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ABSTRACT

This paper presents an image-recognition technique using quantum
annealing. We used four handwritten numbers of 0, 1, 2, and 3 from
the MNIST (Modified National Institute of Standards and Technol-
ogy) digit classification dataset as images to be recognized. We used
two models in this study which were basically the same as a simple
neural network, one had one fully connected layer and the other
had 3x3 Sobel filters in front of that layer. The images were first
resized to 1/2 the original in both directions, and pixel data were
converted to 196 one-dimension data then output to four outputs
through a fully coupled neural network. The optimum values of
196 x 4 weights and 4 bias values of the fully connected layer were
obtained by quantum annealing in which the loss function is ex-
pressed as Hamiltonian of the Ising model. The weights and biases
are multi-valued variables consisting of multiple spin variables in
the Ising model. Quantum annealing was simulated using Pyqubo
to create Ising models from flexible mathematical expressions. Pre-
diction accuracy when using the Sobel filters reached about 95%
and Sobel filter improved it by about 5%.
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1 INTRODUCTION

With the increase in computer performance, machine learning has
become more sophisticated, thus rapidly expanding the range of its
applications. The increase in computer performance also made it
possible to handle enormous amounts of data, enhancing machine
learning for image recognition, natural language processing, etc.
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However, machine learning is requiring even higher-performance
computers. The reason is that the amount of data used for learn-
ing is increasing infinitely, and models such as deep learning used
for machine learning are becoming more complicated. Such a con-
tinuous increase in data and complexity of machine learning will
continue to increase the processing time for learning. Computa-
tional performance has continuously improved for decades as well
as the evolution of the architecture from single core to multi-core
and graphics, but that progress has begun to slow. Future improve-
ments in computer performance are not expected to keep up with
the increased performance required for machine learning [1]. Con-
versely, if the performance of computers dramatically improves, it
may be possible to achieve much more advanced machine learning.

Quantum computers are attracting attention for dramatically
improving computer performance in the future [2]. Studies on the
application of quantum computers have been progressing in vari-
ous fields including machine learning [3-8]. Progress is expected
in fields that require enormous time-consuming calculations, and
machine learning is one of them. There are two types of quantum
computers, gate-based and quantum-annealing-based. Gate-based
quantum computers [3-8] can be used for general purposes like a
conventional computer. However, the practical hardware of quan-
tum computer has not yet been developed, although the principle
of it has been proven. The research thus far has been simulation
based on its principle.

A quantum-annealing-based computer [9], which is also a com-
puter using quantum physics but works on different principles, has
already been put to practical use and can be used commercially
[10]. Since it operates on the principle of quantum mechanics, its
processing speed is far faster than conventional computers. How-
ever, its use is limited to problems that seek optimal solutions of
combinatorial problems. Despite this limitation, it is possible to
use such a computer if we can transform the problem we want to
address into a problem that finds the optimal solution in combina-
tion problem, and many studies that use quantum annealing for
machine learning have been conducted [11-14]. In many of these
studies, Boltzmann machines were used for machine learning. The
reason is that since quantum annealing is based on the Ising model
and the network configuration is an undirected graph, Boltzmann
machines have good compatibility with quantum annealing.

In this study, we examined the feasibility of applying quantum
annealing to image recognition using a simple neural network.
Machine learning by using neural networks can be regarded as
finding the optimal combination of connection weights between
neurons, which is expected to be solved by quantum annealing.
We conducted simulations of simple networks represented by the
Hamiltonian of the Ising model that correspond to fully connected
neural network. The spin variables used in the Ising model are
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binary, but in this study, the coupling weights and biases were ex-
pressed as multi-valued variables using multiple spin variables. The
main purpose of this study was to investigate how much prediction
accuracy can be with quantum annealing.

2 QUANTUM ANNEALING

A quantum-annealing-based computer is specialized for solving
combinatorial optimization problems. Although there are restric-
tions, it is possible to obtain realistic solutions. Annealing is "an-
nealing” in which a material such as metal is heated then slowly
cooled. It is an operation to homogenize the internal structure,
which is the lowest energy state. Quantum annealing is a method
of obtaining a solution as the lowest energy state by executing
annealing processing in the process of fluctuations accompanied
by quantum superposition and quantum entanglement. The effect
of quantum tunneling should avoid local solutions and reach the
global optimal solution. The annealing structure can be represented
by a simple model called the Ising model. Equation 1 indicates the
energy of the Ising model.

N N
H= Z his; + Zji’jsisj
i=1

i<j

1

where energy function H is called a Hamiltonian, s; and s; respec-
tively indicate the spin variables at positions i and j, which take +1
or -1 when the direction of the spin is upward and downward, and
N is the number of spins. The first term in the equation shows the
energy of spins due to the external magnetic field h, and the second
term shows the energy due to the interaction between spins. The
notation J is a coefficient indicating the magnitude of the interac-
tion.

The state in which the external magnetic field is large corre-
sponds to the high temperature state in annealing, and the process
of gradually reducing h corresponds to the annealing process. With
this annealing process, the values of every spin that give the min-
imum H in Eq. 1 can be obtained. Therefore, if the problem to be
solved can be expressed with Eq. 1 and if we can make it a problem
to find the minimum H by changing all spin variables, a quantum-
annealing-based computer can be applied to any problem. The s;,
and s;j in Eq. 1 are either +1 or -1, but it is also possible to make
them into binary numbers of 1 and 0 through modification using
the following equation.
si+1

. @

Xi =

3 SIMULATIONS
3.1 Data preparation

We conducted simulations to address the problem of recognizing a
specific image category from four image categories. Four types of
images of handwritten numbers 0 to 3 from the MNIST (Modified
National Institute of Standards and Technology) digit classification
dataset were used as the four categories. These data are mono-
chrome image data of 28 x 28 pixels. Pixel value is 8 bits of which
maximum is 255. To reduce the number of spin variables, these
images were reduced by half in both the horizontal and vertical
directions, as described below. They were then normalized by divid-
ing by 255 in a similar manner to what is done with conventional
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neural networks. Label data showing the numbers corresponding to
each image were also used for learning and evaluation of prediction
accuracy.

3.2 Model and loss function

Figure 1 shows the models used in the simulations. Model 1 was
basically the same as a conventional neural network having one
fully connected layer, as shown in Figure 1 (a). Model 2 used Sobel
filters placed in front of the fully connected layer, as shown in
Figure 1 (b). These Sobel filters were for horizontal and vertical
edge detection, as shown in Figure 2. The two two-dimension data
convolved by these two filters are converted into one-dimension
196 data after passing through the activation function, Relu. In both
models, images were input after resizing to 1/2 in height and width.
All one dimension data in the fully connected layer were linearly
combined to 4 neurons in the output layer. i th outputs fi are given
by Eq. 3.

n
fi= ) wijxlil+bi 3)
j=0
where n is the number of pixels of the image after being converted
to one dimension, x[j] is the value of the i-th pixel, w;; are the
weight factors, and b; is the bias. The weight factor and biases are
given by Egs. 4 and 5, respectively, using multiple spin variables.

Wi,j = CwSij,m—1 form=1
=CW(ZZZ§2k%mk"@m71—1)Wer4) form > 1

4

bi = cptim—1 form=1

5
=% (Z;cn;oz Zkti,k - (2m 1 -1) ti,m—]) form > 1 ®)

Here, m is the number of bits, cy, ¢}, are coefficients, and Sij,m,
tim are spin variables, which are 0 or 1. Therefore, w;;j and b; take
integer values from -2™! -1 to 2™ 1-1 for m larger than one.

The loss function H is expressed as

H=Hy + H; + Hy + H3, (6)
where, Hy, H1,Hz, and Hs are given following equations.

Ho = Y (folil - i [0])? (7)
i=0

Hy = ) (filil - yi [1])° (8)
i=0

Hy = ) (f2[il - yi [2])° )
i=0

Hy = Y (f3[il - i [3)° (10)
i=0

Here, y;[j](j=0-3) is the label data indicating the classification of
the i-th image in the form of a one-hot vector, fy[i] - f3[i] are in the
form of a first-order polynomial with respect to s; and t;; therefore,
since Hy — H3, and H given by Egs. 6-10 are in the square form of
their first-order polynomials, they are second-order polynomials
of spin variables. Then, H in Eq. 6 can be transformed to form
the Hamiltonian of the Ising model given by Eq. 1. Therefore, it
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Figure 1:

Figure 2: Sobel filters used in Model 2

is possible to find a combination of spin variables that gives the
minimum H by quantum annealing.

3.3 Simulation of quantum annealing

Using H in Eq. 10 as the Hamiltonian, we conducted a simulation
of quantum annealing using Pyqubo [11]. Pyqubo is a package that
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Models used in simulations

creates Ising models from flexible mathematical expressions. We
conducted the simulation five times for each condition. We chose
the number of training images and number of bits for the weights
as the simulation parameters. The cy, and c}, of Egs. 4 and 5 were
both set to 0.05.

Using the optimal weights obtained from this simulation, we
calculated four outputs given by Eq. 3 and predicted the category
corresponding to the maximum output as the correct category.
Prediction accuracy was obtained for both training and test datasets.
We used 500 images as test data.

For comparison, recognition accuracy was also obtained using
conventional neural networks that had the same configuration as
the two models using the quantum annealing shown in Figure 2.
Here, the conventional network refers to a network in which the
optimal weights and biases is obtained by backpropagation and
gradient descent, and so on.
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Figure 4: Simulation results on prediction accuracy of Model 2

4 RESULTS AND DISCUSSION

Figures 3 and 4 show the simulation results of prediction accuracy
of Models 1 and 2 for 500 test images. The x-axis of these graphs
indicate the number of training images The prediction accuracy of
the corresponding neural networks to these models are also shown
with white circle. These prediction accuracies are the average of the
five trials. Prediction accuracy increased as the number of training
images increased, as expected. For Model 2, when the number of
training images was 2500 or more, prediction accuracy was over

95%. This value is high, but lower than that of a conventional neural
network.

By comparing Figures 3 and 4, prediction accuracy improved
using Sobel filtering and non-linear processing by the activation
function as preprocessing. It would be desirable if the weighting
coeflicient in these filtering processes could also be optimized by
quantum annealing. In quantum annealing, however, the weights
in the loss function is limited to the second order because it must
be able to transform into the form of the Hamiltonian equation
given as Eq. 1, so only the weight of the fully connected layer can
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Figure 5: Prediction dependence on the number of bits of weights and biases

be optimized by quantum annealing. Therefore, preprocessing 3x3
filter weights had to be hyper parameters. In this simulation, a
general Sobel filters used for horizontal and vertical edge detection
was used. However, prediction accuracy should further improve if
we can find a more suitable filter.

Figure 5 shows the prediction-accuracy dependence on the num-
ber of bits of weights and biases. Prediction accuracy was higher for
3 and 5 bits than for 1 bit, that is, multi-valued weights and biases
using multiple spin variables are effective in improving accuracy,
but not significantly compared to when using a single spin variable.
Therefore, it seems appropriate to express the weights and biases
in about 3 bits.

5 CONCLUSION

We investigated an image-recognition technique using quantum
annealing. We used four types of handwritten numbers of 0, 1, 2,
and 3 from the MNIST dataset as images to be recognized. The
models were basically the same as a simple neural network, and
one with a fully connected layer and the other with 3x3 Sobel filters
in front of this layer. The images were first resized to 1/2 in both
directions, and the pixel data were converted to one-dimension196
data, then output to four outputs through a fully coupled neural
network. The optimum values of 196 x 4 weights and 4 bias of the
fully connected layer were obtained by quantum annealing in which
the loss function was expressed as the Hamiltonian of the Ising
model. We conducted simulations using Pyqubo, and the results
revealed the following. 1) High prediction accuracy of over 95 %
was obtained when using over 2500 training images. 2) Prediction
accuracy improved by placing the Sobel filters in front of the fully
connected layer and 3) by expressing weights and biases using
multiple spin variables.
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Prediction accuracy may be improved by placing a filter other
than a Sobel filter in front of the fully coupled layer. Finding the
best filter is for future work.
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