

5.3 Performance Evaluation

Comparison of anytime behavior. In this part of the experi-

ments, we compare the different algorithms with respect to their

ability to detect high-scoring regions under any given time budget.

We set all parameters to their default values, and we monitor the

score of the best region found by each algorithm at any given point

in time up to a limit of 20 seconds. The results for each dataset

and for each type of mixture are presented in Figure 3. The most

important observations are the following. In all settings, the two-

step adaptive methods, GH and GG, identify regions with the best

scores. The non-adaptive methods, CS, GA, and GB, can relatively

quickly identify good regions, but they often reach a plateau be-

yond which they cannot improve the quality of the region found;

CS demonstrates this behavior most often. In contrast, GH is able

to identify early on good regions and improve upon them. GG is

slightly slower to identify a good region (due to an overhead of

around 0.1 sec to build the grid), but is able to improve upon its

solutions much faster. In conclusion, for a time budget in the order

https://www.openstreetmap.org/

Discovering Mixture-Based Best Regions of Arbitrary Shapes SIGSPATIAL ’21, November 2-5, 2021, Beijing, China

10 3 10 2 10 1 100 101

Time (sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

e

CS
GA
GB
GH
GG

(a) Athens – high mixture

10 2 10 1 100 101

Time (sec)

0.0

0.2

0.4

0.6

0.8

Sc
or

e

CS
GA
GB
GH
GG

(b) London – high mixture

10 3 10 2 10 1 100 101

Time (sec)

0.0

0.2

0.4

0.6

0.8

Sc
or

e

CS
GA
GB
GH
GG

(c) NYC – high mixture

10 3 10 2 10 1 100 101

Time (sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sc
or

e

CS
GA
GB
GH
GG

(d) Athens – low mixture

10 3 10 2 10 1 100 101

Time (sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sc
or

e

CS
GA
GB
GH
GG

(e) London – low mixture

10 3 10 2 10 1 100 101

Time (sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sc
or

e

CS
GA
GB
GH
GG

(f) NYC – low mixture

Figure 3: Score vs. time for each mixture type per dataset.

100 200 300
max_size

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

CS
GA
GB
GH
GG

(a) Athens – high mixture

100 200 300
max_size

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

CS
GA
GB
GH
GG

(b) London – high mixture

100 200 300
max_size

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

CS
GA
GB
GH
GG

(c) NYC – high mixture

100 200 300
max_size

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

CS
GA
GB
GH
GG

(d) Athens – low mixture

100 200 300
max_size

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

CS
GA
GB
GH
GG

(e) London – low mixture

100 200 300
max_size

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

CS
GA
GB
GH
GG

(f) NYC – low mixture

Figure 4: Score per dataset with varying max size𝑀 of best regions.

of hundredths of a second, GH consistently identifies better regions.

If a few seconds can be afforded, GG is often the best option.

Impact of parameters. In the rest of the experiments, we in-

vestigate the effect of the parameters in the performance of the

compared algorithms, namely the maximum region size𝑀 and the

weight of the region size 𝛾 . The results for the different datasets

and mixture types are presented in Figures 4 and 5. It is worth high-

lighting that in almost all settings, the adaptive seed prioritization

of GH and GG leads to considerable improvements over the fixed-

seed graph expansion methods. Moreover, in most cases, for the

GraphExpand method, the ExpandAll strategy (GA) outperforms

ExpandBest (GB). This seems counter-intuitive, since GB is a more

thorough expansion meaning that given a seed it will most probably

discover a higher-scoring region. However, the explanation is that

GB is slower than GA in expanding a seed (in our experiments, GA

is about four times faster), which implies that at the same time bud-

get, GA is able to consider more seeds than GB. More importantly,

this property of GA over GB is explicitly exploited by the adaptive

methods, which seek to first quickly identify good seed areas, and

then exploit them.

SIGSPATIAL ’21, November 2-5, 2021, Beijing, China Dimitrios Skoutas, Dimitris Sacharidis, and Kostas Patroumpas

0.0 0.5 1.0 2.0
size_weight

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

CS
GA
GB
GH
GG

(a) Athens – high mixture

0.0 0.5 1.0 2.0
size_weight

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

CS
GA
GB
GH
GG

(b) London – high mixture

0.0 0.5 1.0 2.0
size_weight

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

CS
GA
GB
GH
GG

(c) NYC – high mixture

0.5 1.0 2.0
size_weight

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

CS
GA
GB
GH
GG

(d) Athens – low mixture

0.5 1.0 2.0
size_weight

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

CS
GA
GB
GH
GG

(e) London – low mixture

0.5 1.0 2.0
size_weight

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

CS
GA
GB
GH
GG

(f) NYC – low mixture

Figure 5: Score per dataset with varying size weight 𝛾 .

In terms of the effect of𝑀 , larger areas make the search harder

for high mixture, resulting in a greater gap between GH/GG and

CS/GA/GB. Indeed, there are more opportunities to create a high

mixture area with more points considered. Conversely, size𝑀 has

smaller effect on the relative merit of the various methods in low

mixture. Similar observations hold for the effect of the size weight

𝛾 . When 𝛾 increases, larger regions are preferred, which makes

the problem for high mixture harder, and necessitates adaptive

methods. The effect of 𝛾 for the low mixture problem is moderate.

6 CONCLUSION

We have studied the problem of discovering spatial regions charac-

terized by either very high or very lowmixture pattern with respect

to the types of points therein. Unlike existing works that enumerate

candidate regions with a fixed shape, like circle or rectangle, our

approach can discover mixture-based regions of arbitrary shapes

that better reflect such real-world spatial patterns. We introduce

anytime algorithms that employ subgraph expansion to enumer-

ate and prioritize generation and evaluation of arbitrarily shaped

candidate regions and return the best region found under a given

time budget. In an extensive experimental evaluation, we compare

these methods using real-world POI datasets, confirming that they

can produce high-quality results even within tight time constraints.

In future work, we plan to extend this framework towards retriev-

ing diversified top-𝑘 regions with high/low mixture patterns. This

introduces additional challenges, due to overlaps between regions

with high scores which otherwise yield redundant results.

REFERENCES

[1] Rakesh Agrawal and Ramakrishnan Srikant. 1994. Fast Algorithms for Mining

Association Rules in Large Databases. In VLDB. 487–499.
[2] Daichi Amagata and Takahiro Hara. 2017. A General Framework for MaxRS and

MaxCRS Monitoring in Spatial Data Streams. ACM TSAS 3, 1 (2017), 1:1–1:34.

[3] Luc Anselin. 1995. Local indicators of spatial association—LISA. Geographical
analysis 27, 2 (1995), 93–115.

[4] Spiros Athanasiou, Giorgos Giannopoulos, Damien Graux, Nikos Karagian-

nakis, Jens Lehmann, Axel-Cyrille Ngonga Ngomo, Kostas Patroumpas, Mo-

hamed Ahmed Sherif, and Dimitrios Skoutas. 2019. Big POI data integration with

Linked Data technologies. In EDBT. 477–488.
[5] Benjamin Bandeira, Jean-Louis Jamet, Dominique Jamet, and Jean-Marc Ginoux.

2013. Mathematical convergences of biodiversity indices. Ecological Indicators 29
(2013), 522–528.

[6] Xin Cao, Gao Cong, Tao Guo, Christian S. Jensen, and Beng Chin Ooi. 2015.

Efficient Processing of Spatial Group Keyword Queries. ACM Trans. Database
Syst. 40, 2 (2015), 13:1–13:48.

[7] Xin Cao, Gao Cong, Christian S. Jensen, and Man Lung Yiu. 2014. Retrieving

Regions of Interest for User Exploration. Proc. VLDB Endow. 7, 9 (2014), 733–744.
[8] Dong-Wan Choi, Chin-Wan Chung, and Yufei Tao. 2012. A Scalable Algorithm

for Maximizing Range Sum in Spatial Databases. PVLDB 5, 11 (2012), 1088–1099.

[9] Dong-Wan Choi, Jian Pei, and Xuemin Lin. 2016. Finding the minimum spatial

keyword cover. In ICDE. 685–696.
[10] Ke Deng, Xin Li, Jiaheng Lu, and Xiaofang Zhou. 2015. Best Keyword Cover

Search. IEEE Trans. Knowl. Data Eng. 27, 1 (2015), 61–73.
[11] Ahmed Eldawy and Mohamed F. Mokbel. 2016. The Era of Big Spatial Data: A

Survey. Found. Trends Databases 6, 3-4 (2016), 163–273.
[12] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-

Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.

In KDD. 226–231.
[13] Kaiyu Feng, Gao Cong, Sourav S. Bhowmick, Wen-Chih Peng, and Chunyan Miao.

2016. Towards Best Region Search for Data Exploration. In SIGMOD. 1055–1070.
[14] Joseph Glaz and Markos V. Koutras. 2019. Handbook of Scan Statistics. Springer.
[15] Inkyung Jung, Martin Kulldorff, and Otukei John Richard. 2010. A spatial scan

statistic for multinomial data. Statistics in medicine 29, 18 (2010), 1910–1918.
[16] Hamid Shahrivari, Matthaios Olma, Odysseas Papapetrou, Dimitrios Skoutas, and

Anastasia Ailamaki. 2020. A Parallel and Distributed Approach for Diversified

Top-k Best Region Search. In EDBT. 265–276.
[17] Dimitrios Skoutas, Dimitris Sacharidis, and Kostas Patroumpas. 2018. Efficient

progressive and diversified top-k best region search. In SIGSPATIAL. 299–308.
[18] Yufei Tao, Xiaocheng Hu, Dong-Wan Choi, and Chin-Wan Chung. 2013. Approx-

imate MaxRS in Spatial Databases. Proc. VLDB Endow. 6, 13 (2013), 1546–1557.
[19] Yiqun Xie, Han Bao, Yan Li, and Shashi Shekhar. 2020. Discovering Spatial

Mixture Patterns of Interest. In SIGSPATIAL. 608–617.
[20] Yiqun Xie and Shashi Shekhar. 2019. Significant DBSCAN towards Statistically

Robust Clustering. In SSTD. ACM, 31–40.

[21] Yiqun Xie, Shashi Shekhar, and Yan Li. 2021. Statistically-Robust Clustering

Techniques for Mapping Spatial Hotspots: A Survey. CoRR abs/2103.12019 (2021).

Discovering Mixture-Based Best Regions of Arbitrary Shapes SIGSPATIAL ’21, November 2-5, 2021, Beijing, China

(a) CS – low mixture (b) GG – low mixture (c) CS – high mixture (d) GG – high mixture

Figure 6: Indicative best regions discovered in London (same map scale per mixture mode).

(a) CS – low mixture (b) GG – low mixture (c) CS – high mixture (d) GG – high mixture

Figure 7: Indicative best regions discovered in New York City (same map scale per mixture mode).

A APPENDIX

A.1 More Qualitative Results

In London, method CS identifies a group of shops in a mall as the

best low mixture region (Figure 6a), surrounded by a few POIs

included from other categories due to proximity. This area is very

small compared with the one identified by GG (Figure 6b), which

mainly comprises bus stops and metro stations along major roads.

The best high mixture region identified by CS contains few POIs of

different categories; instead, GG offers an extended region of size

almost𝑀 as intended, and also achieves a higher score. Note that

the area has a peculiar shape with varying density of POIs therein.

Figure 7 illustrates the corresponding regions discovered in New

York City. Clearly, GG successfully identifies a low mixture region

densely dominated by many shops along a highway with only a

few nearby POIs of assorted categories (Figure 7b). In contrast, CS

gives a poor result with the suggested region containing a handful

of similar POIs only (Figure 7a). Indeed, this method seems tightly

bound to the initial seeds and regions grow circularly around them,

so its chances to find a larger region are limited. For high mixture,

CS indeed manages to find a good result (Figure 7c), but the ran-

domness in the choice of seeds may yield poorer results in another

execution. Again, the result from GG in Figure 7c stretches over a

much greater area in an arbitrary fashion and includes more POIs.

A.2 Algorithm Tuning

All algorithms presented in Section 4 involve some configuration

parameters that control their anytime performance, i.e., how good

and how fast regions are discovered. So, before comparing the

various methods to each other, some tuning is required. For each

method, and for each dataset and mixture mode (high/low), we

execute the method with several different configurations, and allo-

cate a time budget of 60 seconds. Upon termination, we monitor

the score of the best detected region at each point in time. By in-

specting the results for each algorithm, we find the configuration

that performs the best around the 20 seconds mark — the default

time budget. As an indication, Figures 8 and 9 present the score

per time in Athens. Each plot investigates different configurations

of one method. For example, Figure 8a considers the CS method,

and plots the score over time curve for different seed ratios, start-

ing from 0.1 up to 1. From this plot, we deduce that around the

20 seconds mark, the highest scoring region is identified by CS

when configured for a seed ratio of 0.2. Similarly, Figures 8b–8d

explore different seed ratios for GA, GB, and GH. The last two

figures consider different configurations of the GG method. The

first is when the low-granularity grid is explored via ExpandAll,

and the second when explored via ExpandBest. The two numbers,

like 40/20, mean a 40 × 40 grid where the top-20 cells are further

explored.

SIGSPATIAL ’21, November 2-5, 2021, Beijing, China Dimitrios Skoutas, Dimitris Sacharidis, and Kostas Patroumpas

0 10 20 30 40 50
Time (sec)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sc
or

e

0.1
0.2
0.3
0.4
0.5
0.8
1.0

(a) CS

0 10 20 30 40 50 60
Time (sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

e

0.1
0.2
0.3
0.5
1.0

(b) GA

0 10 20 30 40 50 60
Time (sec)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sc
or

e

0.1
0.2
0.3
0.5
1.0

(c) GB

0 10 20 30 40 50
Time (sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

e

0.01
0.02
0.03
0.05
0.06
0.08
0.1

(d) GH

0 10 20 30 40
Time (sec)

0.0

0.2

0.4

0.6

0.8

Sc
or

e

S-40/20
S-40/10
S-30/20
S-30/10
S-20/20
S-20/10

(e) GG-a

0 10 20 30 40
Time (sec)

0.0

0.2

0.4

0.6

0.8

Sc
or

e

S-40/20
S-40/10
S-30/20
S-30/10
S-20/20
S-20/10

(f) GG-b

Figure 8: Fine-tuning per method for high mixture mode in Athens.

0 10 20 30 40
Time (sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sc
or

e

0.1
0.2
0.3
0.4
0.5
0.8
1.0

(a) CS

0 5 10 15 20 25 30
Time (sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Sc
or

e

0.1
0.2
0.3
0.5
1.0

(b) GA

0 10 20 30 40 50 60
Time (sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Sc
or

e

0.1
0.2
0.3
0.5
1.0

(c) GB

0 10 20 30 40
Time (sec)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sc
or

e

0.01
0.02
0.03
0.05
0.06
0.08
0.1

(d) GH

0 5 10 15 20 25 30 35 40
Time (sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sc
or

e

S-40/20
S-40/10
S-30/20
S-30/10
S-20/20
S-20/10

(e) GG-a

0 10 20 30 40 50 60
Time (sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sc
or

e

S-40/20
S-40/10
S-30/20
S-30/10
S-20/20
S-20/10

(f) GG-b

Figure 9: Fine-tuning per method for low mixture mode in Athens.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Algorithms
	4.1 Fixed-shape Scan
	4.2 Graph Expansion
	4.3 Adaptive Seed Prioritization

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Qualitative Results
	5.3 Performance Evaluation

	6 Conclusion
	References
	A Appendix
	A.1 More Qualitative Results
	A.2 Algorithm Tuning

